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Abstract

We analyse online gradient descent learning from finite training sets
at non-infinitesimal learning rates n for both linear and non-linear net-
works. In the linear case, exact results are obtained for the time-depen-
dent generalization error of networks with a large number of weights
N, trained on p = a/N examples. This allows us to study in detail
the effects of finite training set size a on, for example, the optimal
choice of learning rate 1. We also compare online and offfine learn-
ing, for respective optimal settings of 7 at given final learning time.
Online learning turns out to be much more robust to input bias and
actually outperforms offline learning when such bias is present; for un-
biased inputs, online and offline learning perform almost equally well.
Our analysis of online learning for non-linear networks (namely, soft-
committee machines), advances the theory to more realistic learning
scenarios. Dynamical equations are derived for an appropriate set of
order parameters; these are exact in the limiting case of either linear
networks or infinite training sets. Preliminary comparisons with simu-
lations suggest that the theory captures some effects of finite training
sets, but may not yet account correctly for the presence of local min-
ima.

1 Introduction

The analysis of online (gradient descent) learning, which is one of the most
common approaches to supervised learning found in the neural networks com-
munity, has recently been the focus of much attention. The characteristic
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feature of online learning is that the weights of a network (‘student’) are up-
dated each time a new training example is presented, such that the error on
this example is reduced. In offline learning, on the other hand, the total error
on all examples in the training set is accumulated before a gradient descent
weight update is made. For a given training set and starting weights, offline
learning is entirely deterministic. Online learning, on the other hand, is a
stochastic process due to the random choice of training example (from the
given training set) for each update; in fact, it can essentially be viewed as
a ‘noisy’ version of offline learning. The two are equivalent only in the limit
where the learning rate n — 0 (see, e.g., Heskes and Kappen, 1991). For both
online and offline learning, the main quantity of interest is normally the evo-
lution of the generalization error: After a given number of weight updates,
how well does the student approximate the input-output mapping (‘teacher’)
underlying the training examples?

Most analytical treatments of online learning assume either that the size
of the training set is infinite, or that the learning rate 7 is vanishingly small.
Both of these restrictions are undesirable: In practice, most training sets
are finite®, and non-infinitesimal values of 7 are needed to ensure that the
learning process converges after a reasonable number of updates. General
results have been derived for the difference between online and offline learning
to first order in 7, which apply to training sets of any size (see, e.g., Heskes
and Kappen, 1991). However, these do not directly address the question of
generalization performance. The most explicit analysis of the time evolution
of the generalization error for linear networks and finite training sets was
provided by Krogh and Hertz (1992) for a scenario very similar to the (linear)
one we consider below. Their  — 0 offline calculation will serve as a baseline
for our work. For non-linear networks and finite 7, progress has been made
in particular for so-called soft committee machine network architectures (see,
e.g., Saad and Solla, 1995, Biehl and Schwarze, 1995), but only for the case
of infinite training sets. Finite training sets present a significant analytical
difficulty as successive weight updates are correlated, giving rise to highly
non-trivial generalization dynamics.

This chapter is split into two main sections. In section (2), we develop the
main theoretical tools required for an exact treatment of linear networks. We
then build on these results in section (3), by constructing a compact, approx-
imate theory for non-linear networks, based on similar theoretical principles
to the linear theory.

50Online learning can also be used to learn teacher rules that vary in time. The assump-
tion of an infinite set (or ‘stream’) of training examples is then much more plausible, and
in fact necessary for continued adaptation of the student. We do not consider this case in
the following.
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2 Linear networks

In this section, we give an exact analysis of online learning in a simple linear
model system. Our aim is twofold: (1) to assess how the combination of non-
infinitesimal learning rates 1 and finite training sets (containing o examples
per weight) affects online learning, and (2) to compare the generalization
performance of online and offline learning. A priori, one may expect online
learning to perform worse due to its inherent randomness. We show that
this disadvantage is actually negligible when online and offline learning are
compared on an equal footing, i.e., for their respective optimal learning rates.
More importantly, we will see that online learning is much more robust to
input bias than offline learning and actually performs better than the offline
version in the case of biased inputs.

