
A note on quickly finding the nearest neighbour

David Barber
Department of Computer Science

University College London

May 19, 2014

1 Finding your nearest neighbour quickly

Consider that we have a set of datapoints x1, . . . ,xN and a new query vector q. Our task is to find the
nearest neighbour to the query n∗ = argmin

n
d(q,xn), n = 1, . . . , N . For the Euclidean distance

d(x,y) =

√
(x− y)2 =

√√√√ D∑
i=1

(xi − yi)2 (1)

and D dimensional vectors, it takes O (D) operations to compute this distance. For a set of N vectors,
computing the nearest neighbour to q would take then O (DN) operations. For large datasets this can be
prohibitively expensive. Is there a way to avoid calculating all the distances? This is a large research area
(see [2] for a review) and we will focus here on first methods that make use of the triangle inequality for
metric distances and secondly a KD-trees which form a spatial data structure.

2 Using the triangle inequality to speed up search

2.1 The triangle inequality

For the Euclidean distance we have

(x− y)2 = (x− z + z− y)2 = (x− z)2 + (z− y)2 + 2 (x− z) (z− y) (2)

Since the scalar product between two vectors a and b relates the lengths of the vectors |a|, |b| and the angle
θ between them by aTb = |a||b| cos(θ) we have (using |x| ≡

√
xTx)

|x− y|2 = |x− z|2 + |z− y|2 + 2 cos(θ)|x− z||z− y| (3)

Using cos(θ) ≤ 1 we obtain the triangle inequality

|x− y| ≤ |x− z|+ |z− y| (4)

Geometrically this simply says that for a triangle formed by the points x,y, z, it is shorter to go from x to
y than to go from x to an intermediate point z and then from that point to y.

More generally a distance d(x,y) satisfies the triangle inequality if it is of the form1

d(x,y) ≤ d(x, z) + d(y, z) (5)

Formally the distance is a metric if it is symmetric d(x,y) = d(y,x), non negative, d(x,y) ≥ 0 and
d(x,y) = 0⇔ x = y.

1Note here that d(·, ·) is defined as the Euclidean distance, not the squared Euclidean distance.

1

Using the triangle inequality to speed up search

q

xi

xj

Figure 1: If we know that xi is close to q, but that
xi and xj are not close, namely d(q,xi) ≤ 1

2d(xi,xj),
then we can infer that xj will not be closer to q than
xi, i.e. d(q,xi) ≤ d(q,xj).

A useful basic fact that we can deduce for such metric distances is the following: If d(x,y) ≤ 1
2d(z,y), then

d(x,y) ≤ d(x, z), meaning that we do not need to compute d(x, z). To see this consider

d(y, z) ≤ d(y,x) + d(x, z) (6)

If we are in the situation that d(x,y) ≤ 1
2d(z,y), then we can write

2d(x,y) ≤ d(y,x) + d(x, z) (7)

and hence d(x,y) ≤ d(x, z). In the nearest neighbour context, we can infer that if d(q,xi) ≤ 1
2d(xi,xj) then

d(q,xi) ≤ d(q,xj), see fig(1).

2.2 Using all datapoint to datapoint distances

One way to use the above result is to first precompute all the distance pairs dij ≡ d(xi,xj) in the dataset.

Orchard’s algorithm

Given these distances, for each i we can then compute an ordered list Li =
{
ji1, j

i
2, . . . , j

iN−1
}

of those

vectors xj that are closest to xi, with d(xi,xji1) ≤ d(xi,xji2) ≤ d(xi,xji3)

We then start with some vector xi as our current best guess for the nearest neighbour to q and compute
d(q,xi). We then examine the first element of the list Li and consider the following cases:

If d(q,xi) ≤ 1
2di,ji1

then ji1 cannot be closer than xi to q; furthermore, neither can any of the other members

of this list since they automatically satisfy this bound as well. In this fortunate situation, xi must be the
nearest neighbour to q.

If d(q,xi) 6≤ 1
2di,ji1

then we move on to the next member of the list, ji2 and compute d(q,xji2). If

d(q,xji2) < d(q,xi) we have found a better candidate i′ ≡ ji2 than our current best guess, and we jump to
the start of the new list Li′ . Otherwise we continue to traverse the current list, checking if d(q,xi) ≤ 1

2di,ji2
,

etc. [6].

