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Abstract. Up to now, many activity dependent learning rules have been
proposed in order to model long-term potentiation (LTP). Our aim is to
derive a spike time dependent learning rule from a probabilistic optimal-
ity criterion. The idea is to create a model in order to obtain quantitative
results in terms of a learning window. This is done by maximising a given
likelihood function with respect to the synaptic weights. The results are
consistent with the actual knowledge of back-propagating action poten-
tials

1 Introduction

Since synaptical changes are assumed to underly memory and learning processes,
a crucial question is to determine what causes those changes and what is the
law describing this adaptation process. Among the enormous number of models,
there are mainly two categories: rate-based and spike-based learning rule. In this
paper, we want to present a new way to derive a spike-time dependent learning
rule.

Until now, the existing models are either phenomenological [14] or pseudo-
mechanistic [1]. Our model is derived from a probabilistic point of view in the
sense that the learning rule should optimise the likelihood of observing a post-
synaptic spike train with a desired timing, given the postsynaptic membrane
potential at the location of the synapse.

A significant part of the synaptic plasticity models are based on Hebb’s pos-
tulate [12]:

When an axon of cell A is near enough to excite cell B or repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of
the cells firing B, is increased.

In fact models rephrase this postulate by saying that the adaptation of the
synaptic weights is driven by by a simultaneous activity of the pre- and the
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postsynaptic neuron. This simultaneity has to be defined in a time window.
Recent experiments [3] have shown the influence of a pair of a single pre- and
postsynaptic spike on the synaptic strength (figure 1).

Fig. 1. Critical window for synaptic modifications. Long-term potentiation
(LTP)/long-term depression (LTD) were induced by correlated pre- and postsynap-
tic spiking at synapses between hippocampal glutamatergic neurons in culture. Figure
from [4].

The aim of this paper is to show that it is possible to get a similar learning
window as a result from an optimal learning rule. Recently Barber [2] studied
this question with neurons discrete in time. Here we want to extend this study
to the continuous case and discuss the results in relation with the experiments
of Bi and Poo [3].

2 Spike Response Model

For the sake of simplicity, let us consider here a single presynaptic neuron j and
a postsynaptic neuron i. Those two neurons are considered as Poisson neurons,
i.e their firing times depend only on the present value of the membrane potential.

Let w be the synaptic weight between those neurons. Finally, let {tf ′

j } and {tfi }
denote respectively the pre- and postsynaptic firing times.

The fundamental hypothesis in this article is to assume that the instanta-
neous firing rate of the postsynaptic neuron is given by an increasing function
of the membrane potential u(t):

ρ(t) = g(u(t)). (1)

This firing rate can be also termed as escape rate [10]. The membrane po-
tential model we take is the Spike Response Model (SRM). The simplest SRM
is called SRM0 [8] and defines the membrane potential u(t) as follow:

u(t) = urest + η(t− t̂i) + w
∑

f ′

ε(t− t
f ′

j ), (2)
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where η(s) is a kernel describing the back-propagating action potential at
the location of the synapse, ε(s) is the kernel representing the excitatory post-
synaptic potential (EPSP) and t̂i is the last firing time of neuron i, i.e. t̂i =

max{tfi |t
f
i < t}. The goal is now to maximise the probability that the postsy-

naptic spike train Si(t) =
∑

f ′ δ(t − t
f ′

i ) has been generated by the firing rate
ρ(t).

3 Calculation of the likelihood L

In order to calculate the likelihood of a spike train given a firing rate, it is
useful to first make a time discretization before coming back to the continuous
case. Let ρ̄(t) be the discretised version of ρ(t) on the interval I = [0, T ] where
ρ̄(t) = ρ(tn), ∀t ∈ [tn, tn + ∆t] and t0 = 0, tN = N∆t = T .

The probability that a neuron produces a spike at time t ∈ [t̃, t̃ + ∆t] given
its firing rate ρ̄(s) is simply given by the probability of spiking between t̃ and
t̃ + ∆t multiplied by the probability of not spiking at any other time:

P̄ (t ∈ [t̃, t̃ + ∆t]|ρ̄(s))∆t = ρ̄(t̃)∆t
∏

tn 6=t̃

(1− ρ̄(tn)∆t) (3)

To extend this result to the case of M spikes, we need to define t = (t1, . . . , tM )
a M -dimensional time variable ordered chronologically, i.e. tf < tf+1. Let t̃ be
the M desired firing times and Ω(t̃) =

∏

n[t̃n, t̃n + ∆t] a M -dimensional bin.
The probability of firing at the M given times t̃ is

P̄ (t ∈ Ω(t̃)|ρ̄(s))∆tM =
∏

f

ρ̄(t̃f )∆tM
∏

tn 6=t̃f

(1− ρ̄(tn)∆t)

=
∏

f

ρ̄(t̃f )∆tM

1− ρ̄(t̃f )∆t

∏

n

(1− ρ̄(tn)∆t)

=
∏

f

ρ̄(t̃f )∆tM

1− ρ̄(t̃f )∆t
exp

(

∑

n

log(1− ρ̄(tn)∆t)