2.1 Model definition

We consider training of a linear student network with input-output relation

1
y=——Ww'x

VN
Here x is an N-dimensional vector of real-valued inputs, y the single real
output and w the weight vector of the network. ‘I’ denotes the transpose of a
vector and the factor 1/ V/N is introduced for convenience. In online learning,
whenever a training example (x,y) is presented to the network, its weight
vector is updated along the gradient of the squared error® on this example,

i€,
2
1 1 1 1
Aw = —n Vy 2 (y - —wa> = <—,—N1/X - NXXTW>

where 7 is the learning rate. We are primarily interested in the case of online
learning from finite training sets, where for each update an example is ran-
domly chosen from a given set {(x*,y*),u = 1...p} of p training examples.
If example p is chosen for update n, the weight vector is changed to

Wy = {1 - % [x”(x”)T + fy] } W, + 1 \;—Ny"x“ (online) (2.1)

Here we have also included a weight decay 7. The update rule for offline
learning is similar, but here the gradients for all p different training examples
are accumulated before a weight update is made:

Wi = [1 = n(A+ A)lw,, + \/LN Yyixt (offline)  (2.2)
w

6We consider only squared error here, which is probably the most commonly used error
measure. We also restrict our analysis to ‘vanilla’ gradient descent learning, excluding more
sophisticated learning algorithms.
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Here r is the number of offline weight updates; in order to compare online
and offline learning at equal computational cost, we index the weight vectors
for both cases by the number of gradient calculations, which is n = rp in the
offline case. The matrix

1
A = N ;X“(X“)T

is the correlation matrix of the training inputs, and A = ~v« is the weight
decay rescaled by the number of examples per weight, « = p/N. We will
generally use \ (rather than 7) to characterize the strength of the weight
decay, for both online and offline learning. For simplicity, all student weights
are assumed to be initially zero, .e., w,,—o = 0.

The main quantity of interest to us is the generalization error of the student
and its evolution during learning. We assume that the training examples are
generated by a linear ‘teacher’; i.e., y* = W*TX“/\/N + &#, where &# is zero
mean additive noise of variance o2. The teacher weight vector is taken to be
normalized to w2 = N for simplicity. We first investigate the case of unbiased
inputs ({(x) = 0), assuming that input vectors are sampled randomly from
an isotropic distribution over the hypersphere x> = N (biased inputs will be
considered in Section 2.4). The generalization error, defined as the average of
the squared error between student and teacher outputs for random inputs, is
then
1 2 L _
= ﬁ(wn —w,)’ = SN Vn where v, =w, —w,.

In order to make the scenario analytically tractable, we focus on the limit
N — oo of a large number of input components and weights, taken at constant
number of examples per weight o = p/N and updates per weight (‘learning
time’) ¢ = n/N. In this limit, the generalization error e,(t) becomes self-
averaging (see however Section 2.4) and can be calculated by averaging both
over the random selection of examples from a given training set and over all
training sets. Our results can be straightforwardly extended to the case of
perceptron teachers with a nonlinear transfer function, as in (Sollich, 1995).

€g

2.2 Unbiased inputs
2.2.1 Outline of calculation

We begin by deriving from the online learning weight update (2.1) an update
equation for the ‘selection’ average of the generalization error (i.e., its average
with respect to the random choice of training examples for each update,
denoted generically by (...)). In fact, it will turn out to be useful to consider
a slightly generalized version of the generalization error, €, = ﬁvg Myv,,
with M an arbitrary N x N matrix. To get the update equation for (e,), we

first rewrite (2.1) in terms of v,,, the difference between student and teacher
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weight vectors:

