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Abstract

We consider reinforcement learning as solv-
ing a Markov decision process with unknown
transition distribution. Based on interac-
tion with the environment, an estimate of
the transition matrix is obtained from which
the optimal decision policy is formed. The
classical maximum likelihood point estimate
of the transition model does not reflect the
uncertainty in the estimate of the transition
model and the resulting policies may con-
sequently lack a sufficient degree of explo-
ration. We consider a Bayesian alternative
that maintains a distribution over the tran-
sition so that the resulting policy takes into
account the limited experience of the envi-
ronment. The resulting algorithm is formally
intractable and we discuss two approximate
solution methods, Variational Bayes and Ex-
pectation Propagation.

1 Introduction

Reinforcement Learning (RL) is the problem of learn-
ing to act optimally through interaction and simula-
tion in an unknown environment (Sutton and Barto,
1998) and may be applied to sequential decision prob-
lems where the underlying dynamics of the envi-
ronment is unknown, for example helicopter control
(Abbeel et al., 2007), the cart-pole problem (Ras-
mussen and Deisenroth, 2008) and elevator scheduling
(Crites and Barto, 1995). We assume a model-based
approach for which we need to estimate the param-
eters of the transition model based on limited inter-
action with the environment. A classical approach to
learning an environment model is to use a point es-
timator, such as the maximum likelihood estimator.
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However, these may result in myopic policies since only
the known observed transitions are assumed possible.
As an alternative, we describe a Bayesian approach in
which a prior distribution is placed over the environ-
ment model and updated as data from the environment
is received. This environment distribution maintains
the possibility of transitions to parts of the space that
have not yet been observed but nevertheless may prove
rewarding. The optimal policy is then obtained by
integrating over all possible environment models. To
deal with the difficulties of carrying out this integral we
discuss two approximate methods, Variational Bayes
(VB) (see for example (Beal and Ghahramani, 2003))
and Expectation Propagation (EP) (Wainwright and
Jordan, 2008; Minka, 2001). For simplicity of expo-
sition, we assume throughout that the reward model
is known, but that the transition model needs to be
learned from experience. Extending the approach to
an unknown reward model is essentially straightfor-
ward.

2 Variational MDPs

An MDP can be described by an initial state distri-
bution p;(s1), transition distributions p(sti1]|s¢, at),
and a reward function r;(s¢,a;), where the state and
action at time t are denoted by s; and a; respec-
tively. For a discount factor v the reward is defined
as 1¢(st,ar) = ' 71r(s, aq) for a stationary reward
r(s¢,ar). We assume a stationary policy, 7, defined
as a set of conditional distributions over the action
space!, m, s = p(a; = a|s; = s, 7). The total expected
reward of the MDP (the policy utility) is

H
U(n) = Z Z ¢ (s¢, at)p(se, ag|m) (1)

t=1 s¢,a¢

where H is the horizon, which can be either finite or in-
finite, and p(s, a¢|m) is the marginal of the joint state-

!More generally, one may consider policies which de-
pend on the belief, mq,s,0 = p(als,p(8|D), ), similar to
the encoding of RL as a POMDP(Duff, 2002), though we
leave this case for future study.
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Figure 1: RL represented as a model-based MDP tran-
sition and policy learning problem. Rewards depend
on the current and past state and the past action,
r¢(s¢,ar). The policy p(a¢|st, 7) determines the deci-
sion and the environment is modeled by the transition
p(sty1]8t,ar). Based on a history of actions, states and
reward, the task is maximize the expected summed re-
wards with respect to the policy 7. In the MDP setup,
the state transition and utilities are known; in our RL
setup we have a distribution over these quantities.

action trajectory distribution
p(s1.m,ar:u|m) = plan|sm, ™)pi(s1)

H-1
x [ p(sisalsi a)plailsi, @) (2)
t=1

In this paper we consider the episodic case, so that
the horizon is finite. Graphically we can represent this
using an influence diagram, figure 1. Given a transi-
tion model p(s¢y1|st,at), the MDP learning problem
is to find a policy 7 that maximizes (1). By expressing
the utility (1) as the likelihood function of an appro-
priately constructed mixture model the MDP can be
solved using techniques from probabilistic inference,
such as EM (Toussaint et al., 2006) or MCMC (Hoff-
man et al., 2008). We follow a construction equivalent
to (Toussaint et al., 2006) but which has the advantage
of not requiring auxiliary variables, see e.g. (Dayan
and Hinton, 1997; Kober and Peters, 2009; Furmston
and Barber, 2009). Without loss of generality, we as-
sume the reward is non-negative and define the reward
weighted path distribution

