
Deterministic Generative Models for Fast Feature DiscoveryMachiel Westerdijk (machiel@mbfys.kun.nl), David Barber(barberd@aston.ac.uk) and Wim Wiegerinck (wimw@mbfys.kun.nl)Department of Medical Physics and Biophysics, University of Nijmegen, The Netherl andsAbstract. We propose a vector quantisation method which does not only provide a compactdescription of data vectors in terms codebook vectors, but also gives an explanation of codebookvectors as binary combinations of elementary features. This corresponds to the intuitive notionthat, in the real world, patterns can be usefully thought of as being constructed by composi-tions from simpler features. The model can be understood as a generative model, in which thecodebook vector is generated by a hidden binary state vector. The model is non-probabilisticin the sense that it assigns each data vector to a single codebook vector. We describe exactand approximate learning algorithms for learning deterministic feature representations. In con-trast to probabilistic models, the deterministic approach allows the use of message propagationalgorithms within the learning scheme. These are compared with standard mean-�eld/Gibbssampling learning. We show that Generative Vector Quantisation gives a good performance inlarge scale real world tasks like image compression and handwritten digit analysis with up to400 data dimensions.Keywords: vector quantisation, feature discovery, generative models, mean-�eld methods, mes-sage passing algorithms, handwritten digits analysis, image compression1. IntroductionMany techniques for data analysis can be regarded as seeking for a descriptionof data in terms of elementary features. An advantage of a feature representationis that it reduces redundancy in the input patterns (Barlow, 1989). Furthermore,a description in terms of features can provide a lucid explanation of objects(input patterns), which can in addition be helpful in understanding the hiddendata generating process. Areas in which feature representations are particularlyrelevant can be found in biological modelling, image processing and data mining.Currently, the most widely applied techniques for feature extraction are lin-ear. Well known examples are principal component and factor analysis. Boththese techniques give a meaningful representation of the data only if the dataare Gaussian distributed around some low dimensional linear subspace. More re-cent non-Gaussian linear methods include independent component analysis (Bell,1995) and the sparse coding approach by (Olshausen, 1996). A signi�cant ad-vantage of linear methods is their speed. In addition, linear models provide aneasily interpretable feature representation of the data, often in terms of the basisspanning the linear subspace. One important drawback of linear models is thatthey can not describe multi-modal distributions.The most well known and simplest method for �nding multi-modal structure inthe data is vector quantisation (VQ) (Gray, 1984). The drawback of vector quanti-sation, however, is its lack of a feature representation. To overcome this problem,more advanced non-linear probability models have recently been promoted byseveral authors in the context of feature extraction (Sallans, 1998; Ghahramani,1998; Saul, 1996; Attias, 1999). In contrast to standard vector quantisation,where a data point is explained in terms of a single codevector, these modelsexplain a data point in terms of a combination of elementary features. Each suchcombination is formed or generated by the state of a set of hidden or latentvariables.c 2000 Kluwer Academic Publishers. Printed in the Netherlands.westerdijk.GVQ.tex; 16/08/2000; 10:12; p.1



2 The model that we propose in this paper, the Generative Vector Quantizer(GVQ), is exactly such a generative model, with a binary hidden layer and acontinuous visible layer representing the codebook vectors. Hence, in GVQ acodebook vector is considered to be composed of a binary combination of fea-tures in which a given feature is either fully present or fully absent. To providean easy data interpretation, GVQ associates only a single codebook vector andtherefore a single feature composition to each data pattern. This is in contrastwith probabilistic models which associate a data pattern with a distribution overcompositions where, in principle, each possible composition has a contribution. Inthis sense, one can view the GVQ model as a special deterministic variant withinthe larger class of noisy, probabilistic models.In addition to interpretability, there is another important advantage of usinga deterministic model. To learn a generative model from a given data set thereexists an accurate and rapidly converging algorithm. This EM-algorithm (Demp-ster, Laird & Rubin, 1977) iterates between an Expectation step (E-step) and aMinimisation step (M-step). The E-step determines which hidden states (whichcombinations of features) are responsible for generating a given data pattern. Ifthese states are known then it is computationally straightforward to optimize thefeature values in the M-step. The basic problem in the application of the EM-algorithm is that there is no eÆcient way to determine which of the, exponentiallymany, states generated the data point. This makes the E-step computationallyintractable. A major issue in developing learning methods for Generative modelsis to �nd accurate and tractable approximate solutions for the E-step. In data-mining applications, where databases are often large and high dimensional, thisissue becomes particularly important. The deterministic property of the GVQmodel makes the use of a special class of message passing algorithms withinthe learning scheme directly relevant. These algorithms (Pearl, 1988) are usedwithin graphical models to infer marginal probabilities given some evidence. Inthe deterministic approach the distribution of a multi-dimensional state space isgiven simply by the product of the marginals of this distribution. In other words,in the deterministic limit, algorithms which estimate marginal 2probabilities well,will necessarily estimate the full distribution equally well.Message passing algorithms are interesting alternatives to the methods forprobabilistic models such as the mean-�eld approximation (Ghahramani, 1995;Zemel, 1994; Saul, 1996). In this paper we will describe how message passingalgorithms can be used for learning feature representations in the form of aGVQ model. In addition, we will present an extensive comparison between thesealgorithms and the mean-�eld method for learning deterministic GVQ models. Wewill indicate under which circumstances a speci�c algorithm should be preferredover others.In section (2) and section (3) we present the basic idea of GVQ and its rela-tionship to standard vector quantisation, along with the GVQ learning algorithm.The crucial issue of the tractable implementation of this algorithm is discussedat some length in section (4).In order to tune the representation for a particular application there are someuseful types of constraints one can impose on the model. In some applicationsone knows that are certain distinct classes present in the data. For examplein handwritten digit analysis the features for constructing 2's are not used forconstructing 4's which have their own distinct set of features. Furthermore, tolearn a multiple feature set model it is desirable that the sets compete in awinner-take-all fashion, so that the sets force each other to specialize on di�erent
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3structures in the data. We will show in section (5) that in the GVQ model sucha multiple set representation can be built in in a natural way.High dimensional real world problems, namely handwritten digits and imagecompression, are studied in sections 6.1 and 6.2. The relation of this work toother models is discussed in section (7), along with potential bene�ts to discreteoptimisation using message passing schemes.2. Standard Vector QuantisationThe aim of vector quantisation (VQ) is to represent a dataset by a smaller setof representative vectors. This set can be used to code a data pattern witha small number of bits. The code of a data pattern is given by the index ofthe closest representative vector. For this reason the collection of representativevectors is called a codebook and the vectors themselves are the codebook vectors.An example of a data set with its representative codebook vectors is shown in�g(1) (a).An important advantage of standard vector quantisation methods is that, for agiven data set, they can quickly construct a set of representative codebook vectors.For this reason these techniques are widely used in many application domains forcompression or for clustering of data. Standard vector quantisation does not,however, represent objects as a collection of features. To overcome this de�ciency,we introduce generative vector quantisation, as described in the following section.3. Generative Vector QuantisationIn Generative Vector Quantisation (GVQ) the objective is similar to that of VQ,namely to �nd a codebook representation of the data. In contrast to standardvector quantisation, GVQ reduces the number of representative vectors by usinga smaller set of basic feature vectors ff1; : : : ; fng which exist in the same d-dimensional space as the data. Each codebook vector is then formed by somebinary combination of these feature vectors,nXi=1 sif i � F s;where the feature matrix F = �f1f2 : : : fn�, and the state vector s 2 f0; 1gn. Thereare therefore M = 2n possible codebook vectors F s1; : : : ; F sM .An example of a set of codebook vectors generated by 3 features in a 2-dimensional space is shown in �g(1) (b). To contrast this approach with thestandard approach, the data used for GVQ is the same as in �g(1) (a). In �g(1)b),the circles represent the generated codebook vectors which correspond to the 8states (000); (100); : : : ; (111). The features are given by the codebook vectorscorresponding to the unary state vectors (100), (010) and (001) etc. The zerostate vector is the origin of the representation. The remaining codebook vectorsare then `generated' by combinations of these basic codebook vectors, or features.For example, the codebook vector corresponding to state (011) is given by addingthe features corresponding to state (010) and (001), see �g(1) (b).Note that in GVQ the number of features n is not related to the dimensionalityof the data space. Hence, there may be more or less basic feature vectors thanthere are dimensions in the data space.