1
Vil = {1 —n [Nx“(x“)T + ]é)] } Vi + 1 %f“x“ - %\W* (2.3)

This can now be multiplied by its transpose, with the matrix M inserted,
and the selection average for update n performed. Discarding terms which
become negligible in the large N limit, one finds after a little algebra

N ({ens1) — (en)) - ﬁ(b —~dw) M (v) = o (v < [)\M +iam+ MA)] >
TS e {6 — e ) + % (i) v,)

(2.4)

where 7) = n/a is a rescaled learning rate, and b = -, f“x“/\/N. We now
want to transform (2.4) into a closed dynamical equation for (¢,). This means
that all selection averages need to be either eliminated or reduced to averages
of the same form as (e,). For the two terms linear in (v,,), this is straightfor-
ward: The selection average of (2.1) yields directly

N (V1) = (va)) =1 [=(A+ A) (vn) + b — Aw,].

Starting from vy = —w,, this can easily be solved, with the result (for N —
00)

Vi) = (A+A) " {b— Aw, —exp[—iit(A+ A)] (b +Aw,)}  (2.5)

from which the selection average has now disappeared. Learning rate and
learning time enter only through the combination 7 = 7 ¢; this rescaled time
will be useful later on. In (2.4), the remaining terms quadratic in v,, now
present the main problem. The second term on the r.h.s. shows that the
evolution of ¢; = €, (M =1) depends on €,(M=A) which in turn depends on
€,(M=A?) and so on, yielding an infinite hierarchy of order parameters. This
problem was solved in (Sollich and Barber, 1997a) by introducing an auxiliary
parameter h through M = exp(hA); all order parameters 6n(1\/[ A™),m =
1,2,..., can then be obtained by differentiating ¢, (k) = s v, exp(hA)vy,.

Here we choose a different route, which is somewhat more transparent
and also more easily adapted to the case of biased inputs to be considered
later. The main idea is to decompose the evolution of v, into components
defined by eigenvectors of the input correlation matrix A. (This is equivalent
to changing to a coordinate system in which A is diagonal, and then con-
sidering the components of v, separately.) More precisely, let us order the
N eigenvalues of A in ascending order and split them into K equal blocks,
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labeled by k = 1... K, each containing N/K eigenvalues. Let P* be the pro-
jector matrices onto the spaces spanned by the eigenvectors of each block.
Then v,, = Y, P*v,; likewise, the generalization error is decomposed as
1 K

€= —= ) €r, € = —vIPFfy

g K ; n n IN " n
Each of the generalization error components € obeys the update equation (2.4),
with M = KP". But these equations now become closed, because

AP" =P"A =~ a"P"

where a* is an eigenvalue from the k-th block (formally, this approximation
becomes exact in the limit K — oo, where the spread of eigenvalues within
each block tends to zero). This immediately reduces the second term on the
right-hand side of (2.4) to —27(\ + a*) (€%). Only the very last term of (2.4)
now remains to be brought into a similar form. This is achieved by noting that
the factors ¢ = (K/N)(x*)TP*x# are ‘within-sample self-averaging’ (Sollich
and Barber, 1997a): Up to fluctuations which vanish as O(N~'/2) for large N,
all ¢ are equal to each other and hence to the training set (‘sample’) average

1 K r
=y = —trAP* & =i
P alN Q
The last approximation again becomes exact” for K — oo. The factors ¢ =
a”/a can therefore be taken out of the sum over 4 in (2.4), leaving the selection

average

1 Tt (T _
> o (vax (x)Tvn) =

o

DN | =

<v§Avn> ~ % > at (e

We now have all the ingredients to write (2.4) as a closed system of evolution
equations for the €. In the large N limit, the change N (<eg+1> — (eg)) due
to an update becomes the time derivative 0,¢*, and (ef) — €*(¢). Using the
rescaled time 7 = 7t introduced above, one then has

1 ’ !
[0- +2(A+ a")]€5(r) = VE(r) + AW (7) + 71" 7= > a" e (r)  (2.6)
Here the functions V*(7) and W*(7) are