In summary, this process of traversing a list for the candidate continues until we either: (i) find a better
candidate (and jump to the top of its list) and restart traversing the new candidate list (ii) find that the
bound criterion is met and declare that the current candidate is then optimal (iii) get to the end of a list,
in which case the current candidate is optimal.

See algorithm(1) and fastnnOrchard.m for a formal description of the algorithm.

Complexity

Orchard’s algorithm requires O
(
D2
)

storage to precompute the distance sorted lists. In the worst case,
it can take O (N) distance calculations to find the nearest neighbour. To see this, consider a simple one

Using the triangle inequality to speed up search

Algorithm 1 Orchard’s Nearest Neighbour Search

1: Compute all pairwise distances metric(data{m},data{n})
2: For each datapoint n, compute the list{n} that stores the distance list{n}.distance and index list{n}.index

of each other datapoint, sorted by increasing distance, list{n}.distance(1)¡list{n}.distance(2). . .
3: for all Query points do
4: cand.index=randi(N) . assign first candidate index randomly as one of the N datapoint indices
5: cand.distance=metric(query,data{cand.index})
6: Assign all nodes to state not tested
7: i = 1 . start at the beginning of the list
8: while i ≤ N and list{cand.index}.distance(i)<2*cand.distance do
9: node=list{cand.index}.index(i) . get the index of the ith member of the current list

10: if tested(node)=false then . just to avoid computing this distance again
11: tested(node)=true
12: querydistance=metric(query,data{node})
13: if querydistance<cand.distance then . found a better candidate
14: cand.index=node;
15: cand.distance=querydistance;
16: i = 1 . go to start of next list
17: else
18: i = i+ 1 . continue to traverse the current list
19: end if
20: i = i+ 1
21: end if
22: end while
23: cand.index and cand.distance contain the nearest neighbour and distance thereto
24: end for

dimensional dataset:

xn+1 = xn + 1, n = 1, . . . , N x1 = 0 (8)

If the query point is for example q = xN + 1 and our initial candidate for the nearest neighbour is x1, then
at iteration k, the nearest non-visited datapoint will be xk+1, meaning that we will simply walk through all
the data, see fig(2).

x1

0

x2

1

x2

2

x3

3

x4

4

q

5

Figure 2: A worst-case scenario for Orchard’s algo-
rithm. If the initial candidate is x1, then x2 becomes
the next best candidate, and subsequenly x3 etc.

Approximating and Eliminating Search Algorithm (AESA)

The triangle inequality can be used to form a lower bound

d(q,xj) ≥ d(q,xi)− d(xi,xj) (9)

For datapoints xi, i ∈ I for which d(q,xi) has already been computed, one can then maximise the lower
bounds to find the tightest lower bound on all other d(q,xj)2:

d(q,xj) ≥ max
i∈I

d(q,xi)− d(xi,xj) ≡ Lj (10)

All datapoints xj whose lower bound is greater than the current best nearest neighbour distance can then
be eliminated, see fig(3). One may then select the next (non-eliminated) candidate datapoint xj corre-
sponding to the lowest bound and continue, updating the bound and eliminating [7], see algorithm(2) and
fastnnAESA.m.

2In the classic AESA one only retains the best current nearest neighbour I = best.

Using the triangle inequality to speed up search

L1

L2
L3

L4

L5

d(q,x∗)

Figure 3: We can eliminate datapoints x2 and x3 since
their distance to the query is greater than the cur-
rent best candidate distance d(q,x∗). After eliminat-
ing these points, we use the datapoint with the lowest
bound to suggest the next candidate, in this case x5.