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(000) b)Figure 1. a) A codebook vector representation by standard vector quantisation. b) In GVQthe codebook vectors (circles) are generated by a small set of basic features f1; f2 and f3, whichcorrespond to the states (100); (010) and (001), respectively. The codebook vector correspondingto the state (011), for example, is given by the sum of the vectors corresponding to the two states(001) and 010 (see broken lines).3.1. The GVQ learning algorithmIn GVQ, as in standard VQ, each data point x� is associated with a particularcodebook vector, indexed by c�. Typically, this association is made such that x�is assigned to the closest codebook vector, in the Euclidian sense. The squaredEuclidian distance between the whole data set D = fx�j� = 1; : : : ; P g and itscodebook representation, fF sc� j� = 1; : : : ; P g, isE = PX�=1 kx� � F sc�k2: (1)The task is, therefore, to �nd both the optimal associations of data points tocodebook vectors, and the best feature vectors in order to minimize E. Sincethe associations between data points and codebook vectors will change if thefeature matrix F is changed, minimising (1) directly with respect to F and theassociations is not practical. For this reason we make use of a two-step iterationprocedure.After initialisation of the features F the GVQ learning algorithm iterates be-tween an association step 1 which �nds, for each data-point, the most nearbycodebook vector and a minimisation step 2 which �nds the optimal featurecon�guration for the given association:1. For � = 1; : : : ; P c�  argminj kx� � F sjk2; (2)2. F  argmin~F X� kx� � ~F sc�k2 (3)
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5The second step only involves the mean hxik of each group of data associatedwith a single codebook vector k since,minF Pk X�2Ck kx� � F sckk2 =minF Pk X�2Ck hkF sckk2 � 2x�F scki =minF Pk X�2Ck hkF sckk2 � 2x�F scki+Nkhxik2 =minF Pk Nkkhxik � F sckk2; (4)where Ck represents the set of all data points associated with the state sck andwhere Nk is the number of data points in cluster k. The expectation value h�ik istaken over the data in cluster Ck. The additive constant does not depend on F .The objective function (4) can be minimized eÆciently by use of Singular ValueDecomposition (see for example Press, 1992, chapter 14.3).The �rst step, (2), is computationally more diÆcult since, in principle, itinvolves a search through all 2n binary states s. In section (4) we will discuss andcompare di�erent approximate algorithms which can reduce this computationaloverhead. 4. Approximate associationIn the association step (2) we want, for a given �xed data point x, to minimizethe error function1 E(s;x) = kx�Xi fisik2 (5)with respect to s. Since there is an exponential number of binary states s, an ex-haustive search over all these states rapidly becomes computationally intractablefor even a moderate number of features.In this section we will compare two types of approach for �nding the optimalstate s� which minimizes (5)2, drawing heavily on the terminology of graphicalmodels (Pearl, 1988; Neal, 1998). In doing so we make a distinction betweentwo types of methods. The �rst class of methods only considers relations, im-plicitly given by (5), between the binary variables3 Si. As will be explained therelationships between the binary variables can, in that case, be represented byan undirected graph. In section (4.1) we will present a number of specializedapproximating algorithms for undirected graphical structures.The second class of methods considers explicitly the relations between binaryvariables Si and visible variables Xi. The corresponding graphical dependencystructure is then directed. Section (4.2) discusses an algorithm which exploits thisgraphical structure.1 In this section we refer, for notational convenience, directly to a speci�c binary state s andomit the upper indices used in section (3.1). Furthermore, we do the association for a single datapoint x. It is clear that the problem is the same if we instead use the cluster means hxi of (4).2 Note, that the minimizing state s� need not be unique. Here we do not specify a priorpreference i.e. we regard each solution to be equally valid.3 Note, that we use capitals to refer to variables and lowercase letters to refer to their values.