Ve = %(b —2w,)TP* (v,,)

e e L _ L
Who=a 2NZ,;(§“)2 NP (V)

"The large K limit needs to be taken after the limit N — oo for ‘within-sample self-
averaging’ to hold; this is why one cannot take K = N from the outset.
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with (v,) given by (2.5). Having derived (2.6), the rest of the calculation is
fairly straightforward. Eq. (2.6) is formally solved using Laplace transforms
with respect to 7, for example €*(z) = [;°dT exp(—z7) €*(7):

1 N N 1 '
e (2) = PR TR €*(0) + V*(2) + nW"(2) + ﬁa“? ga’“ & (2)
(2.7)
with the initial condition €(0) = A-wlP"w,. Multiplying by a* and sum-

ming over k gives a self-consistency equation for K '3, a®é"(z) which is
easily solved. Inserting the solution into (2.7) then gives an explicit expres-
sion for €*(z) and hence for the Laplace transform of the generalization error,
és(z) = K~' Y, €%(z). As a final step, the average over all training sets (i.e.,
training inputs x* and output noises &) is then carried out. In the end,
everything can be written in terms of averages over the known eigenvalue
spectrum (Hertz et al., 1989; Sollich, 1994) of the input correlation matrix
A. The explicit form of the final result (Sollich and Barber, 1997a) is rather
cumbersome; we omit it here and note only the relatively simple dependence
on 7: )

. . néL(z

ég(z) = €o(2) + 1= &s(2) (2.8)
The functions ¢;(z) (i = 0...2) depend on «, 6% and X (and, of course, z), but
are independent of 7. The teacher weights do no appear explicitly: because of
the isotropy of the input distribution, only the length of the teacher weight
vector matters once an average over training sets has been taken, and this
has already been fixed to w2 = N.

The calculation of the generalization error for offline learning is much sim-
pler than that for the online case due to the absence of the selection average.
In fact, the offline weight update (2.2) can be iterated directly to yield

Vip=(A+A) " {b—- 2w, —[1 —n(A+ A)]" (b+ Aw,)} (2.9)

Multiplying this by its transpose gives directly the generalization error, and
the average over training sets can then be carried out in the usual fashion
(see, e.g., Hertz et al., 1989). As expected on general grounds, for n — 0 (and
only then) one obtains the same result as for online learning, corresponding
to the term €y(2) in (2.8).

2.3 Discussion

We now briefly highlight some features of our exact result (2.8) for the gener-
alization error achieved by online learning; a somewhat more detailed exposi-
tion can be found in (Sollich and Barber, 1997b). We discuss the asymptotic
generalization error €., the convergence speed for large learning times, and
the behaviour at small ¢; finally, we compare online and offline learning. For
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Figure 1: Asymptotic generalization error €, vs n and \. « as
shown, 0% = 0.1.

numerical evaluations, we generally take 02 = 0.1, corresponding to a sizable
noise-to-signal ratio of /0.1 ~ 0.32.

The asymptotic generalization error is found directly from (2.8) using €., =
€g(t — 00) = lim,_, 2€;(2). As expected, it coincides with the offline result
(which is independent of n) only for n = 0; as n increases from zero, it increases
monotonically. Reassuringly, our calculation reproduces existing O(7) results
for this increase (Heskes and Kappen, 1991). In figure 1 we plot €5 as a
function of n and X for @ = 0.5, 1, 2. We observe that it is minimal for A\ = o2
and 1 = 0, as expected from corresponding results for offline learning (Krogh
and Hertz, 1992)%. We also read off that for fixed ), €y, is an increasing
function of n: The larger n, the more the weight updates tend to overshoot
the minimum of the (total, i.e., offline) training error. This causes a diffusive
motion of the weights around their average asymptotic values (Heskes and
Kappen, 1991) which increases €. In the absence of weight decay (A = 0)
and for oo < 1, however, €, is independent of 7. In this case the training data
can be fitted perfectly; every term in the total sum-of-squares training error
is then zero and online learning does not lead to weight diffusion because
all individual updates vanish. In general, the relative increase €., (7)/€x(n =
0) — 1 due to nonzero n depends significantly on a. For n = 1 and o = 0.5,
for example, this increase is smaller than 6% for all A (at 6% = 0.1), and for
a = 1 it is at most 13%. This means that in cases where training data is
limited (p ~ N), n can be chosen fairly large in order to optimize learning
speed, without seriously affecting the asymptotic generalization error. In the
large « limit, on the other hand, one finds €, = (0%/2)[1/a + /(2 — 7n)].
The relative increase over the value at n = 0 therefore grows linearly with «;
already for o = 2, increases of around 50% can occur for n = 1.