Algorithm 2 AESA Nearest Neighbour Search

1: For all datapoints compute and store the distances d(xi,xj)
2: for all Queries do
3: best.dist=∞
4: I = ∅ . Datapoints examined
5: J = {1, . . . , N} . Datapoints not examined
6: L(n) =∞, n = 1, . . . , N
7: while J is not empty do
8: cand.ind=arg minj∈J bound(j) . select candidate based on lowest bound
9: cand.dist=metric(query,data{cand.ind})

10: distQueryData(cand.ind)=cand.dist . store computed distances
11: I = I ∪ cand.ind . Add candidate to examined list
12: if cand.dist<best.dist then . If candidate is nearer than current best
13: best.dist=cand.dist
14: best.ind=cand.ind
15: end if
16: L(j) = maxi∈I distQueryData(i)− d(xi,xj), j ∈ J \ cand.ind . lower bound
17: J = {j such that L(j) < best.dist} . eliminate
18: end while
19: end for

Complexity

As for Orchard’s algorithm, AESE requires O
(
D2
)

storage to precompute the distance matrix d(xi,xj).
During the first lower bound computation, when no datapoints have yet been eliminated, AESE needs to
compute all the N − 1 lower bounds for datapoints other than the first candidate examined. Whilst each
lower bound is fast to compute, this still requires an O (N) computation. A similar computation is required
to update the bounds at later stages, with the worst case being that there are N/2 datapoints left to ex-
amine, meaning that computing the optimal lower bound scales O

(
N2
)

in this case. One can limit this
complexity by restricting the elements of I in the max operation to compute the bound; however this may
result in more iterations being required since the bound is then potentially inferior.

The experiments in demofastnn.m also suggest that the AESA method typically requires less distance
calculations than Orchard’s approach. However, there remains at least an O (N) calculation required to
compute the bounds in AESA which may be prohibitive, depending on the application.

2.3 Using the datapoints to ‘buoys’ distances

Both Orchard’s algorithm and AESA can significantly reduce the number of distance calculations required.
However, we pay an O

(
N2
)

storage cost. For very large datasets, this storage cost is likely to be prohibitive.
Given the difficulty in storing di,j , an alternative is to consider the distances between the training points
and a smaller number of strategically placed ‘buoys’3, b1, . . . ,bB, B < N . These buoys can be either a
subset of the original datapoints, or new positions.

3Also called ‘pivots’ or ‘basis’ vectors by other authors.

Using the triangle inequality to speed up search

L̃1

Ũ1

L̃2

Ũ2

L̃3

Ũ3

L̃4

Ũ4

L̃5

Ũ5

Figure 4: We can eliminate datapoint x2 since there
is another datapoint (either x1 or x5) that has an up-
per bound Ũ that is lower than L̃2. We can similarly
eliminate x3.

L̃1

Ũ1

L̃2

Ũ2

L̃3

Ũ3

Figure 5: The lower bounds of non-eliminated data-
points from fig(4) relabelled such that L1 ≤ L2 ≤
In ‘linear’ AESA we use these lower bounds to order
the search for the nearest neighbour, starting with x1.
If we get to a bound where Lm is greater than our cur-
rent best distance, then all remaining distances must
be greater than our current best distance, and the al-
gorithm terminates.

Pre-elimination

Given the buoys, the triangle inequality gives the following upper and lower bounds on the distance from
the query to each datapoint:

d(q,xn) ≥ max
m

d(q,bm)− d(bm,xn) ≡ L̃n (11)

d(q,xn) ≤ min
m

d(q,bm) + d(bm,xn) ≡ Ũn (12)

We can then immediately eliminate any m for which there is some n 6= m with L̃(m) ≥ Ũ(n), see fig(4).
This enables one to ‘pre-eliminate’ datapoints, at a cost of B distance calculations, see fastnnBuoysElim.m.
The remaining candidates can then be used in the Orchard or AESA algorithms (either the standard ones
described above or the buoy variants described below).

AESA with buoys

In place of the exact distances to the datapoints, an alternative is to relabel the datapoints according to L̃n,
with lowest distance first L̃1 ≤ L̃2, . . . ≤ L̃n. We can then compute the distance d(q,x1) and compare this
to L̃2. If d(q,x1) ≤ L̃2 then x1 must be the nearest neighbour, and the algorithm terminates. Otherwise
we move on to the next candidate x2. If this datapoint has a lower distance than our current best guess, we
update our current best guess accordingly. We then move on to the next candidate in the list and continue.
If we reach a candidate in the list for which d(q,xbest) ≤ L̃m the algorithm terminates, see fig(5). This
algorithm is also called ‘linear’ AESA [5], see fastnnLAESA.m.