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6 In section (4.3) we shall give an experimental comparison between these meth-ods for a range of GVQ architectures.4.1. Undirected graph methodsSince we are interested in �nding the state s which minimizes the error functionE(s;x) for a given x, we can de�ne a new error function which contains onlydependencies on s. First note that,E(x; s) = x2 � 2xXi fisi +Xij fi � fjsisj= x2 � 2xXi fisi +Xi f2i s2i + 2Xi Xj>i fi � fjsisj; (6)and that si = s2i . The new s-dependent error Ex(s) is de�ned asEx(s) =Xi 8<:hisi +Xi Xj>iwijsisj9=;; (7)where wij = 2fi � fj ; hi = �2fi � x + f2i . The s that minimizes Ex(s) is equal tothe s that minimizes E(s;x). Note that this error function contains only pairwiseand symmetric dependencies between the variables si. This dependency structure,given by the weight matrix wij , can be represented as an undirected graph. Anexample of a fully connected graph, i.e. all weights wij are non-zero, is shown in�g(2).The following subsections discuss three di�erent algorithms which make use ofthis undirected graph structure.4.1.1. Belief Propagation (BP)The error function (7) can be used to de�ne a probability distribution px(s) onthe set of binary states s,px(s) = 1Zx exp�� 12�2Ex(s)�; (8)where Zx is a normalization constant. In this formulation the state s� � argmins Ex(s)with the smallest error in (7) now corresponds to the state with the largest prob-ability in the distribution px(�). In the case that the noise � in (8) is decreased,s� will start to dominate the distribution. In the limit � ! 0 the correspondingprobability px(s�) saturates to the value 1. It is easy to see that the marginalprobabilities px(si), i.e. probabilities of individual units, also saturate to the values0 or 1. A useful property of the zero noise limit is that the single unit states s�i forwhich px(s�i ) ! 1 together form the global objective state s� = (s�1; s�2; : : : ; s�n)of the whole graph. Hence, by computing the marginals px(si) from (8) we can,by reducing � in (8), �nd the minimising state s�. However, computation of themarginals px(si) has the same computational complexity as the original minimi-sation problem (7) since it involves a summation over all combinations of thestates of all the other units j 6= i.The belief propagation algorithm (Pearl, 1988) provides a computationallyinexpensive approximate method to compute the marginals px(si). The basic ideaof this method is to decompose the summation into a sequence of local operationswhich take place at the individual nodes. In appendix (A) we will present this
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7method and give an example for a simple network. The computational complexityof this algorithm scales quadratically O(n2) with the number of binary nodes n.Our implementation of belief propagation starts with a large noise value �.While running Belief Propagation, in an attempt to avoid local minima, the noise� is slowly reduced to zero. The corresponding state s� for which all px(s�i ) = 1is then taken as the solution for our minimisation problem.4.1.2. Belief Revision (BR)Belief Revision (Pearl, 1988) is an algorithm for directly tackling the minimisationproblem minsEx(s). Again, the trick is to carefully exploit the graphical structureof the problem, given by the weights wij, in order to decompose the minimisationproblem into local operations. In fact, it can be shown that the belief propagationalgorithm is equivalent to Belief revision by taking the limit � ! 0. We refer toappendix (B) for a derivation of the Belief Revision algorithm and a descriptionof our implementation of the algorithm for the GVQ model. The computationalcomplexity of this algorithm is O(n2).4.1.3. Mean-Field (MF)The basic idea of variational algorithms (of which the mean-�eld method is aspecial case) is to replace the intractable objective function with a tractableapproximation to it, so that the optimization of the approximate objective func-tion can be carried out eÆciently, see for example (Saul, 1996). Based on thisprinciple we derive a mean-�eld variational algorithm in appendix (C) to �nd theminimising s� state of the objective function (7). The complexity of the mean-�eldalgorithm is O(n2).4.2. Approximation in the Directed GraphInstead of representing only the relation in each pair ij of binary variables Siand Sj as in the previous section, we can also form a graphical representationof the relation in each pair of all the variables i.e. binary variables Si as wellas continuous variables Xi. The most eÆcient way to do this is to represent therelations with a directed graph.To explain this we represent our GVQmodel as a joint probability model p(x; s)of binary states s and visible states x. The prior distribution of the binary unitsp(s) is constant, i.e. p(si) = 12 and p(s) = 12n . The joint probability distributioncan be constructed as follows:p(x; s) = p(s)p(xjs) = 2�n�2��2�� d2 exp�� 12�2E(s;x)�; (9)where E(s;x) is our original objective function (5). An example, of the graphicalrepresentation of (9) is shown in �g(2). As can be seen, there are no direct linksbetween binary hidden units reecting the fact that the prior distribution p(s)is factorized, i.e. p(s) = Q p(si). The arrows reect the relation between hiddenstates s and visible states x given by p(xjs) / expn�(x�Pi fisi)2=2�2o so thatthe set of arrows expanding from unit Si correspond to feature fi.4.2.1. Belief Propagation in the Directed Graph (DBP)In appendix (D) we present a belief propagation algorithm which explicitly takesthe directed graphical structure into account by passing messages from hiddenunits to visible units and vice versa. Using the same noise reduction process
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b)Figure 2. a) Undirected graph representation. b)Directed Graphical structure of GVQ� ! 0 as in section (4.1.1), the desired state s� can be inferred by computingthe conditional probabilities p(sijx) from (9). Again, in the limit � ! 0 themarginal probabilities p(s�i jx)! 1 together form our desired objective state s� =(s�1; s�2; : : : ; s�n). For general probability distributions with bi-partite structures asin �g(2) the computational complexity of this algorithm scales exponentially withthe number of connections between a visible unit Xi and hidden units S, that is,the algorithm is exponentially complex in the number of parents of the visibleunits. However, for the special case of our GVQ model, which has a quadraticdependence between binary states s and visible states x, we can reduce thiscomplexity to O(n2 � d), by introducing an integral transform. However, this ispotentially at the cost of decreased accuracy4.4.2.2. Belief Revision in the Directed Graph (DBR)In section (4.1.2) we transformed the probabilistic belief propagation algorithminto a noiseless algorithm by taking the limit � ! 0. The same operation canbe applied on the DBP algorithm for the directed graph of section (4.2.1). Theresulting belief revision algorithm still takes the directed graphical structure intoaccount. However, in contrast to the probabilistic algorithm, the complexity ofthe algorithm can no longer be reduced to polynomial. It remains exponentialin the number k of connections that each visible unit has with the binary unitsi.e. the overall complexity is O(n� d� 2k). We refer to appendix (E) for a moretechnical discussion of this approach.4.3. Experimental comparisonSo far we have not characterized the type of problems for which we can �nd asensible GVQ representation. In practice we can expect a large range of situationswhere we want to �nd a feature representation. For example, some situationsrequire a large number of features in a low dimensional data space (over-completebasis) or, in the opposite case, they require a few nearly orthogonal features in ahigh dimensional space. The purpose of this section is to determine under whichcircumstances the approximating algorithms are most suitable.4.3.1. Inuence of connectivity structureIn this sub-section we monitor the performance of the algorithms if we graduallyincrease the complexity of the graphical structure of the GVQ model. To do this,we generated a number of arti�cial problems. In each experiment we sampled a�xed number n = 12 hidden units of d = 4 dimensional features (visible units).4 As explained in appendix (D).
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Figure 3. a) GVQ networks with n = 12 features and d = 4 visible units. a) Each visible unitXi is connected with only two binary parent units (k = 2). b) Fully connected network (k = n).