Fig. 1 also shows that €., diverges as n approaches a critical learning rate

8The optimal value of the unscaled weight decay decreases with a as v = 02 /a, because
for large training sets there is less need to counteract noise in the training data by using a
large weight decay.
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Figure 2: Sketch of definitions of 7y, (minimal learning rate for
slow mode), 7, (crossover to slow mode dominated convergence)
and 7. (maximal (‘critical’) learning rate at which convergence
still occurs), and their dependence on «.

Ne: As n — 1., the ‘overshoot’ of the weight update steps becomes so large
that the weights eventually diverge. From the Laplace transform (2.8), one
finds that 7. is determined by n.é2(z = 0) = 1; it is a function of a and
A only. As shown in figure 2b-d, 7. increases with A. This is reasonable, as
the weight decay reduces the length of the weight vector at each update,
counteracting potential weight divergences. In the small and large o limits
one has n. = 2(1 + A) and 7, = 2(1 + A/, respectively. For constant A, 7.
therefore decreases’ with « (figure 2b-d).

We now turn to the large ¢ behaviour of the generalization error ¢,(t). For
small 7, the most slowly decaying contribution to €, (¢)—the slowest ‘mode’—
varies as exp(—ct), its decay constant ¢ = [\ + (y/a — 1)?]/« scaling linearly
with 7, the size of the weight updates, as expected (figure 2a). For larger n,
the picture changes due to a new slow mode arising from the denominator
of (2.8). Interestingly, this mode exists only for n above a finite threshold
Nenin = 2/ (a/? + /2 —1). For finite o, it could therefore not have been pre-
dicted from a small 7 expansion of €4(t). Its decay constant cgoy, decreases to
zero as 1 — 1, and crosses that of the normal mode at 7 (a, A) (figure 2a).
For n > 7y, the slow mode therefore determines the convergence speed for
large ¢, and fastest convergence is obtained for n = n,. However, it may still
be advantageous to use lower values of 7 in order to lower the asymptotic
generalization error (see below); values of n > 7, would deteriorate both con-
vergence speed and asymptotic performance. Fig. 2b-d shows the dependence
of Mmin, Nx and 7. on a and A. For A not too large, n, has a maximum at
a ~ 1 (where 7, & 1), while decaying to 7y & 37, for larger . This can be
explained in terms of the anisotropy of the total training error surface (Sollich
and Barber, 1997a), which is strongest for « =1 and A — 0.

Consider now the small ¢ behaviour of ¢,(t). Fig. 3 illustrates the depen-
dence of €,(t) on 7; comparison with simulation results for N = 50 clearly
confirms our calculations and demonstrates that finite NV effects are not sig-

9Conversely, for constant v, 7. increases with a from 2(1+ ~vya) to 2(1++): For large a,
the weight decay is applied more often between repeat presentations of a training example
that would otherwise cause the weights to diverge.
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"0 10 20 30 ¢

Figure 3: ¢, vs t for different n. Simulations for N = 50 are shown
by symbols (standard errors less than symbol sizes). A=107*
0?=0.1. (a) =0.7, (b) a=5

nificant even for such fairly small N. For o = 0.7 (figure 3a), we see that
nonzero 7 acts as effective update noise, eliminating the minimum in eg(t)
which corresponds to over-training (Krogh and Hertz, 1992). e, is also seen
to be essentially independent of 7 as predicted for the small value of A = 10~*
chosen. For a@ = 5, figure 3b clearly shows the increase of €., with 7. It also
illustrates how convergence first speeds up as 7 is increased from zero and
then slows down again as 7. ~ 2 is approached.