(St ar)p(S1st, A1:¢|)
U0 (3)

ﬁ(slltv ai:t, t|7T) =

This distribution is properly normalised, as can be seen
from (1) and (2). We now define a variational dis-
tribution ¢(s1.¢, a1, t), and take the Kullback-Leibler
divergence between the ¢-distribution and (3). Since

KL(q(s1:¢, a1, 0)|[p(51:¢, @14, t|m)) >0 4)

we obtain a lower bound on the log utility

log U(m) > H(q(s1:,a1:,¢)) + (log P(s1:4, @14, [))
(5)
where <->q denotes the average w.r.t. q($1.t,a1:4,¢t) and
H(-) is the entropy function. An EM algorithm can be

obtained from the bound in (5) by iterative coordinate-
wise maximisation:

E-step For fixed 7°? find the best ¢ that maximises
the r.h.s. of (5). For no constraint on g, this gives
q = p(s1:4, a1, Y.

M-step For fixed ¢ find the best m that maximises
the r.h.s. of (5). This is equivalent to maximising
the ‘energy’ (log p(s1.¢, are, t|m)), w.r.t. .

Maximisation of the energy term w.r.t. m, under the

constraint that the policy is a distribution, gives

T’ o Z Z q(sr = s,ar = a,t) (6)

t=171=1

For this M-step the required marginals of the g-
distribution can be calculated in linear time using mes-
sage passing since the distribution is chain structured
(Wainwright and Jordan, 2008). The EM algorithm
is run until the policy converges to a (possibly local)
optima.

3 Variational Reinforcement Learning

In the RL problem we assume the transition distri-
butions 6 formed from ija = p(s'|s,a) are unknown
and need to be estimated on the basis of interaction
with the environment. These interactions are observed
transitions D = {(sp,an) — Spt1,m=1,...,N} A
classical approach it is to use a point estimate of
the transition model, such as the maximum likelihood
(ML) estimator. However, for small amounts of ob-
served transitions, these estimators harshly assume
that unobserved transitions will simply never occur.
Such an over-confident estimate can adversely affect
the overall policy solution and result in myopic policies
that are unaware of potentially beneficial state-action
pairs. Whilst this over-confidence can be ameliorated
by adding pseudo-counts, this still does not reflect the
uncertainty in the estimate of the transition.

We propose an alternative Bayesian solution that

maintains a distribution over transitions. The pos-
terior of @ is formed from Bayes’ rule
p(0|D) x p(D|0)p(0). (7)
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As 6 is a set of independent categorical distributions
a natural conjugate prior p(0) is the product of inde-
pendent Dirichlet distributions, i.e.

p(8) ~ [ Dix(6; 4]0, ) (8)

where a are hyper-parameters. This gives a posterior

p(0D) = [ [ Dir(6; olc; o + i) (9)
where ¢ is the count of observed transitions:

N
c§:a = Z]I [sn = 8,an = a, 8,41 = 5] (10)

n=1

The task now is to find the policy that maximizes the
expected utility given the environmental data

U(x|D) = / U (x10)p(6|D)d0 (11)

where U(7|0) is given by (1) with transitions 6.

Our aim is to form an EM style approach to learning
. Assuming the reward is non-negative we construct
a probability distribution for which the normalization
constant is equal to (11). Consider the following un-
normalised distribution defined over state-action paths
and times t =1,..., H,

DP(S1:t, 124, )0, ) = 7(5¢, a)p(S1:¢, 01240, ) (12)

where p(s1.4,a1.¢|0,7) is the marginal of (2) given the
transitions 0. Using (12) we now define a joint distri-
bution over state-action paths, times and transitions

15(51:1:, Qq:t, t|97 7r)p(0|D)
U(r|D)

ﬁ(31:t7a1:t7t50‘777p) = (13)

This distribution is properly normalised, which can be
verified through use of (1) and (11). The Kullback-
Leibler divergence between a variational distribution
q(s1.¢,a1.4,t,80), and (13) gives the bound

KL(q(s1:¢,a1:¢,t,0)||p(51:4, @14, ¢, 0|, D)) > 0 (14)
from which we obtain

log U(7|D) > H(q(s1:t,a1:4,,0)) + (log p(8|D)),

+ (log p(s1:t,a1:4, 0, 7)), (15)

where <~>q denotes the average w.r.t. q(s1.,a1.,t,0).
An EM algorithm for optimising the bound with re-
spect to 7 is:

E-step For fixed 7°? find the best ¢ that maximises
the r.h.s. of (15). For no constraint on ¢, this
gives ¢ = p(s1.4, ar, t, 0|7, D).