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b)Figure 4. Comparison of the Belief Propagation (BP, dotted lines), the Belief Revision (BR,dashed lines), Mean-Field (MF, solid lines) and the Belief Revision in the Directed graph (DBR,dot-dash lines) algorithm. a) The error E(s;x) as a function of the number of parent connectionsk (given as a fraction k=n of the total number of parents n). b) The error E(s;x) as a functionof the number of input dimensions d (given as a fraction d=n of the total number of parents n).The features fi are chosen such that each visible nodeXi has at most k connectionswith the binary layer, see �g(3). The connections are selected randomly. Thefeature values fij that determine the strength of these connections are sampledaccording to fij � N (2; 1), a Gaussian distribution with mean 2 and variance 1.We chose a non-zero mean to avoid non-realistic symmetries in the generated data.Together with each feature set we randomly chose a binary state s�, according top(s�i ) = 0:5. Then for �xed fi and s� we generated an input pattern x using x =Pi fis�i + �, where � is adding a small amount of random noise. The componentsof � are sampled from N�0; 110�. Given the input pattern x, each method wasused to recover the generating state s�. We then computed the error E whichis de�ned here as the average absolute error per input 5 dimension i.e. E =1dPi jxi �Pj fijsjj which is directly related to (5). Note that the minimum erroris �. This procedure was repeated 100 times for each connectivity number k.Fig(4) (a) shows the average of these results as a function of the number ofconnections k. For each method the error clearly increases with increasing number5 We look at the input space and not at errors in the binary latent space since we are interestedin the reconstruction errors of data examples. Two codebook vectors with the same distance todata point x but with a large distance to each other in the binary latent space binary space areconsidered equally valid.
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10of connections k. If the number of connections is small (k=n < 0:6) the error ofthe directed belief revision algorithm is close to the minimum error � i.e. it is closeto the exact solution. In this region DBR outperforms all undirected algorithms.At a certain point (k=n � 0:65) the error of DBR starts to rise quickly. This isexpected since the loops are shorter in denser networks. The transition point issomewhat dependent on the imposed noise �. For smaller values of � the pointshifts to the right. In the extreme case � = 0 DBR does not make errors anymore,i.e. E(s;x) = 0 for � = 0 (which is not true for the other methods). However, forthe value of � we used here the DBR algorithm performs poorly for fully connectednetworks. In that case we should use the mean-�eld algorithm.In �g(4) we do not include the performance of DBP. To obtain comparableperformance to DBR, we found that we needed to anneal � to such a smalllevel that retaining accuracy of the integral transform became computationallyburdensome.As can be seen from �g(4), the error of BP is in all cases larger than the BRerror. To get a BP error closer to BR we need to anneal to even smaller values of�. The anticipated positive e�ect of avoiding local minima was not present.In �g(4) (b) we show the result for fully connected networks (n = 15, fij �N (0; 1)) where we increase the number of input dimensions d. For the fullyconnected case we omitted the DBR and DBP methods since we know, fromthe previous experiment, that their performances will be poor. We see that forthese fully connected GVQ networks mean-�eld outperforms the other methodsover the whole region. For large values of d=n the thresholds hi will dominatethe contributions given by the interactions wij in the error function (7). Hence,e�ectively the units Si will become more independent in which case all methodsperform better explaining the decreasing errors in �g(4) (a).In the experiments with the BR method we made an interesting observation.In all the trials where the messages converged to a stationary value the �nalerror was equal to the minimum error �. The BR error in �g(4) comes from theremaining non-converging trials. This indicates that by looking at the convergencebehaviour of BR we are able to determine whether the �nal answer is correct. Ifit does not converge we can always do the association with MF instead.4.3.2. Performance as a function of the similarity between the featuresIn the experiments above the features were sampled from zero mean normaldistributions. This may not be particularly representative of features in real-worldproblems. A crude attempt to address this issue is given by generating featureswhich have a degree of similarity. Here we do this by drawing the features from aGaussian with non-zero mean. The feature values fij are sampled from a normaldistribution with mean , that is fij � N (; 1). Hence, the larger  the morethe features fi `point in the same direction'. The result is shown in �g(5). We seethat if  > 4:5 the message passing methods BR and DBP both outperform MF.In the previous experiments, the mean-�eld method performed better for fullyconnected architectures. However, the results in �g(5) indicate that under certaincircumstances message passing algorithms may outperform mean-�eld also forfully connected networks.5. Imposing constraints on the basic modelIn some applications one has a priori knowledge about the probability distribu-tion which generated the data. In that case it can be of great help to impose
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b)Figure 5. Comparison of the Belief Propagation (BP, dotted line), the Belief Revision (BR,dashed line) and Mean-Field algorithm (MF, solid line). The error is shown E(s;x) as a functionof the similarity  between the features (d = 4; n = 10). The error bars indicate the variation inthe mean.constraints on the basic GVQ model which incorporate this knowledge. In thissection we propose three constraining methods which we believe to be useful fora large class of applications. The �rst two of these methods impose constraintson the distribution of the hidden states s. The third represents a constraint onthe distribution of values of the input patterns x.5.1. Multiple feature sets and multi-valued featuresIn many real world problems we can expect that there are di�erent unrelatedgroups of patterns. In each of these groups the patterns are built up out of featuresfrom a set which is speci�c for the group. It is easy to adjust the GVQ learningalgorithm for learning multiple feature sets by simply constraining the set ofallowable states. Fig(6) shows the result of learning two sets of 3 features from adata set of 300 samples. Features corresponding to one set can only be combinedwith features from the same set. The origins of the di�erent sets, indicated withthe dashed lines in �g(6), which are considered as constant `on' features for thatset, are also determined by the optimization process. For a given data point thereis only one feature set responsible for generating the closest code vector. In thissense we can interpret the multiple set model as a winner-take-all con�gurationof multiple GVQ's.Allowing multiple sets makes it possible to �nd di�erent groups of objects, i.e.each GVQ within the winner-take-all con�guration learns to represent a certainclass of objects in an un-supervised manner. An example of this is given in section6.1 in which handwritten 3's and 5's are separated in an un-supervised mannerusing multiple feature sets. Note that in the extreme case of using one featureper set, GVQ is equivalent to standard vector quantisation.5.2. Penalty constraintsAnother way of biasing the solution to those consistent with prior beliefs is givenby adding an extra penalty term to the energy function (1). For example, one canbias the �nal representation to be sparse, i.e. each object is composed of a smallnumber of features from a large set, by adding for example the term �sT s to theenergy function.