The gain here is that the storage costs are reduced to O (NB) since we only now need to pre-compute the
distances between the buoys and the dataset vectors. By choosing B � N , this can be a significant saving.
The loss is that, since we are now not using the true distance but a bound, we may need more distance
calculations d(q,xi).

Orchard with buoys

For Orchard’s algorithm we can also use buoys to construct bounds on di,j on the fly. Consider an arbitrary
vector b, then,

d(xi,b)− d(xj ,b) ≤ d(xi,xj) (13)

Using the triangle inequality to speed up search

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

datapoints

query

buoys

nearest neigbour

eliminated

Figure 6: Example of elimination using buoys. All
points expect for the query are datapoints. Using
buoys, we can pre-eliminate (crossed datapoints) a
large number of the datapoints from further consid-
eration. See demofastnn.m.

We can use this in Orchard’s approach since if there is a vector b such that

2d(q,xi) ≤ d(xi,b)− d(xj ,b) (14)

then it follows that d(q,xi) ≤ d(q,xj). This suggests that we can replace using the exact distance d(xi,xj)
with an upper bound d(xi,b) − d(xj ,b). If we have a set of such buoys b1, . . . ,bB, we want to use the
highest lower bound approximation to the true distance d(xi,xj):

2d(q,xi) ≤ max
m

d(xi,bm)− d(xj ,bm) ≡ d̃i,j (15)

These surrogate distances d̃i,j can then be used as in the standard Orchard algorithm to form (on the fly)
a list Li of closest vectors xj to the current candidate xi, sorted according to this surrogate distance. The
algorithm then proceeds as before, see fastnnOrchardBuoys.m.

Whilst this may seem useful, one can show that AESA-buoys dominates Orchard-buoys. In AESA-buoys
the lower bound on d(q,xi) is given by

L̃i = max
m

d(q,bm)− d(xi,bm) (16)

Let m be the optimal buoy index for i, namely

L̃i = d(q,bm)− d(xi,bm) (17)

Furthermore

L̃j = max
m

d(q,bm)− d(xj ,bm) ≥ d(q,bm)− d(xj ,bm) (18)

If we have reached the Orchard-buoys termination criterion

−d(xj ,bm) ≥ 2d(q,xi)− d(xi,bm) for all j > i (19)

then datapoint xi is the nearest neighbour. Hence, if Orchard-buoys terminates for xi, we must have, for
j > i:

L̃j ≥ d(q,bm)− d(xi,bm) + 2d(q,xi) ≥ d(q,bm)− d(xi,bm) = L̃i for all j > i (20)

Furthermore,

L̃j ≥ d(q,bm)− d(xj ,bm)

≥ d(q,bm) + d(q,xi)− d(xi,bm) + d(q,xi)

≥ d(bm,xi)− d(xi,bm)︸ ︷︷ ︸
0

+d(q,xi) for all j > i (21)

KD trees

q x∗v

Figure 7: Consider one dimensional data in which the
datapoints are partioned into those that lie to the left
of v and those to the right. If the current best can-
didate x∗ has a distance to the query q that is less
than the distance of the query q to v, then none of the
points to the left of v can be the nearest neighbour.

which is precisely the AESA-bouys termination criterion. Hence Orchard-buoys terminating implies that
AESA-buoys terminates. Since AESA-buoys has a different termination criterion to Orchard-buoys, AESA-
buoys has the opportunity to terminate before Orchard-buoys. This explains why Orchard-buoys cannot
outperform AESA-buoys in terms of the number of distance calculations d(q,xi). This observation is also
borne out in demofastnn.m, see also fig(6) for a D = 2 demonstration.

2.4 Other uses of nearest neighbours

Note also that nearest neighbour calculations are required in other applications, for example k-means clus-
tering – see [4] for a fast algorithm based on similar applications of the triangle inequality.

