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A Simple Alternative Derivation of the Expectation
Correction Algorithm

Bertrand Mesot and David Barber

Abstract— The Switching Linear Dynamical System (SLDS)
is a popular model in time-series analysis. However, the com-
plexity of inferring the state of the latent variables scales
exponentially with the length of the time-series, resulting in
many approximation strategies in the literature. We focus on
the recently devised Expectation Correction (EC) approximation
which can be considered a form of Gaussian Sum Smoother.
The algorithm has excellent numerical performance compared
to a wide range of competing techniques, exploiting more fully
the available information than, for example, Generalised Pseudo
Bayes. We show that EC can be seen as an extension to the
SLDS of the Rauch, Tung, Striebel inference algorithm for the
Linear Dynamical System. This yields a simpler derivation of
the EC algorithm and facilitates comparison with existing, similar
approaches.

Index Terms— Switching Linear Dynamical Systems, Approx-
imate Inference, Expectation Correction.

I. INTRODUCTION

The Linear Dynamical System (LDS) [1] is a key temporal
model in which a latent linear process generates the observed
time-series; see Fig. 1. For time-series which are not well
described by a single LDS, we may model each observation by
a potentially different LDS. This is the basis for the Switching
LDS (SLDS) where, for each time step t, a discrete switch
variable st ∈ {1, . . . , S} describes which of the LDSs is to be
used; see Fig. 2. The observation (or ‘visible’ variable) vt ∈
RV is linearly related to the hidden state ht ∈ RH by

vt = Bst
ht + ηVst

, ηVst
∼ N

(
µV(st),ΣV(st)

)
(1)

where N (µ,Σ) denotes a Normal (Gaussian) distribution with
mean µ and covariance Σ. The hidden state ht at the t-th time
step is linearly related to the state at the previous time step by

ht = Ast
ht−1 + ηHst

, ηHst
∼ N

(
µH(st),ΣH(st)

)
. (2)

Eqs. 1 and 2 define the projection and transition proba-
bilities p(vt |ht, st) and p(ht |ht−1, st), respectively1. The
dynamics of the switch variables is assumed Markovian, with
transition p(st | st−1). The SLDS is used in many disciplines,
from econometrics to machine learning [1], [2], [3], [4]. See
also [5] and [6] for recent reviews of work.

A quantity which is often required is the marginal
(smoothed) posterior probability p(ht, st |v1:T ) of the hid-
den variables ht and st, given a sequence of T observa-
tions v1:T . For the SLDS, inferring the posterior distribution
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1The H and V symbols are used to indicate whether a parameter is
associated with the hidden or visible variable, respectively.
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Fig. 1. Dynamic Bayesian network representation of the LDS; ht represents
the continuous hidden variable and vt the observation.

is computationally intractable since the exact posterior is an
exponentially large mixture of Gaussians; see for example [5].
Various algorithms have been devised to address this problem;
see [5], [6] for a review. We focus on the recently devised
Expectation Correction (EC) algorithm [7] which has excellent
comparative performance. Here we emphasise a reformulation
of EC that simplifies the exposition and has the additional
benefit of clarifying the relationship between EC and other
approximation algorithms. EC is motivated by the Rauch,
Tung, Striebel (RTS) smoother [8] which, for the simpler
LDS, corrects the filtered posterior into its smoothed form.
Before presenting our extension of the RTS strategy to the
switching model, we first review RTS inference in the more
straightforward LDS.

II. THE RTS ALGORITHM

The RTS algorithm performs smoothed inference in the
LDS, which admits exact linear-time computation. It uses a
forward-backward approach where the forward pass computes
the filtered posterior p(ht |v1:t), and the backward pass cor-
rects this to form the desired smoothed posterior p(ht |v1:T ).
Since only Gaussian distributions are involved, conditioning
and marginalisation are straightforward.

A. Forward Pass
The filtered posterior p(ht |v1:t) is obtained by conditioning

on vt the joint distribution p(vt,ht |v1:t−1). For a given time
step, it can be computed by means of the forward recursion

p(ht |v1:t) ∝ p(vt |ht)
〈
p(ht |ht−1)

〉
p(ht−1 |v1:t−1)

(3)

where 〈·〉p denotes the average with respect to the distribu-
tion p and p(ht−1 |v1:t−1) is the filtered posterior at the pre-
vious time step. The recursion is initialised with p(h1 |v1) ∝
p(v1 |h1) p(h1), where p(h1) is a given prior distribution.