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Figure 6. Result of learning two sets of 3 features using a data set of 300 samples from a mixtureof 10 randomly distributed Gaussian clusters . The `origin' features are represented by the dashedlines which come together in the origin.5.3. Binary features for binary dataIn the case that the elements of the data are binary, it is desirable that the featurecombinations result in values close to 1 and 0. Experiments with the originalerror function (1) on this type of data, however, result in feature combinationswith smoothly varying values, i.e. the reconstructed data patterns are not binarypatterns but have values between the binary states.Better results are obtained by using sigmoid squashing functions so that thecodebook vectors are forced to have values close to 0 and 1. For this reason we usea sigmoid function to `squash' the combination of features. For ease of interpre-tation, it is also advantageous that the features themselves are constrained to bebinary. This can be implemented in a `soft' manner by de�ning the constrainedfeatures as F � �(F̂ ) such that we can minimize the error function with respectto the unconstrained matrix F̂ . Our error function for binary data is thusE = PX�=1 kx� � �����F̂�sc��k2 (10)in which �(x) = �1 + e�x��1;and ��(y) = �(�(y � 1=2));where � is a parameter which controls the steepness of the squashing function. Inour implementation (10) is minimized with respect to F̂ using the scaled conjugategradient method (Press, 1992).After incorporating the squashing functions, the model becomes more closelyrelated to other models such as sigmoid belief networks (Neal, 1991) and the \mul-tiple cause mixture" representation proposed by (Saund, 1995). Note, however,that the deterministic approach, see section (7.1), and the learning procedure,discussed in section (4), of GVQ sets it apart from these methods.
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a)Figure 7. A random sample of 48 handwritten `threes' and `�ves' from the CEDAR CDROM.Each image consists of 20 � 20 bits.6. Results on Real-World DataIn this section we demonstrate the application of GVQ in two practical situations.First we extract features of handwritten digits. Using a small number of basicfeatures GVQ can �nd nice reconstructions of the original digits. Finding a featurerepresentation can for example be useful as a pre-processing step in a classi�er.In the second application we demonstrate the advantage of GVQ over standardvector quantization in image compression. We show that when using a featurerepresentation images can be compressed into an even smaller number of databits.6.1. Handwritten digitsWe randomly selected 400 training images of handwritten `threes' and `�ves' fromthe CEDAR CDROM 1 database (Hull, 1994). Since the original images containdi�erent numbers of pixels, we rescaled all images to 20 � 20 pixels. A typicalsample of these images is shown in �g(7).We decided to �t a GVQ model consisting of 4 mutually exclusive sets of 5features (including in each set an origin feature), see section (5.1). For this appli-cation we made use of the binary feature binary data version of GVQ as discussedin section (5.3) with � = 4:5. The features, which were obtained, are shown in�g(8). Each row in the �gure corresponds to a feature set and the last feature onthe right hand side in each row corresponds to the origin feature of the set. Byinspection it is clear that the �rst two sets (top two rows) specialize on `threes'whereas the last set (last row) specializes on constructing `�ves'. The third setcan construct both `�ves' and `threes'. These properties become more clear if welook at �g(9) where 37 of the most representative feature combinations (codebookvectors) are shown. By most representative we mean those feature combinations(codebook vectors) which account for most of the data. The codebook vectorsin the left sub-�gure of �g(9) are combinations of features from the �rst set in�g(8), which clearly are all `threes'. As we see from the second sub-�gure in �g(9),the second feature set, although primarily concerned with modeling `threes', isnevertheless able to construct a `�ve'. This is even more apparent in the thirdsub-�gure in �g(9) containing both `threes' and `�ves'. The reconstructions in thisset show that there is a class of handwritten digits containing `threes' and `�ves'which share at least one feature, namely the origin feature. This origin featurecan be supplemented with an additional feature to become either a `three' or a`�ve'.
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Figure 8. Features that were obtained after learning from a database of 400 handwritten `threes'and `�ves'. Each of the 4 rows represents an independent set which consists of 4 features and an`origin' feature (most right in each row).
Figure 9. The 37 most representative feature combinations. Each group corresponds toreconstructions using features from the same set, given by the rows in �g(8).6.2. Image CompressionA well known application of vector quantisation is in image compression. In thissection we demonstrate the additional advantage for image compression gainedby describing codebook vectors in terms of a small number of features.As an example, we used GVQ to compress the image in �g(10)a)6 and com-pared the result with standard vector quantisation. The original image consistsof 768� 704 pixels with 256 possible gray levels for each pixel which correspondsto 865 kbits of information. The image was split into P = 2112 segments of16� 16 pixels. We used standard VQ to construct 16 codebook vectors to repre-sent this set of P segments. We then reconstructed the image using the closestcodebook vector to each image segment. The result is shown in �g(10)-b. We alsoapplied standard GVQ using n = 8 features (plus an additional origin feature)to construct a representative set of codebook vectors for the image segments.Fig(10)-c shows the reconstructed image. The superior performance of GVQ overVQ in representational accuracy is given by the codebook exibility. In standardVQ only 16 codebook vectors can be used, compared to 28 = 256 codebookvectors in GVQ. Despite there being more codebook vectors available in GVQ,the information required to de�ne the compressed image using GVQ is less thanthat in VQ, as we show in the following section (section (6.2.1)).The features, which were learned to construct codebook vectors representingthe segments of the Vermeer image, are shown in �g(11). Interestingly, the �nalfeatures can be seen to be slightly biased to modeling variation around the verticaldirection, which is plausible given the large number of almost vertical shadows inthe original image.6 The Girl with a Pearl Earring (1665) by Johannes Vermeer, Mauritshuis, The Hague (TheNetherlands)
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a) b) c)Figure 10. a) The Vermeer image prior to compression consists of 865 kbits. After compression:b) With standard vector quantisation Iv = 74 kbits, c) with GVQ using 1 set of 8 features (see�g(11)) IGVQ = 56 kbits.