3 KD trees

K-dimensional trees [1] are a way to form a partition of the space that can be used to help speed up search.
Before introducing the tree, we’ll discuss the basic idea on which the potential speed-up is based.

3.1 Basic idea in one-dimension

If we consider first one-dimensional data xn, n = 1, . . . , N we can partition the data into points that have
value less than a chosen value v, and those with a value greater than this, see fig(7). If the distance of the
current best candidate x∗ to the query point q is smaller than the distance of the query to v, then points to
the left of v cannot be the nearest neighbour. To see this, consider a query point that is in the right space,
q > v and a candidate x that is in the left space, x < v, then

(x− q)2 = (x− v + v − q)2 = (x− v)2 + 2 (x− v)︸ ︷︷ ︸
≤0

(v − q)︸ ︷︷ ︸
≤0

+(v − q)2 ≥ (v − q)2 (22)

Let the distance of the current best candidate to the query be δ2 ≡ (x∗−q)2. Then if (v−q)2 ≥ δ2 it follows
that all points in the left space are further from q than x∗.

In the more general K dimensional case, consider a query vector q. Let’s imagine that we have partitioned
the datapoints into those with first dimension x1 less than a defined value v (to its ‘left’), and those with a
value greater or equal to v (to its ‘right’):

L = {xn : xn1 < v} , R = {xn : xn1 ≥ v} (23)

Let’s also say that our current best nearest neighbour candidate has squared Euclidean distance δ2 =(
q− xi

)2
from q and that q1 ≥ v. The squared Euclidean distance of any datapoint x ∈ L to the query is

(x− q)2 =
∑
k

(xk − qk)2 ≥ (x1 − q1)2 ≥ (v − q1)2 (24)

If (v − q1)2 > δ2, then (x− q)2 > δ2. That is, all points in L must be further from q than the current best
point xi. On the other hand, if (v − q1)2 ≤ δ2, then it is possible that some point in L might be closer to q
than our current best nearest neighbour candidate, and we need to check these points.

The KD-tree approach essentially is a recursive application of the above intuition.

KD trees

3.2 Constructing the tree

For N datapoints, the tree consists of N nodes. Each node contains a datapoint, along with the axis along
which the data is split.

We first need to define a routine [middata leftdata rightdata]=splitdata(x,axis) that splits data
along a specified dimension of the data. Whilst not necessary, it is customary to use the median value along
the split dimension to partition. The routine should return :

middata We first form the set of scalar values that correspond to the axis components of x. These are
sorted and the middata is the datapoint close to the median of the data.

leftdata These are the datapoints ‘to the left’ of the middata datapoint.

rightdata These are the datapoints ‘to the right’ of the middata datapoint.

For example, if the datapoints are (2, 3), (5, 4), (9, 6), (4, 7), (8, 1), (7, 2) and we split along dimension 1, then
we would have:

>>x =

2 5 9 4 8 7

3 4 6 7 1 2

>> [middata leftdata rightdata]=splitdata(x,1)

middata =

7

2

leftdata =

2 4 5

3 7 4

rightdata =

8 9

1 6

The tree can be constructed recursively as follows. We start with node(1) and create a temporary storage
node(1).data that contains the complete dataset. We then call

[middata leftdata rightdata]=splitdata(node(1).data,1)

forming node(1).x=middata. We now form two child nodes and populate them with data node(2).data=leftdata;
node(3).data=rightdata. We store also in node(1).axis which axis was used to split the data.

1

2 3

The temporary data node(1).data can now be removed. We now move down to the second layer, and
split along the next dimension for nodes in this layer. We then go through each of the nodes and split the
corresponding data, forming a layer beneath. If leftdata is empty, then the corresponding child node is
not formed, and similarly if rightdata is empty:

KD trees

Algorithm 3 KD tree construction
function [node A]=KDTreeMake(x)

[D N]=size(x);