Above, we saw that the asymptotic generalization error €4, is minimal for
n = 0. Fig. 4 shows what happens if we minimize ¢,(¢) instead for a given
final learning time t, corresponding to a fixed amount of computational effort
for training the network. As ¢ increases, the optimal 1 decreases towards zero
as required by the tradeoff between asymptotic performance and convergence
speed. For large ¢, the functional form of this decay is nopt = (a + bInt)/t
with ¢-independent coefficients a and b (Sollich and Barber, 1997a).

We now compare the performance of online learning to that of offline
learning as calculated from (2.9). (The number of gradient calculations re-
quired for r offline weight updates is n = rp, corresponding to a learning
time ¢ = n/N = ra; the generalization error €,(t) is therefore only defined
for learning times ¢ which are integer multiples of «.) To compare online and
offline learning on an equal footing, we again consider optimized values of n
for given final learning time ¢. Fig. 4b shows that the performance loss from
using online instead of offline learning is actually negligible. This may seem
surprising given the stochasticity of weight updates in online learning, in par-
ticular for small ¢. However, figure 4a shows that online learning can make
up for this by allowing larger values of 1 to be used.
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Figure 4: (a) Optimal learning rate 7 vs. final learning time ¢ for
online (bold) and offline learning (thin lines), and (b) resulting
generalization error €,. & = 1, 0 = 0.1, A as shown. Note that
although we plot offline results as continuous lines to avoid visual
clutter, they are actually defined only at discrete values of the
learning time, ¢ = r«, with r the number of offline weight updates.

2.4 Biased inputs
2.4.1 Modifications to calculation

We now investigate how online and offline learning are affected by input bias
(x) = x # 0. As a simple scenario of this kind, consider the case where the
deviations Ax = x — X of the inputs from their average are still distributed
isotropically over a hypersphere. We choose the radius R of this hypersphere
such that the average value of x? is the same (V) as for the unbiased case, i.e.,
R? = N(1 — m?) where m? = %%/N measures the size of the bias. The gen-
eralization error (the squared deviation between student and teacher outputs
averaged over all inputs) now has two components,

1
T oN
As before, we consider a teacher with weight vector of length w? = N. In the
presence of input bias, however, we also need to specify the average teacher
output j = x*w,/ V/N. This parameter is not constrained by our other as-
sumptions; however, to limit the number of free parameters in the model, we
choose it to have its typical root-mean-squared value when the directions of

w, and X are uncorrelated: 72 = m?.

[(&"va)? + (1 = m?)v2] (2.10)

n

As for the case of unbiased inputs, the evolution of the generalization er-
ror is largely determined by the eigenvalue spectrum of the input correlation
matrix A. This has been determined by a number of authors (LeCun et al.,
1991; Wendemuth et al., 1993; Halkjeer and Winther, 1997) and shows the
following features: There is a ‘normal’ part of the spectrum, with eigenvalues
which tend to finite values as N — 00; the eigenvalues in this part of the spec-
trum are identical to those for the unbiased input case, expect for a rescaling
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by the factor (1 —m?). Additionally, however, there is one isolated eigenvalue
ay = Nam? which is proportional to N and exists only in the presence of
input bias. Intuitively, this corresponds to the fact that the component of the
student weights along the direction of x is much more strongly determined
by the training data because all input vectors have a component along X.
Not surprisingly, therefore, the eigenvector corresponding to ay is along the
direction'® of x.