Figure 11. Features which were learned for representing the 2112-16 � 16 bit segmentsconstituting the Vermeer image. The lower-right feature is the origin feature, which isalways on.6.2.1. Information RequirementsSince a codebook vector in GVQ is constructed out of a set of n features, weneed at most n bits to specify a feature combination vector. If the data havea clustered structure, the number of bits needed will be smaller than n sincesome combinations will never be used. Therefore, if the number of used featurecombinations is Ngvq we also need logNgvq � n bits to specify a codebook vectorin GVQ. Similarly, in standard vector quantisation we need logNvc bits to specifya codebook vector if Nvc is the number of learned codebook vectors.Consider the case that the image to be compressed is unique, in the sensethat we can not use features (or codebook vectors) which were used to encodepreviously encountered images. In order to compare the compression eÆciencies,we need to take into account the information to describe the codebook vectors inVQ and the information in the features in GVQ. This information is proportionalto the number of pixels np used in an image segment, and the information requiredto determine the gray value of a pixel Ig. Hence, if the original image is split intoP segments, each made up of np pixels, the information IV Q in the compressedimage using VQ is IV Q = IgnpNvq + P logNvqand the information IGV Q in the compressed image using GVQ isIGV Q = Ignpn+ P logNgvq:
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16If there is a moderately number of segments P , which is the case if we compress asingle speci�c image, then for a given compression quality7 the di�erence betweenIV Q and IGV Q is determined mainly by the di�erence between Nvq and n. Sincewe can construct a large number of codebook vectors with a small number offeatures it is expected that n � Nvq, especially if the distribution of the imagesegments has a structured multi-modal form.The image in �g(10)(b), obtained after compression with standard VQ, consistsof IV Q = 74 kbits. In contrast, if we apply our GVQ algorithm using n = 8 featuresthe compressed image, �g(10)(c), consists of IGV Q = 56 kbits. While containing18 kbits less of information, the GVQ compressed image gives without doubt asuperior representation of the original image.7. Relation of GVQ to other modelsA large number of data modeling techniques can be seen as special cases of usingGaussian mixture models. Although not necessary for the motivation for GVQ,in this section we describe how GVQ can be seen as part of an ongoing traditionby relating it to the framework of Gaussian mixture models. This will enable usto clarify the relation of our model to other recently proposed techniques andapproximations to them.In the present context, a Gaussian mixture model can be conveniently con-sidered as a layer of hidden or latent variables s = (s1 : : : sn) connected to alayer of visible variables x = (x1 : : : xN ). Each data point then corresponds to aninstantiation of the visible units. The distribution on the visible units is obtainedfrom the marginal of the joint distribution over the hidden and visible units,p(x) =Xs p(xjs)p(s); (11)where the likelihood term is given byp(xjs) = �2��2��d=2e� 12�2 kx�g(s)k2 : (12)For convenience, we write the prior distribution of the hidden states p(s) in termsof an energy function �(s), p(s) = 1Z e� ��2 �(s); (13)where Z is the normalizing constant for the prior. Within this model, each hiddenstate s corresponds to a uniquely located Gaussian distribution in the visible layerwith mean g(s) with a prior belief that each Gaussian is responsible for the visiblevariable given by the prior p(s).In this section we discuss how various aspects of the GVQ model can be relatedto di�erent choices of the mean function g(s) and prior p(s) in the limit that �goes to zero.7 By compression quality we mean the similarity between the compressed image and theoriginal image.
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177.1. The deterministic vs the noisy approachTaking the zero � limit in the Gaussian mixture model provides a hard assign-ment of data points x to closest Gaussian centers. The resulting � ! 0 modelcorresponds to standard vector quantisation in which the codebook vectors arethe cluster centers g(s). In GVQ the additional constraint is that the codebookvectors are generated by binary combinations of vectors. This corresponds to thechoice g(s) = Pi fisi for the mean function, where the hidden states are nowcoded as binary vectors s 2 f0; 1gn. As discussed in section (4.2) the �nite noisemodel corresponding to GVQ is given byp(s;x) = p(s)�2��2�� d2 exp(� 12�2 kx�Xi fisik2); (14)where, in the basic approach of section (3.1), the prior probability of a featurecombination is the same for each combination i.e. p(s) in (14) is constant. This�nite noise model is closely related to the Cooperative Vector Quantizer proposedin (Zemel, 1994) which was further investigated in the context of mean-�eld learn-ing in (Ghahramani, 1995). GVQ corresponds to (14) with � ! 0. This impliesthat the posterior probabilities p(sjx) reduce to p(sjx) = Æ(s� � s) in which s� isthe unique binary state that is associated with x. Since Æ(s� � s) = Qi Æ(s�i � si),in the zero noise limit the multi-dimensional distribution of the hidden binarystates s is given by the product of its marginals. For this reason the messagepassing algorithms, described in section (4), which infer marginal probabilitiesp(si) become directly relevant in the zero noise limit. As we saw in section (4.3)there are indeed situations where these message passing algorithms outperformthe variational algorithms for �nite noise models.In summary, GVQ forces a solution in which each data point is explained by asingle process - that is, there is a unique explanation for each data point, found bya competitive process subject to this requirement. On the other hand, in a �nite� model, each data point is associated with each Gaussian center with a certainprobability. If one attempts to interpret each data point in terms of features onewould then need to evaluate the contribution of each Gaussian to the explanationfor the data point in some manner. In applications where clusters have strongoverlap, these contributions are important. Otherwise, a �nite � model wouldmake interpretation unnecessary complicated. Another motivation for consideringthe zero noise limit is that taking the most probable explanation (nearest Gaussiancenter) in the �nite � models may not give rise to a satisfactory interpretationsince the competition between Gaussian centers for the single best explanationfor each data point has not been optimized during learning.GVQ is most appropriate in cases in which one believes that any data point iswell explained by a single process (codebook vector).7.2. Alternative choices for the prior distributionWithin the probabilistic framework, some interesting connections can be made tothe sparse coding work of (Olshausen, 1996) and the independent factor analysis(IFA) work of (Attias, 1999). The main di�erence between these models and ourmodel is in the assumption for the hidden state distribution p(s). Both authorsconsider hidden state variables with continuous values, that is s 2 <n. In IFAAttias (Attias, 1999) considers a product of Gaussian mixture distributions (in-dependent factors) for the hidden states s. If, within IFA, the number of mixtures
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18for each hidden state variable si is set to 2 (bi-modal distribution), the distributionof the visible patterns can be regarded as a noisy version of the binary featurecombinations in GVQ.In contrast to the multi-modal assumption of IFA and the binary assumption ofGVQ, Olshausen and Field (Olshausen, 1996) consider a sharply peaked unimodaldistribution for continuous hidden variables s. This choice encourages a sparserepresentation of the data patterns since the hidden variables si will be in the`o�' state most of the time. In this case an individual pattern will be constructedas a combination of only a small number of features out of a large, typicallyover-complete, set of features. As discussed in section (5.1), a similar propertycan be incorporated in our method by replacing the basic constant GVQ priorin (13) with a soft prior �(s) = sT s. Note, however, that when this penalty termbecomes too large, only a single feature will be used to represent a pattern. Inother words GVQ will tend to standard vector quantisation as the solution isstrongly encouraged to be sparse.7.3. Binary Lattice Vector QuantisationIn another context, research has been done on Binary Lattice Vector Quantizers orDirect SumQuantizers. In fact, the binary codebook representation of GVQmodelis formally equivalent to the representation of a Binary Lattice Vector Quantizer.These representations have been studied for the purpose of data transmissionacross noisy channels. The main objective there is to transmit coded data suchthat the reconstruction error is minimal. An important sub-problem within thatobjective is the `Index Assignment Problem' which is to �nd an optimal binaryindex assignment to codebook vectors as to minimize the mean-squared errorcaused by channel errors, see (McLaughlin, 1995) and (Knagenhjelm, 1996).For `direct sum quantizers', an alternative method for the association stepis studied in (Barnes, 1993). This method is a heuristic compromise betweencomponent wise optimization and exhaustive search where the association is donein multiple stages bringing the codebook closer to the data-point at each stage.Whether this method is more accurate and eÆcient than the methods studied insection (4) remains to be investigated.To our knowledge binary lattice vector quantizers have, however, not beenstudied for the purpose of feature extraction and clustering of non-homogeneousdata, which has been the purpose of the present paper.8. ConclusionGenerative Vector Quantisation is a method, which performs salient feature ex-traction at modest computational expense. The simplicity of GVQ, which searchesfor descriptions in terms of binary feature combinations, may lead to a lucid datarepresentation, which is important in many data exploration tasks. A centralthesis of the GVQ model is that data points are explained by a single generatingprocess. Unlike a probabilistic model, GVQ constructs a competition betweenalternative explanations for a data point, in which there can be only one winningexplanation. This winner-take-all process provides the basis for a clear featurerepresentation. The deterministic nature of GVQ allows the use of a larger classof (approximate) association methods, such as Belief Revision, within the learningscheme. However, in the case that the data cannot be expected to be explained bya winner-take-all process, a probabilistic approach may be a more appropriate.