)

. (4)

Now we can come back to the continuous case. By taking the limit ∆t → 0,
we have ρ̄(t) → ρ(t), P̄ (t ∈ Ω(t̃)|ρ̄(s)) → P (t = t

′|ρ(s)),
∑

n log(1− ρ̄(tn)∆t) →

−
∫ T

0 ρ(t)dt and 1 − ρ̄(t̃f )∆t → 1. Therefore we can define the log-likelihood
L(ti|u(s)) of the postsynaptic spike train given the membrane potential u(s) by
simply taking the logarithm of P (t = t

′|ρ(s)):

L(ti|u(s)) =
∑

f

log(g(u(tfi )))−

∫ T

0

g(u(t))dt. (5)
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4 Learning rule

The goal of our study is to find a learning rule which tends to optimise the weights
w in order to maximise the likelihood of getting postsynaptic firing times given
the firing rate. This means that those weights must evolve in the direction of the
gradient of L:

wnew = w + κ
∂L

∂w
, (6)

with

∂L

∂w
(ti|u(s)) =

∑

f

dg(u(tf

i
))

du(tf

i
)

∂u(tf

i
)

∂w

g(u(tfi ))
−

∫ T

0

dg(u(t))

du(t)

∂u(t)

∂w
dt

=
∑

f

∑

f ′

ε(tfi − t
f ′

j )

g(u(tfi ))

dg(u(tfi ))

du(tfi )
−

∫ T

0

dg(u(t))

du(t)

∑

f ′

ε(t− t
f ′

j )dt(7)

and κ is the learning rate. Since g(u(t)) = exp(β(u(t) − θ)) is a reasonable
choice [10], we can use it to evaluate the gradient of L for a pre- and a postsy-
naptic spike train:

∂L

∂w
(ti|u(s)) = β

∑

f

∑

f ′

ε(tfi − t
f ′

j )− β

∫ T

0

exp(β(u(t)− θ))
∑

f ′

ε(t− t
f ′

j )dt. (8)

Let us now study the restricted case with only one pre- and one postsynaptic
spike and β = 1:

∂L

∂w
(ti|u(s)) = ε(ti − tj)−

∫ T

0

exp(u(t)− θ)ε(t− tj)dt. (9)

In order to represent the gradient of the log-likelihood function L (figure 2),
it is necessary to determine specific kernels for η(s) and ε(s). For simplicity sake,
we choose

η(s) = η0e
− s

τη Θ(s), (10)

ε(s) = ε0e
− s

τε Θ(s), (11)

where Θ is the usual Heaviside step function with Θ(s) = 1 for s > 0 and
Θ(s) = 0 else.

It is interesting to note that the qualitative shape of this learning window is
similar to the one obtained by Bi and Poo [3] only if back-propagating action
potential amplitude η0 is positive (say η0 = 1) and not if it is negative. This is
consistent with the experiments of Stuart and Sakmann [22].
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Fig. 2. First step of the adaptation of weights ∆w = wnew−w = ∂L
∂w

. The parameters
for this simulation are : w = 0.2, θ − urest = −2, β = 1, ε0 = 1, τε = 3, τη = 5. The
amplitude of the back-propagating action potential is given by η = −1 for (a) and
η = 1 for (b). Note the different vertical scales.

5 Discussion

One can note that a major difference between the result of Bi and Poo and our
model is the negative offset. This offset is related to the integral of the kernel
ε(s). Indeed, if the postsynaptic spike occurs a long time after the presynaptic
spike and if w ' 0, the first term of equation (9) can be neglected and the
membrane potential can be approximated by its resting potential in the range
where ε(t− tj) is significant:

∂L

∂w
' exp(urest − θ)

∫ T

tj

ε(t− tj)dt

' exp(urest − θ)

∫ ∞

0

ε(s)ds. (12)

This is of course valid only if T � tj . In fact, this offset is related to the
probability of not having a spike at time t 6= ti (c.f. last term of eq. (3)).

One can also note that the shape of the positive peak on figure 2a is given
by the kernel ε(s) (c.f. eq. (9)). This is due to the choice of an exponential for
the function g(u).

Let us note that the we are looking at the gradient of the likelihood function
L and not at the optimal solution given by ∂L

∂w
= 0. Indeed, it is straightforward

to notice that there is no fix point for w if ti < tj .
We have shown a new framework for deriving a spike-time dependent learning

rule. The interesting feature of this learning rule is the similarity to the one
obtained by Bi and Poo. This similarity is valid only if the back-propagating
action potential leads to a long-lasting depolarisation of the dendrite after a
somatic spike. The duration of the back-propagating spike determines the width
of the negative phase of the learning window.
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As a consequence we could speculate that the form of the learning window
changes according to the exact location of the synapse on the dendrite, in the
same way as back-propagating action potential may change along the way.

It is of course possible to make the model more complex by not using the
SRM0 model but more realistic models. Even if our study was restricted to a
single pre- and postsynaptic spike, equation (8) remains totally general for spike
trains and is also valid for an entire neural network.
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