We can see immediately that input bias has a drastic effect on offline
learning by considering eq. (2.9): For the offline learning process to converge,
the product of n and the largest eigenvalue of A+ A must be less than two. In
the presence of input bias, this gives the condition 7 < 2/(Nam?) (neglecting
A, which gives a negligible correction for N — oo). The maximal learning rate
is therefore drastically reduced from order unity to O(N=1). A little reflection
then shows that only the first contribution of the generalization error (2.10)
decays for finite learning times; carrying out the average over training sets,

one finds . .
et =ra) = §m2(1 — Nnam?)*" + 5(1 —m?) (2.11)

The second contribution would only decay for learning times of O(NV), which
are inaccessibly long in the limit N — oo that we consider.

Online learning, on the other hand, is not plagued by the same problem,
as we now show. Consider the first contribution to the generalization error,
which we write as ;1 = 362 with

1
Oy = ——X 1V,

VN

From the update equation (2.3) one derives that

Sns1 = (1 — qm?2)6, + n&Hm? (2.12)
up to correction terms which vanish for N — oo. Starting from the initial
value §p = —y, this can easily be iterated and the selection average carried
out to give

_ . 2\2n
(67) = v (1= nm*)™ + n*m* 11 —((11 —%2))2 11’ e

up to O(N~") corrections; an average over training sets then gives p~' 3=, (£#)?
— o2. For n = t = 0, only the first term is nonzero. On the other hand, for

10Tn fact there is a small angle between this eigenvector and %, which however decreases
as O((aN)~1/2) as N grows large. LeCun et al. (1991) claimed that this angle is exactly
zero; however, their argument cannot be quite correct as it would also entail that A has
only two different eigenvalues (whereas in reality it has a continuous spread of eigenvalues
for any finite ).
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nonzero learning time ¢ (and values of the learning rate such that convergence
occurs, i.e., 0 < n < 2/m?) only the second term survives because n =
Nt — oo for N — oo. We therefore have for the average value of the first
contribution to the generalization error:

nm?

1
_ 22 _ 19
(egi(t=10)) =7 =m", (eg(t > 0)) = 2% 9 pm2 (2.13)
The discontinuous change at ¢ = 0 reflects the fact that (62) changes from
its initial to its asymptotic value after a number of updates n which does not
increase with system size N. !

We still have to calculate the evolution of the second component ;0 =
(1 — m*)v2/(2N) of the generalization error (2.10) for the case of online
learning. At first sight, the O(N) eigenvalue of A appears to complicate this
task. However, the component of v, along X, the corresponding eigenvector,
contributes only negligibly to € :

2
1 (1 . 1 B
— [ Z%xTy,) = ——, =01
N <|5<|XV> Nz o1 = OV )

Thus only components of v,, along directions corresponding to the O(1) eigen-
values of A need to be considered; their evolution can be calculated exactly
as in Section 2.2. The only change is the rescaled eigenvalue spectrum of A;
in fact, one finds that eg2/(1 — m?) is exactly the same as ¢, = v2/2N for
unbiased inputs of length x> = N(1—m?). It is easily checked that this change
of effective input vector length can be effected by replacing A, 02 and 7 in the
expressions for ¢, by the rescaled values X' = /(1 —m?), (0")? = 0?/(1 —m?)
and ' = n(1 —m?), and so no new calculations need to be carried out.

2.4.2 Discussion

We have already mentioned that the critical learning rate for offline learning
is drastically reduced to 7. = 2/Nam? by the presence of input bias. For
online learning, 7. is affected in two ways: first through the ‘rescaling’ of 7
and A explained above for the calculation of €5, and secondly through the
presence of the term ¢, 1; eq. (2.13) shows that for the latter to remain finite
one requires 7. < 2/m?. Fig. 5 illustrates the resulting variation of 7, with
m? for several values of o and \: As the bias increases from 0, the critical
learning rate first increases until it reaches the value 2/m?; from that point
onwards, it follows the curve 1, = 2/m? (independently of o and \) until it
reaches 7, = 2 at'? m? = 1. In marked contrast to the case of offline learning,

" Note also that we have written the selection average in (2.13) explicitly because €, is
no longer self-averaging: Each weight update (2.12) causes a change in J,, and €51 of order
unity, and hence the fluctuations of €, ; remain nonzero even for N — oo.