M-step For fixed ¢ find the best 7 that maximises the
r.h.s. of (15). This is equivalent to maximising
the ‘energy’ <logﬁ(51;t,a1:t,t|9,7r)>q w.r.t. m.

To perform the M-step we need the maximum of
<log]5(sl:t,a1:t,t|0,7r))q w.r.t. w. As the policy is in-
dependent of the transitions this maximisation gives
updates of the form

H
Tos X Z q(sr = s,ar = a,t) (16)

t=171=1

Calculating the policy update is now a matter of cal-
culating the marginals of the g-distribution from the
previous E-step. If no functional restriction is placed
on the g-distribution then it will take the form of (13),
where 7 will equal the policy of the previous M-step.
However, examining the form of (13), the exact state-
action marginals of this distribution are computation-
ally intractable. This can be understood by first car-
rying out the integral over 8, which has the effect of
coupling together all time slices of the path distribu-
tion p(s1.¢, a1, t).

In the following we discuss two approaches to dealing
with this intractability. The first, Variational Bayes,
restricts the functional form of the g¢-distribution in
the E-step such that the updates in the M-step become
tractable. The second approximates the marginals of
the g-distribution directly using Expectation Propaga-
tion.

4 Variational Bayes

To ensure computational tractability, a suitable re-
striction on the functional form of the g¢-distribution
is to make the factorised approximation:

q(slttaalttatva) = Q(51:t7a1:t>t)Q(9)~ (17)

This approximation maintains the lower bound in (15)
which now takes the form

logU(n|D) > H(qe) + H(ge) + (logp(8|D)),,

+ (log p(s1:¢,a1:¢, |0, 7)) (18)

404a
Where we have used the notation gg = ¢(0), and
dz = q(S1.t,a1.,t). The variational Bayes procedure
now iteratively maximizes (18) with respect to the dis-
tributions ¢, and gg. Taking the functional derivative
of (18) with respect to g, and gg, whilst holding the
other fixed, gives the following update equations:

Q(Slzt,al:tat) o 6<1Ogﬁ(51:t,a1:t,t|9,77)>qe (19)

4(0) o< p(B]ar, D)elloePlere e tiOmy, (20)
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Algorithm 1 VB EM Algorithm
Input: policy w, reward r, prior a and transition
counts c.
repeat
For fixed policy 7
repeat
Calculate the g-marginals (21) and (23).
until Convergence of the marginals.
Update the policy according to (16).
until Convergence of the policy.

Expansion of the logp(si.t,a1.4,t/0,7) term in (19)
shows that ¢(s1.¢,a1.¢,t) is proportional to

t—1
log 6 JSr
(8¢, at)Ta,,5,01(51) H 6< 08 Ysrta >49 Ta, s, (21)

T=1

This is the same form as the original MDP (1,2) with
the transitions @ replaced with unnormalised transi-
tions

~ 1 9 ’
0(s',s,a) = e< 0804/ 1.0)

a0 , (22)
The averages of logf in the exponent can be com-
puted using standard digamma functions. Given gg,
the marginals ¢(s;,a,,t) can be then calculated us-
ing message passing on the corresponding factor graph
(Kschischang et al., 2001).

A similar calculation for the transition parameters
gives the update

H t—1
4(8) o p(Blax, D)1 D=1 (08 i emec),,

The summation of the states and actions in the expo-
nent means that we may write

q(8) = [ Dir (6; levso + cio +700) (23)

s,a

where
f:::a = Z Zq(87—+1 =5, 5. = 5,0, = a) (24)
t T

Equation (23) has an intuitive interpretation: for each
triple (s, 5,a) we have the prior a; , term and the ob-

served counts cﬁia which deal with the posterior of the

transitions. The term f;la encodes an approximate ex-
pected reward obtained from starting in state s, tak-
ing action a, entering state s’ and then following 7
afterwards. The posterior ¢(0) is therefore a standard
Dirichlet posterior on transitions but biased towards
transitions that are likely to lead to higher expected
reward. Under the approximation (17) the E-step con-
sists of calculating the distributions (21) and (23). As

these distributions are coupled we need to iterate them
until convergence.