B. Backward Pass
The smoothed posterior at the t-th time step is obtained

from the backward recursion

p(ht |v1:T ) =
〈
p(ht |ht+1,v1:T )

〉
p(ht+1 |v1:T )

(4)
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Fig. 2. Dynamic Bayesian network representation of the SLDS; st and ht

represent the discrete and continuous hidden variables and vt the observation.

where p(ht+1 |v1:T ) is the smoothed posterior at the next
time step. Since ht is independent of any future observations
once ht+1 is known, the backward transition probability
p(ht |ht+1,v1:T ) is equal to

p(ht |ht+1,v1:t) ∝ p(ht+1 |ht) p(ht |v1:t). (5)

which only involves the forward transition probability and the
filtered posterior at time t. The backward pass is initialised
with the filtered posterior obtained at the T -th step, since both
filtered and smoothed posteriors match at that point.

C. Implementation

The pseudo-codes for computing the filtered and smoothed
posteriors with the RTS method are given in Algorithms 1
and 2, respectively. In Algorithm 1, x and X correspond to
the mean and covariance of ht under p(ht |v1:t−1).

Algorithm 1 RTS forward pass. This function computes the mean ft

and covariance Ft of ht under p(ht |v1:t) for t ∈ [0, T ], as well as
the log-likelihood l ≡ log p(v1:T ). The prior mean and covariance
are denoted by µP and ΣP .
l← 0

for t← 1 to T do
if t > 1 then

x← Aft−1

X← AFt−1A
T + ΣH

else
x← µP
X← ΣP

end if˘
p(vt |v1:t−1), ft,Ft

¯
← COND

˘
x,X,B,ΣV ,vt,0

¯
l← l + log p(vt |v1:t−1)

end for

Algorithm 2 RTS backward pass. This function computes the
mean gt and covariance Gt of ht under p(ht |v1:T ) for t ∈ [0, T ].

gt ← ft

Gt ← Ft

for t← T − 1 to 1 do˘
α,gt,Gt

¯
← COND

˘
ft,Ft,A,ΣH,gt+1,Gt+1

¯
end for

The conditioning of p(vt,ht |v1:t−1) on vt in the forward
pass and the conditioning of p(ht,ht+1 |v1:t) on ht+1 in the
backward pass is performed by the COND function, whose
pseudo-code is given in Algorithm 3. To improve numerical

stability the conditioning is performed by means of Joseph’s
formula [1]. The first four arguments of the COND function
are: the prior mean µ and variance Σ of the hidden variable
we are interested in, the matrix C which indicates how to
transform the hidden variable into the conditioned one, and
the prior covariance ΣC of the conditioned variable. The
main difference between Eqs. 3 and 4 is that the latter
requires an averaging after the conditioning. This can be easily
performed in the COND function by providing the mean w
and covariance W of the variable we want to average on. In
the forward pass, where no averaging is required, w = vt

and W = 0.

Algorithm 3 COND
˘
µ,Σ,C,ΣC,w,W

¯
. See text for the mean-

ing of the arguments and [1] for a detailed explanation of the
algorithm.

µC ← Cµ

ΣCH ← CΣ
ΣCC ← ΣCHCT + ΣC

K← ΣCHΣ−1
CC

X← I−KC

µ← µ + K(w − µC)
Σ← X Σ XT + K (ΣC + W) KT

p← |ΣCC|−
1
2 exp

˘
− 1

2
(w − µC)

T Σ−1
CC (w − µC)

¯
return

˘
p,µ,Σ

¯

III. EXPECTATION CORRECTION

EC follows the same approach as the RTS algorithm. The
forward pass computes the filtered posterior p(ht, st |v1:t) and
the backward pass corrects this to form the smoothed poste-
rior p(ht, st |v1:T ). Without loss of generality, we write the
filtered and smoothed posterior as a product of a continuous
and a discrete distribution:

p(ht, st |v1:t) = p(ht | st,v1:t) p(st |v1:t)
p(ht, st |v1:T ) = p(ht | st,v1:T ) p(st |v1:T ).

Our approach will approximate both the filtered and smoothed
posteriors as a finite mixture of Gaussians. Formally, this
can be achieved using, for example, p(ht | st,v1:t) ≡∑

i p(ht | it, st,v1:t) p(it | st,v1:t)—see, for example, [7], [9].
In our exposition we use only a single Gaussian—the exten-
sion to the mixture case is straightforward [7] and we prefer to
present the central idea without the extra notational complexity
of collapsing to mixtures.