A=sparse(N,N);

node(1).data=x;

for level=1:1+floor(log2(N)) % generate the binary tree:

split_dimension=rem(level-1,D)+1; % cycle over split dimensions

if level>1

pa=layer{level-1}; % parents

ch=children(A,pa); % children

else

ch=1;

end

idx=max(ch);

layer{level}=ch;

for i=ch

[node(i).x leftdata rightdata]=splitdata(node(i).data,split_dimension);

node(i).split_dimension=split_dimension;

if ~isempty(leftdata); idx=idx+1; node(idx).data=leftdata; A(i,idx)=1; end

if ~isempty(rightdata); idx=idx+1; node(idx).data=rightdata; A(i,idx)=1; end

node(i).data=[]; % remove to save storage

end

end

1

2 3

4 5 6

In this way, the top layer split the data along axis 1, and then the nodes 2 and 3 in the second layer split
the data along dimension 2. The nodes in the third layer don’t require any more splitting since they contain
single datapoints. Recursive programming is a natural way to construct the tree. Alternatively, one can
avoid this by explicitly constructing the tree layer by layer. See algorithm(3) and KDTreeMake.m for the full
algorithm details in MATLAB. We can also depict the datapoints that each node represents:

1 : (7, 2)

2 : (5, 4) 3 : (9, 6)

4 : (2, 3) 5 : (4, 7) 6 : (8, 1)

The hierarchical partitioning of the space that this tree represents can also be visualised, see fig(8).
There are many extensions of the KD tree, for example to search for the nearest K neighbours, or search for
datapoints in a particular range. Different hierarchical partitioning strategies, including non-axis aligned
partitions can also be considered. See [3] for further discussion.

Complexity

Building a KD tree has O (N logN) time complexity and O (KN) space complexity.

3.3 Nearest Neighbour search

To search we can make recursive use of our simple observation in section(3.1). For a query point q we
first find the leaf node of the tree by traversing the tree from the root, and seeing if the corresponding
components of q is ‘to the left’ or ‘to the right’ of the current tree node. For the above tree, for the query
q = (9, 2), we would first consider the value 9 (since the first layer splits along dimension 1). Since 9 is ‘to

Curse of Dimensionality

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1:(7,2)

2:(5,4)

3:(9,6)

4:(2,3)

5:(4,7)

6:(8,1)

Figure 8: KD tree. The data is plotted along with its node index,
and corresponding split dimension (either horiztonal or vertical).
The KD tree partitions the space into hyperrectangles.

the right’ of 7 (the first dimension of node 1), we go now to node 3. In this case, there is a unique child of
node 3, so we continue to the leaf, node 6.

Node 6 now represents our first guess for the nearest neighbour. This has distance (9−8)2+(2−1)2 = 2 ≡ δ2
from the query. We set this to our current best guess of the nearest neighbour and corresponding distance.
We then go up the tree, to the parent, node 3. We check if this is a better neighbour. It has distance
(9− 9)2 + (2− 6)2 = 16, so this is worse. Since there are no other children to consider, we move up another
level, this time to node 1. This has distance (9 − 7)2 + (2 − 2)2 = 4, which is also worse than our current
best. We now need to consider if there are any nodes in the other branch of the tree containing nodes 2,4,5,
that could be better than our current best. We know that for all nodes 2,4,5 they have first dimensions
with value less than 7. We can then check if the corresponding datapoints are necessarily further than our
current best guess by checking if (v − q1)2 > δ2, namely if (7 − 9)2 > 2. Since this is true, it must be that
all the points in nodes 2,4,5 are further away from the query than our current best guess. At this point
the algorithm terminates, having examined only 3 datapoints in which to find the nearest neighbour, rather
than all 6. The full procedure is given in MATLAB in algorithm(4) KDTreeNN.m (again using non-recursive
programming). See also demoKDTree.m for a demonstration.

Complexity

Searching a KD tree has in the worst case O (N) time complexity. For ‘dense’ and non-pathological data,
typically the algorithm is much more efficient and O (logN) time complexity can be achieved.

4 Curse of Dimensionality

Whilst KD-trees and Orchard’s approach can work well when the data is reasonably uniformly distributed
over the space, their efficacy can reduce dramatically when the space is not well covered by the data.
If we split each of the D dimensions into 2 parts, for example in 2 dimensions:

we will have 2D partitions of the data. For data to be uniformly distributed, we need a dataset to oc-
cupy each of these partitions. This means that we need at least 2D datapoints in order to begin to see
reasonable coverage of the space. Without this exponentially large number of datapoints, most of these par-
titions will be empty, with the effectively small number of datapoints very sparsely scattered throughout the
space. In this case there is little speed up that can be expected based on either triangle or KD tree methods.