The form of the M-step is calculated by maximising
the bound (18) with respect to w. This leads to the
same updates as (16) except the g-distribution now
takes the form of (21). A summary of VB-EM is given
in algorithm (1).

4.1 Hierarchical Variational Bayes

So far we have assumed that the hyper-parameters, a,
are fixed. However the quality of the policy learned can
be strongly dependent on «. If the components of «
are set too low any initial data points will dominate the
transition posterior and the probability of unobserved
transitions will be small. On the other hand if e is set
too high an excessively large amount of data points will
be required to dilute the prior effect on the posterior.
To overcome this problem we can extend the model by
placing a prior distribution over a and then update
the posterior as data from the environment is received.
This extension is straightforward under the variational
approximation ¢;qge¢«. In our experiments we use the
hyper-parameter distribution independently for each
component of a:
p(a) 6_20(0‘_1)2, a>0

which has the effect of retaining significant poste-
rior variance in the transition model, damping overly
greedy exploitation.

5 Expectation Propagation

In order to implement the Variational Reinforce-
ment Learning approach of §3 we require the
marginals of the intractable distribution ¢ =
P(s1.4,a1.4,1,0|7°'9, D). As an alternative to the vari-
ational Bayes factorised approach we here consider an
approximate message passing (AMP) approach that
approximates the required marginals directly.

The graphical structure of ¢(s1.¢, a1.¢, 0, t) is loopy but
sparse, so that a sum-product algorithm may pro-
vide reasonable approximate marginals, see figure 2.
The messages for the factor graph version of the sum-
product algorithm take the following form.

Mm—vf(m) = H /Jh—nv(x) (25)
hen(z)\{f}
pioa= > FX) J[ m—srly)  (26)
~{x} yen(f)\{z}

where > _ {z} Means the sum over all variables except
x, n(-) is the set of neighbouring nodes and X are the
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Figure 2: A factor graph representation of
q(s1:t, a1, t, 0) for transition factors T', reward factors
R and policy factor 7, for a H = 3 horizon. The
square nodes represent the various factors (functions)
of the distribution and the circle nodes represent the
variables. The initial time has no transition. The t*"
chain is the t** row of this diagram for fixed 6.

variables of the factor f. At convergence the singleton
marginals are approximated by

p@) =[] #p-a(z) (27)

fEF,

where F,, means the set of functions in the factor graph
that depend on . As can be seen from (26) and (25)
all the messages that involve the factors p;, m, and R
are trivial, requiring only summations of discrete func-
tions. Also, as the factor node p(@|D) is a leaf node
this message is also trivial. However, the messages be-
tween 6 and the transition factors T are intractable.
To see this we examine a message from 7' to an action
node a?

pra(a) = Y- e Oiar(s) [ d6po—r(6)65

s,s’

(28)

In order for (28) to be tractable we need pg_7(80) to
be the product of independent Dirichlet’s. However,

2We have dropped the time dependence on the factors
and the variables to ease the notation.

Algorithm 2 AMP EM Algorithm

Input: policy w, reward r, prior «, transition
counts ¢ and message-passing schedule S.
repeat
For fixed policy 7
repeat
Perform message-passing according to S using
EP to approximate messages ur:_g(0).
until Convergence of the messages.
Update the policy according to (16).
until Convergence of the policy.

using (25) we have that pge_7(0) takes the form

no—7(0) =p(6D) ] nr—0(6) (29)
T'#T

where pr_,9(0) is given by

pr—0(0) = > o (a) et (S)ptar 10 ()0 5.

s’,a,s

(30)

From (29) and (30), pg—r(0) is a mixture of Dirich-
let’s where the number of mixtures is exponential in
the planning horizon H. This makes messages such
as (28) computationally intractable. Following the
general approach outlined in (Minka, 2001) to make
a tractable approximate implantation we therefore
project the messages pur—_g(0) to a product of inde-
pendent Dirichlet’s by moment matching. Given the
projection G(0) we use (26) and (27) to obtain the ap-
proximate message

o 0)
=00) = G g a0

Given a message initialisation and a message passing
schedule S, the AMP algorithm can be summarized
as in algorithm (2). For our experiments we used the
schedule S outlined in algorithm (3).