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19GVQ is potentially a powerful tool for exploring and representing data in adeterministic manner. Ultimately, the strength of GVQ lies in it's transparentsimplicity, being based on the intuitive notion that, although data may appearcomplex, it's construction may be well understood in terms of a small number ofelementary building blocks.
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b)Figure 12. Pairwise graphical model with (a) a chain structure (b) loopsAppendixA. Belief PropagationAn eÆcient technique to �nd an approximate solution to the marginal px(si) of (8)is to decompose the global summation operation into distributed local operations,reducing the exponential summation to quadratic time.For expositional clarity, consider an energy function Ex(s), with weights wijde�ned to give a chain structure as shown in �gure 12(a) (technically, the weightmatrix has zeros everywhere except for entries along the �rst diagonals adjacent tothe main diagonal). For the chain structure in �g(12)(b) the marginal probabilitythat unit 1 is in state s1 isp(s1) / Xs2;s3;s4 e(h1s1+s1w12s2+h2s2+s2w23s3+h3s3+s3w34s4+h4s4) (15)which can be decomposed into local operations as followsp(s1) / e�[h1s1]Xs2  e�[h2s2+s2w12s1]Xs3  e�[h3s3+s2w23s3] Xs4 e�[h4s4+s3w34s4]!!!(16)where � = � 1�2 and . Distributing the marginalization in this manner results ina summation over a number of states that scales only linearly with the networksize instead of over an exponentially scaling number of states in (15). To writethis in a more general form we de�ne the message that node Sj sends to Si as�ij(si) = �Xsj e�[hjsj+siwijsj ]0@ Yk2Cjni�jk(sj)1A; (17)where Cj is the set of all nodes connected to node j. Combining the incomingmessages �ij into node Si gives the marginal probability distribution of that nodep(si) / e�hisiYj �ij(si): (18)The recurrent marginalization procedure de�ned by (17) and (18) will give anexact solution for all connection weights wij that de�ne singly connected graphsi.e. graphs without loops.
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21For graphs with loops, for example �g(12)(b), which corresponds to the energyfunction Ex(s) =h1s1 + s1w12s2 + h2s2 + s2w23s3 ++ h3s3 + s3w34s4 + h4s4 + s1w14s4 + s2w24s4 (19)the method is still applicable although no longer guaranteed to �nd the optimalsolution. Nevertheless, there is experimental evidence (McEliece, 1995; Weiss,1997) that for large classes of graphs with loops the belief propagation algorithmgives good solutions.In our implementation the messages are initialized as �ij(si) = �Psj e�[hjsj+siwijsj ]with � = �1=�2(0:1)2� = �50. After initialisation an iteration in the procedureis as follows:� A random ordering of the nodes is chosen, which are then sequentially visitedin that order.� For each node, all messages coming into the node are updated according tothe rule (17) and the state of node i is updated tos�i = argmaxsi �e�hisiQ �ij(si)�.� The variance �2 is halved in � = 1=(2�2).This iterative process is repeated until � = 10�4. We then choose that state swhich in the iterations had the lowest energy Ex(s).B. Belief revisionThe inference problem that we need to solve is to �nd a single hypothesis orexplanation s for each observed state x.The minimisation problem for the chain in �g(12)(a) isE� = mins1;s2;s3;s4 (h1s1 + s1w12s2 + h2s2 + s2w23s3 + h3s3 + s3w34s4 + h4s4) (20)which can in analogy with (16) be decomposed into local operations as followsE� = mins1 �h1s1 +mins2 �s1w12s2 + h2s2 +mins3 �s2w23s3 + h3s3 +mins4 (s3w34s4 + h4s4)���:(21)Note that (21) has the same de-componential structure as (16) except that thesummation operator is changed into a minimisation operator and the messagesare combined as a summation instead of as a product.In a more general form, we de�ne the consider the message �ij(si) that nodeSj sends to Si as�ij(si) � minsj 0@siwijsj + hjsj + Xk2Cjni�jk(sj)1A; (22)where Cj is the set of all nodes connected to node j. With this de�nition wesee from (21) that the minimisation problem for the network in �g(12) can be
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22rewritten in the following recurrent formE� = mins1 0@ Xj2Cjn1 �1j(s1) + h1s11A: (23)The recurrent minimisation procedure de�ned by (22) and (23) will give anexact solution for all connection weights wij that de�ne singly connected graphsi.e. graphs without loops. Nevertheless, there is experimental evidence (McEliece,1995; Weiss, 1997) that for large classes of graphs with loops the belief propagationalgorithm gives good solutions.In our implementation, the messages are initialized as �ij(si) = minsj (siwijsj + hisi).After initialisation an iteration in the procedure is as follows:� A random ordering of the nodes is chosen, which are then sequentially visitedin that order.� For each node, all messages coming into the node are updated according tothe rule (22) and the state of node i is updated tos�i = argminsi nhisi +Pj2Cini �ij(si)o.This iterative process is repeated until the messages converge. If they donot converge, the iterations are stopped after a prede�ned maximum numberof iterations. We then choose that state s which in the iterations had the lowestenergy.The computational complexity of this algorithm is quadratic in the number ofnodes since, for each of the n nodes, there are n messages, in the fully connectedcase. C. Mean FieldThe basic idea of variational algorithms (of which the mean-�eld method is aspecial case) is to replace the intractable objective function with a tractable ap-proximation to it, so that the optimization of the approximate objective functioncan be carried out eÆciently.To explain the mean-�eld approximation for the association step in GVQlearning we �rst formulate the model as a probability distribution with �nitenoise �. px(s) / exp�� 12�2Ex(s)�: (24)Finding the most probable state s of px(s) is equivalent to minimising Ex(s),and in the limit � ! 0, the distribution px(s) becomes deterministic. That is,the mean state s is equal to the most probable state. We can therefore use analgorithm that attempts to approximate the mean of ps(s) for �nite � and, in thelimit that � ! 0, this will become an approximation for the most probable state.One way to �nd an approximation to the mean of the variables of an in-tractable distribution is to use a simpler, tractable approximating distribution.Speci�cally, in the variational method the objective is to �nd an approximatingQx(s) distribution to the state distribution Px(s) with which the associations canbe tractably computed. The optimal approximating Qx(s) is found by minimising