A. Forward Pass

The filtered posterior p(ht, st |v1:T ) is obtained by condi-
tioning on vt the joint distribution p(vt,ht, st |v1:t−1). The
equivalent of Eqs. 3 for the SLDS reads

p(ht, st |v1:t) ∝
∑
st−1

p(st | st−1) p(st−1 |v1:t−1)

× p(vt |ht, st)
〈
p(ht |ht−1, st)

〉
p(ht−1 | st−1,v1:t−1)

where p(st−1 |v1:t−1) and p(ht−1 | st−1,v1:t−1) are the dis-
crete and continuous components of the filtered posterior at the
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previous time step. After averaging over ht−1 and grouping
similar factors, we obtain

p(ht, st |v1:t)

∝
∑
st−1

p(st−1, st |v1:t−1) p(vt,ht | st−1, st,v1:t−1)

∝
∑
st−1

p(st−1, st |v1:t) p(ht | st−1, st,v1:t). (6)

The continuous component p(ht | st−1, st,v1:t) corresponds
to the filtered posterior of the LDS, as given by Eq. 3, and is
proportional to

p(vt |ht, st)
〈
p(ht |ht−1, st)

〉
p(ht−1 | st−1,v1:t−1)

. (7)

The discrete component p(st−1, st |v1:t) is proportional to

p(vt | st−1, st,v1:t−1) p(st | st−1) p(st−1 |v1:t−1) (8)

where p(vt | st−1, st,v1:t−1) is obtained by integrating (7)
over ht.

The filtered posterior at time t, as given by Eq. 6, is
a mixture of Gaussians. At each time step the number of
mixture components is multiplied by S and thus grows
exponentially with t. A simple approximate remedy is to
collapse the mixture obtained to a mixture with fewer com-
ponents. This corresponds to the so-called Gaussian Sum
Approximation (GSA) [9] which is a form of Assumed Den-
sity Filtering [10]. It reduces the complexity of the forward
pass to O(I · S · T ), where I is the number of mixture
components of the collapsed distribution. The recursion is
initialised with p(h1, s1 |v1) ∝ p(v1 |h1, s1) p(h1 | s1) p(s1),
where p(h1 | s1) and p(s1) are given prior distributions.

B. Backward Pass

The equivalent of Eq. 4 for the SLDS reads

p(ht, st |v1:T ) =
∑
st+1

p(st+1 |v1:T )

×
〈
p(ht, st |ht+1, st+1,v1:t)

〉
p(ht+1 | st+1,v1:T )

(9)

where p(st+1 |v1:T ) and p(ht+1 | st+1,v1:T ) are the discrete
and continuous components of the smoothed posterior at the
next time step. The average in Eq. 9 can be written as2〈

p(ht |ht+1, st, st+1,v1:t) p(st |ht+1, st+1,v1:t)
〉
.

This is difficult to evaluate because of the dependency of st

on ht+1. In its most simple form, EC approximates the average
by〈
p(ht |ht+1, st, st+1,v1:t)

〉︸ ︷︷ ︸
p(ht|st,st+1,v1:T )

〈
p(st |ht+1, st+1,v1:t)

〉︸ ︷︷ ︸
p(st|st+1,v1:T )

. (10)

This is particularly appealing since the first factor corresponds
to the smoothed posterior of the LDS, as given by Eq. 4, and
can be evaluated by conditioning on ht+1 the joint distribution

p(ht,ht+1 | st, st+1,v1:t) = p(ht+1 |ht, st) p(ht | st,v1:t).
(11)

2To simplify notation, in the following we assume that the averages are
taken with respect to p(ht+1 | st+1,v1:T ).

The second factor in (10) is still difficult to evaluate exactly.
Formally, this term corresponds to〈

p(st |ht+1, st+1,v1:t)
〉
≡ p(st | st+1,v1:T ). (12)

The distinguishing feature of EC from other methods, such
as Generalised Pseudo Bayes (GPB) [1], [2], [11] is in the ap-
proximation of p(st | st+1,v1:T ). In GPB, p(st | st+1,v1:T ) ≈
p(st | st+1,v1:t), which depends only on the filtered poste-
rior for st and does not include any information coming
from the continuous variable ht+1. Since p(st | st+1,v1:t) ∝
p(st+1 | st) p(st |v1:t), computing the smoothed recursion for
the switch states in GPB is equivalent to running the RTS back-
ward pass on a Hidden Markov Model. This represents a
potentially severe loss of information from the future and
means any information from the continuous variables cannot
be used when correcting the filtered results p(st |v1:t) into
smoothed posteriors p(st |v1:T ). In contrast, EC attempts to
preserve future information passing through the continuous
variables. The simplest approach within EC is to use the
approximation

p(st | st+1,v1:T ) ≡
〈
p(st |ht+1, st+1v1:t)

〉
≈ p(st |ht+1, st+1,v1:t)

∣∣
ht+1=〈ht+1 | st+1,v1:T 〉

(13)

where 〈ht+1 | st+1,v1:T 〉 is the mean of ht+1 with respect
to p(ht+1 | st+1,v1:T ). In practice, this simple (and fast)
method often suffices [7], [12], [13]. More sophisticated ap-
proximation schemes—which take into account the covariance
of ht+1, for example—are also straightforward to implement,
if desired [7]. Finally, the right-hand-side of Eq. 13 can be
evaluated by considering the joint distribution

p(ht+1, st | st+1,v1:t) ∝ (14)
p(ht+1 | st, st+1,v1:t) p(st+1 | st) p(st |v1:t)

where p(ht+1 | st, st+1,v1:t) is obtained by marginalising
Eq. 11 over ht.