(31)

6 Experiments

6.1 Incorporation of uncertainty

The first experiment is designed to demonstrate that
our objective function indeed incorporates uncertainty
in the knowledge of the environment into the policy
optimisation process. The experiment is performed on
a problem small enough that for short horizons the
objective function (11) and the EM update (16) can
be calculated exactly. This allows for characteristics
of the objective function to be gleaned without the
complicating issue of approximations.
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Algorithm 3 AMP message-passing Schedule
repeat
fort=1to H do
Perform message-passing along the t** chain,
q(s1,a1,..., 8¢, a¢), figure 2, holding all the mes-
sages fg—7(0) fixed.
end for
repeat
for each pur_g(0) do
Perform Expectation-Propagation to obtain
q(0), then use (31) to update pr—g(0).
end for
until Convergence of all the messages ur_g(0).
until Convergence of the g-distribution.

The experiment was performed on a toy two-state
problem, with the transition and reward matrices
given in figure 3. The horizon was set to H = 5 and the
initial state is 1. The aim of the experiment is to com-
pare the average total expected utility of the policies
obtained from the Bayesian and point-based objective
functions. The average is taken over the true transi-
tion model, Oi4e, and we compare these averages for
increasing numbers of observed transitions, V. We set
the distribution over the true transition model to be
uniform. Writing the quantities of interest down alge-
braically we have for the Bayesian objective function

Ep(9m,e) [EP(D\Gm,e,N) [U(ﬁD |Otrue)]]
= /datruedDU(’frD‘atrue))p(DWtruey N)p(gtrue)
(32)

where 7P is the optimal policy of the Bayesian objec-
tive function. For the ML objective function we have

Ep(urne) [Ep (M2 00, 8) [U (M [Orrue) ]

= /datruedﬁ—MLU(ﬁ—ML|9true)p(ﬁ-ML‘etruea N)p(etrue)

(33)

where similarly #M% is the optimal policy of the ML
objective function.

As we can calculate the objective function U(7|D) ex-
actly, we can also calculate (32) for reasonable values
of N. It remains to calculate (33), where the difficult
term is the probability distribution over the optimal
policy, which we now detail.

The settings of the reward matrix and the horizon are
such that, given (61, 02) are known, the optimal action
in state s is aj for all values of 05. This means that
when the transition dynamics are known the optimal
policy can be given by a single parameter, 75, o,. In
the experiment we set 61 = 03 = 0, so that 75, ., =1

0; 1-—6;
Ti_{l—ai 9i]’ 11
Figure 3: The transition and reward matrices for the
two-state toy problem. 7T; represents the transition
matrix from state s;, where the columns correspond
to actions and the rows correspond to the next state.
The reward matrix R is defined so that the actions run
along the rows and the states run along the columns.

[t Y

when 6 < 0, and Ts1,a; = 0 otherwise, where 0 =
0.7021. The fact that we know the point, é, at which
the optimal policy of the MDP changes means that we
can form a distribution of 7?2/1[1;11 Given the sample
size and the true value of the transition parameter we
have the distribution

p(ﬁ_lg\/llf_;“ = I‘Na atrue) - Z
{n<N|n/N<6}

BN 6ure (1)

where By g,,.. is the density function of the Binomial
distribution with parameters (N, 64e). Having ob-
tained the distribution over the optimal policy it is
now possible to calculate (33).

We calculated (32) and (33) for increasing values of the
N, the results of which are shown in figure 4. It can
be observed that the Bayesian objective function con-
sistently outperforms the point-based objective func-
tion. We expect a more dramatic difference in larger
problems for which the amount of uncertainty in the
transition parameters is greater.

It should be noted that while the point-based objective
function will always produce a deterministic policy the
Bayesian objective function can produce a stochastic
policy. This naturally incorporates an explorative type
behaviour into the policy that will lead to a reduction
in the uncertainty in the environment.

6.2 The chain problem

We compare the EM RL algorithms on the standard
‘chain’ benchmark RL problem (Dearden et al., 1998)
which has 5 states each having 2 possible actions, as
shown in figure 5. The initial state is 1 and every ac-
tion is flipped with ‘slip’ probability pgi, = 0.2, mak-
ing the environment stochastic. The optimal policy
is to travel down the chain towards state 5, which is
achieved by always selecting action ‘a’.