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23the Kullback-Leibler divergence between the two distributionsKL =Xs Qx(s) log Qx(s)Px(s) � 0 (25)with respect to the parameters of Qx(s). Note that the Kullback-Leibler diver-gence is a positive measure of the di�erence between two distributions.In its most basic form, the variational approximating distribution Qx(s) isfactorial. This is known as the mean-�eld assumption for Qx(s)Q(sjx) =Yi qi(si) =Yi �sii (1� �i)1�si ; (26)where �i 2 [0; 1] are called the mean-�eld parameters. Substitution of Qx(s) intoKL gives (up to a constant):KL0 = �Xi �i log�i + (1� �i) log(1� �i)� 12�20@Xl Xj>l �l�jwlj +Xi �ihi1A:(27)To �nd a solution for the �i, we set the derivatives w.r.t. to mean-�eld pa-rameters �i equal to zero, which leads to the following mean-�eld �xed pointequations, �i = sig0@ 12�28<:Xl 6=i �lwli + hi9=;1A; (28)where sig(x) = (1� exp(�x))�1. In the limit � ! 0 these equations become�i = �0@Xl 6=i �lwli + hi1A; (29)where �(x) = 0 for x � 0 and �(x) = 1 for x > 0. Hence, the solutions for �ibecome binary and there no longer exists a distinction between state values siand state probabilities �i. For a given input x (29) de�nes an iterative procedureto �nd an associated state s.In our implementation, the mean-�eld parameters are initialized as �i = 12 + �,where � is small random noise and � is initialized as � = 100. After initialisationan iteration in the procedure is as follows:� A random ordering of the nodes is chosen, which are then sequentially visitedin that order.� Each node, is then updated according to equation (28).� The noise � is then reduced according to �  �=�.The noise reduction parameter � is chosen such that � = 10�4 at the �naliteration.C.0.1. Gibbs SamplingAnother well known optimization technique for stochastic models is Gibbs sam-pling. In Gibbs sampling the state of a unit is updated according to the probability
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b)Figure 13. Graphical structure of GVQp(sijs�i), where s�i contains the values of all units besides unit i. This conditionalprobability for the model (28) isp(sijs�i) = sig0@ 12�28<:Xl 6=i slwli + �i9=;2�si � 12�1A: (30)In the GVQ limit � ! 0 this equation de�nes an iterative scheme which is thesame as that for the mean-�eld method. Hence, in the limit � ! 0 the mean-�eldmethod and the Gibbs sampling method are equivalent.D. Belief Propagation in the Directed GraphOur goal is to compute marginal probabilities p(sijx) in a directed graphical modelwith a structure as shown in �g(13)a). For graphs with tree like structures one can,analogous to the undirected case, decompose the summation into local operations.For a complete treatment of how this is done we refer to (Pearl, 1988), here wesimply state the results. For a directed network there are two types of messages,namely �-messages that are send in the direction of the arrows from parent nodes(binary units Sj) to child nodes (visible units Xi) and �-messages that are sentin the opposite direction. The following recursive procedure is guaranteed to givethe exact solution for directed graphs without cycles such as shown in �g(13)b):� The message that visible unit Xi sends to hidden unit Sj is given by�XiSj (sj) = Xs02fPa(Xi)nSjg p(xijsj; s0) YSk2Pa(Xi)nSj �SkXi(s0k); (31)where Pa(Xi)nSj is the set of parent units of unit Xi excluding unit Sj. Theset of states s0 of this set is notated as fPa(Xi)nSjg.� Message from hidden unit Sk to visible unit Xi�SkXi(sk) / �(sk) YXj2Ch(Sk)nXi �XjSk(sk); (32)where Ch(Sk) is the set of child units of binary node Sk.The marginal probabilities p(si) are given byp(si) / �(si) YXk2Ch(Si) �XkSi(si) (33)
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25As for the undirected methods it is not guaranteed that this method gives theexact result for p(sijx) if the network contains cycles. There is evidence (Weiss,1997), however, that for certain structures, even with loops, the message passingscheme presented above may give good results. In contrast to the undirectedalgorithm, the computation of � messages, (31), involves a summation over anexponentially large set of states. Hence, straightforward application of the algo-rithm results in a method which scales exponentially with the with the numberof parents of single visible nodes Xi. For the case of the GVQ model, the specialform of the conditional probabilities, p(xijs) = e� 12�2 [xi�Pk fiksk]2 ; allows us touse a `trick' with which the summation Eq.(31) can be computed tractably. Thetrick is to remove the quadratic interactions in the exponent using the identityr�aeb2=(4a) = Z 1�1 dye�ay2+by (34)where i = p�1 is the unit imaginary number. Application of (34) in (31) resultsin the following expression for the � messages�XiSj (sj) / Z 1�1 dyYk n�SkXi(sk = 0) + �SkXi(sk = 1)eiyfki=�oe�y2+iy(xi�fjsj)=�:(35)The integration can be done eÆciently with Gaussian quadratures and its com-plexity scales (only) linearly with the number of parents connected to nodeXi.Our implementation starts with the initialisation of � and � messages. Then asingle iteration of the algorithm consists of the following steps:1. For each parent node Sj compute the incoming �XiSj messages from all visiblenodes Xi with (35);2. For each child node Xi, compute the incoming �XjSk messages from all theconnected parent nodes Sk with (32);3. Reduce the noise according to �  �=�.In our experiments we use � = 2.E. Belief Revision in the Directed GraphInstead of slowly reducing the noise � while running the belief propagation algo-rithm of appendix (D) we now formulate the algorithm directly for in�nitesimal�. In the limit � ! 0 a single state will start to dominate the summation (31).Hence, in the limit � ! 0 the expression for the � messages are�XiSj (sj) / maxs02fPa(Xi)nSjg p(xijsj ; s0) YSk2Pa(Xi)nSj �SkXi(s0k): (36)In this case we can no longer apply the integral `trick' as in (35) since max-imization can not be interchanged with integration. Hence, the computationalcomplexity of (36) scales exponentially with number of parents in Pa(Xi).
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26 The update equations (32) for the �-messages do not change in the limit � ! 0.Finally, the belief revision solution for the minimising state s� of (5) iss�i = argmaxsi YXk2Ch(Si) �XkSi(si) (37)Note that this solution does not depend on the parameter � in p(xijsj ; s0). In theimplementation we use � = 1.
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