In summary, the smoothed posterior, as given by Eq. 9, is
a mixture of Gaussians of the form

p(ht, st |v1:T ) =∑
st+1

p(st, st+1 |v1:T ) p(ht | st, st+1,v1:T ). (15)

In its most generic form, EC approximates the discrete and
continuous components by

p(st, st+1 |v1:T ) ≈ p(st+1 | st)
〈
p(st |ht+1, st+1,v1:t)

〉
p(ht | st, st+1,v1:T ) ≈

〈
p(ht |ht+1, st, st+1,v1:t)

〉
As for the forward pass, the number of mixture components is
multiplied by S at each iteration. Hence, to retain tractability,
the mixture in Eq. 15 is collapsed to a mixture with fewer
components. The backward pass is initialised with the filtered
posterior obtained at the T -th step, since both filtered and
smoothed posteriors match at that point.
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IV. IMPLEMENTATION

Algorithms 4 and 5 give the pseudo-code of EC forward
and backward passes. In Algorithm 5, the prefactor α in the
expression pst,st+1 ← αp(st+1 | st) p(st |v1:t) differentiates
EC from GPB. The COL routine collapses the mixture of
Gaussians passed as arguments to a single Gaussian; see [7] for
additional details and for an example of collapse to a mixture
of Gaussians.

Algorithm 4 EC forward pass. This function computes the filtered
posterior p(st |v1:t), the mean fst and the covariance Fst of ht

under p(ht | st,v1:t), as well as the log-likelihood l ≡ log p(v1:T ).
The prior mean and covariance are denoted by µP and ΣP .
l← 0

for t← 1 to T do
for all (st−1, st) do

if t > 1 then
x← Ast fst−1

X← AstFst−1AT
st

+ ΣH(st)
else

x← µP(s1)
X← ΣP(s1)

end if˘
α,µst−1,st

,Σst−1,st

¯
← COND

˘
x,X,Bst ,ΣV(st),vt,0

¯
pst−1,st ← αp(st | st−1) p(st−1 |v1:t−1)

end for
p(vt |v1:t−1)←

P
st−1,st

pst−1,st

for all (st−1, st) do
pst−1,st ← pst−1,st / p(vt |v1:t−1)

end for
for all st do
p(st |v1:t)←

P
st−1

pst−1,st

p(st−1 | st,v1:t)← pst−1,st / p(st |v1:t)˘
fst ,Fst

¯
← COL

˘
p(st−1 | st,v1:t),µst−1,st

,Σst−1,st

¯
end for
l← l + log p(vt |v1:t−1)

end for

V. CONCLUSION

We presented an alternative and simpler derivation of the
EC algorithm which makes the relationship with the RTS al-
gorithm more evident. EC is perhaps most naturally viewed as
the extension of the time-honoured Gaussian Sum Filter [9]
to the smoothing case. It is similar to GPB; both algorithms
use the same forward pass, but the EC backward pass is
more accurate since it better preserves the information carried
by the continuous variables. Furthermore, EC is not limited
to the simple approximations (10) and (13), but can readily
be extended to use more elaborate schemes [7]. In its most
simple form—with collapse to a single Gaussian—it has
been successfully used for inference on real-world time-series,
including speech waveforms [12], [13] withO(105) time steps.
In this case, EC proved to be more stable than EP while being
more accurate and faster than Monte-Carlo approaches.

Algorithm 5 EC backward pass. This function computes the
smoothed posterior p(st |v1:T ), the mean gst and the covariance Gst

of ht under p(ht | st,v1:T ).
for all sT do

gsT ← fsT

GsT ← FsT

end for
for t← T − 1 to 1 do

for all (st, st+1) do˘
α,µst,st+1

,Σst,st+1

¯
← COND

˘
fst ,Fst ,Ast+1 ,ΣH(st+1),gst+1 ,Gst+1

¯
pst,st+1 ← αp(st+1 | st) p(st |v1:t)

end for
for all (st, st+1) do
pst,st+1 ← pst,st+1 /

P
st
pst,st+1

end for
for all (st, st+1) do
pst,st+1 ← pst,st+1 · p(st+1 |v1:T )

end for
for all st do
p(st |v1:T )←

P
st+1

pst,st+1

p(st+1 | st,v1:T )← pst,st+1 / p(st |v1:T )˘
gst ,Gst

¯
← COL

˘
p(st+1 | st,v1:T ),µst,st+1

,Σst,st+1

¯
end for

end for
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