In the experiments the total 1000 time-steps are split
into 10 episodes each of 100 time-steps. During each
episode the policy and transition model are fixed, and
the transitions and rewards from the RL environment
are collated. At the end of each episode the policy
and transition model are updated. All policies are ini-
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Figure 4: The average total expected reward of the
policies obtained from the Bayesian objective function,
U(n|D), and the maximum likelihood objective func-
tion, U(m|@mr). The sample size is plotted against the
average total expected reward.

tialised randomly from a uniform distribution. For the
methods based on a fixed hyper-parameters a, we set
each component of « to 1.

Convergence of all MDP solvers was determined when
the L; norm of the policy between successive itera-
tions is less than 0.01. The methods we compared are
described below.

ML EM The mean 0 is computed from the Dirichlet
posterior p(8|D, o). This is used as a point-based
estimate of the transition model in the MDP EM
algorithm of §2.

SEM At the end of each episode we obtained an
approximation to the optimal policy using sam-
pling. We first draw samples 6;,i¢ = 1,...,[
from the posterior p(8|D, ). For each sample 8;
we then compute the exact conditional marginals
p(sr,ar,t]0;) by message passing on the chain.
Averaging over the samples gives the Stochastic
EM update

H t
Mo O ZZZﬁ(ST,aT,HOi)

i=1 t=17=1

In the experiments we set I so that this method
has roughly the same runtime as the AMP EM
algorithm.

VB EM At the end of each episode the approach de-
scribed in §4 is used. The hyper-parameter « is
fixed throughout to 1.

AMP EM At the end of each episode, the approach
described in §5 is run, which approximates the

a,0 a,0 a,0 a,0
S1 52 53 S4 S5

Figure 5: The single-chain problem state-action tran-
sitions with rewards 7 (s, a;). The initial state is state
1. There are two actions a, b, with each action being
flipped with probability 0.2.

marginal statistics required for EM learning using
Expectation Propagation.

HVB-EM As for VB-EM but extended to the hyper-
parameter distribution, as described in §4.1.

The results, averaged over a 100 experiments, are
shown in figure 6. The AMP and stochastic EM algo-
rithms consistently outperform the ML EM algorithm.
This is in agreement with our previous results and sug-
gests that both of these algorithms are able to make
reasonable approximations to the true marginals of the
g-distribution. Despite the encouraging initial perfor-
mance of the variational Bayes algorithms, the ML
EM algorithm eventually performs better than both
the fixed hyper-parameter and hierarchical VB vari-
ants. This suggests that the factorised approximation
inherent in the VB leads to difficulties. One potential
issue is that under the factorisation assumptions, the
unnormalised transitions (22) have the form

Qv(al,)

es,a = m (34)
where W represents the digamma function.  For
Do 9§:a < 1 the contributions of the first time points
in the unnormalised distribution (21) exponentially
dominate. As a result there is a bias towards the initial
time-steps, forcing both of the variational Bayes algo-
rithms to focus on only locally optimal policies. Fi-
nally we note that the prior on the hyper-parameters,
a, was beneficial to the variational Bayes algorithm.
This is unsurprising since it maintains posterior vari-
ance. We would expect a similar improvement in per-
formance for a hierarchical Expectation Propagation
approach.

In the variational Bayes algorithm the g-distributions
had to be iterated around 15 times on average. The
approximate message passing algorithm had to repeat
the message passing schedule around 10 times on av-
erage, where the Expectation Propagation section of
the schedule had to be repeated around 2 times for
convergence. Under the current implementation the
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Time-Steps

Figure 6: Results from the chain problem in fig-
ure 5 with average reward %Zi r, plotted against
time t. The plot shows the results for approximate
message passing (light blue), hierarchical variational
Bayes (purple), variational Bayes (red), stochastic EM
(green) and and the EM algorithm of §2 using the max-
imum likelihood estimator (dark blue). The results
represent performance averaged over 100 runs of the
experiment.

variational Bayes algorithm is able to perform an EM
step in approximately 0.15 seconds, while the approx-
imate message passing algorithm takes approximately
5 seconds.

7 Conclusions

Framing Markov Decision Problems as inference in a
related graphical model has been recently introduced
and has the potential advantage that methods in ap-
proximate inference can be exploited to help overcome
difficulties associated with classical MDP solvers in
large-scale problems. In this work, we performed some
groundwork theory that extends these techniques to
the case of reinforcement learning in which the param-
eters of the MDP are unknown and need to be learned
from experience. An exact implementation of such a
Bayesian formulation of RL is formally intractable and
we considered two approximate solutions, one based on
variational Bayes, and the other on Expectation Prop-
agation, our initial findings suggesting that the latter
approach is to be generally preferred.
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