It is also instructive to understand that in high dimensions, two datapoints will typically be far apart. To

Curse of Dimensionality

Algorithm 4 KD tree nearest neighbour search
function [bestx bestdist]=KDTreeNN(q,x)

[node A]=KDTreeMake(x);

bestdist=realmax; N=size(x,2); tested=false(1,N);

treenode=1; % start at the top of the tree

for loop=1:N % maximum possible number of loops

% assign query point to a leaf node (in the remaining tree):

for level=1:1+floor(log2(N))

ch=children(A,treenode);

if isempty(ch); break; end % hit a leaf

if length(ch)==1

treenode=ch(1);

else

if q(node(treenode).split_dimension)<node(treenode).x(node(treenode).split_dimension);

treenode=ch(1);

else

treenode=ch(2);

end

end

end

% check if leaf is closer than current best:

if ~tested(treenode)

testx=node(treenode).x; dist=sum((q-testx).^2);

tested(treenode)=true;

if dist<bestdist; bestdist=dist; bestx=testx; end

end

parentnode=parents(A,treenode);

if isempty(parentnode); break; end % finished searching all nodes

A(parentnode,treenode)=0; % remove child from tree to stop searching

% first check if this is a better node:

if ~tested(parentnode)

testx=node(parentnode).x; dist=sum((q-testx).^2);

if dist<bestdist; bestdist=dist; bestx=testx; end

tested(parentnode)=true;

end

% see if could be points closer on the other branch:

if (node(parentnode).x(node(parentnode).split_dimension) ...

- q(node(parentnode).split_dimension))^2>bestdist

A(parentnode,children(A,parentnode))=0; % if not then remove this branch

end

treenode=parentnode; % move up to parent on tree

end

see this, consider the volume of a hypershere of radius r in D dimensions. This is given by the expression

V =
πD/2rD

(D/2)!
(25)

The fraction of volume that a unit hypersphere occupies when inscribed by a unit hypercube is

πD/2

2D(D/2)!
(26)

REFERENCES REFERENCES

This value drops exponentially quickly with the dimension of the space D, meaning that nearly all points lie
in the ‘corners’ of the hypercube. Hence two randomly chosen points will typically be in different corners and
far apart – nearest neighbours are likely to be a long distance away. The triangle and KD tree approaches are
effective in cases where data is locally concentrated, a situation highly unlikely to occur in high dimensional
data.

References

[1] J. L. Bentley. Multidimensional binary search trees used for associative searching. Communications of
the ACM, 9(18):509–517, 1975.

[2] K. L. Clarkson. Nearest-neighbor searching and metric space dimensions. In In Nearest-Neighbor Methods
for Learning and Vision: Theory and Practice. MIT Press, 2006.

[3] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry (Algorithms
and Applications). Springer, 1998.

[4] C. Elkan. Using the Triangle Inequality to Accelerate k-Means. In T. Fawcett and N. Mishra, editors,
International Conference on Machine Learning, pages 147–153, Menlo Park, CA, 2003. AAAI Press.

[5] L. Micó, J. Oncina, and E. Vidal. A new version of the nearest-neighbour approximating and eliminating
search algorithm (AESA) with linear preprocessing time and memory requirements. 15(1):9–17, 1994.

[6] M. T. Orchard. A fast nearest-neighbor search algorithm. International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 4:2297––3000, 1991.

[7] E. Vidal. An algorithm for finnding nearest neighbours in (approximately) constant average time. Pattern
Recognition Letters, 4(3):145–157, 1986.

	Finding your nearest neighbour quickly
	Using the triangle inequality to speed up search
	The triangle inequality
	Using all datapoint to datapoint distances
	Using the datapoints to `buoys' distances
	Other uses of nearest neighbours

	KD trees
	Basic idea in one-dimension
	Constructing the tree
	Nearest Neighbour search

	Curse of Dimensionality