12This is the maximal bias in our scenario since (x?) = N > x? = Nm?.
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Figure 5: Critical learning rate 7. for online learning vs input
bias m?, for weight decay A as shown and training set size o =
0,1,...,5 (bottom to top). Compare fig. 2 for the case of unbiased
inputs.

the critical learning rate 7. for online learning therefore never decreases below
values of order unity, and can actually be increased by the presence of input
bias.

The different effects of input bias on the critical learning rates of online and
offline learning are also reflected in the generalization performance for optimal
values of n at given final learning time. For offline learning, eq. (2.11) shows
that the optimal n = 1/(Nam?), whatever the (integer) value of r = t/a.
This reduces the first contribution to the offline generalization error to zero
for any r > 1, but still leaves a nonzero term ¢, = (1 — m?*)/2 (which as
explained above would start to decay only for extremely long learning times
t =O(N)).

For online learning, on the other hand, the optimal learning rate remains
of order one even in the presence of input bias. This was to be expected from
the analogous results for the critical learning rate, and can be seen explic-
itly in fig. 6(a). Fig. 6(b) shows the resulting generalization error, which is
seen to decrease as the input bias increases. Online learning therefore suc-
cessfully exploits the presence of the input bias to achieve better generaliza-
tion performance!®. This contrasts markedly with the case of offline learning,
where generalization performance (at finite learning times t) deteriorates as
soon as an input bias is present!?.

13Wendemuth et al. (1993) view the input bias as ‘additional information’ which leads to
improved generalization. In our case, the same conclusion can be arrived at by considering
the extreme limit of maximal bias, m? = 1: In this case, the distribution of input vectors
collapses to the point x = X, and so perfect generalization is obtained after only one
training example has been presented. (For noisy training outputs, more examples would
be needed; the generalization error then decays roughly as e; ~ o2 /n, which however still
gives perfect generalization e; = 0 for any finite learning time ¢.)

"For biased inputs, we found an offline generalization error of ¢, = (1 — m?)/2 for
optimally chosen 7, which is arbitrarily close to % for m? sufficiently small. For unbiased
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Figure 6: (a) Optimal learning rate 7 vs. final learning time ¢ for
online learning in the presence of input bias m? (values as shown;
a=1,0%=0.1, A =0.001). (b) Resulting generalization error ¢,
with results for offline learning shown for comparison (thin lines).
Note that while offline learning performs (marginally) better than
online learning for unbiased inputs (m? = 0), it is far worse as soon
as the input bias is nonzero.

2.5 Conclusions for the linear theory

We have obtained exact results for the generalization error achieved by online
learning from finite training sets at non-infinitesimal learning rates. These
apply directly only to the simple linear model that we have considered, but
also exhibit generic features which we expect to be of general relevance. For
example, the calculated dependence on 7 of the asymptotic generalization
error €,, and the convergence speed shows that, in general, sizable values of
n can be used for training sets of limited size (o & 1), while for larger « it is
important to keep learning rates small. More important from a practical point
of view is probably the explicit comparison between online and offline learning
that our results allow us to make. To make this comparison fair, we considered
the generalization performance of both algorithms for the respective optimal
values of the learning rate at a given final learning time ¢. For unbiased
inputs, we found in this way that online learning performs only marginally
worse than offline learning, whereas it is in fact vastly superior as soon as
there is any kind of input bias. This suggests strongly that online learning
should generally be preferred over offline learning in problems where biased
inputs cannot be a priori excluded.

inputs, on the other hand, ¢, for optimal 7 is generally significantly smaller than a half,
as illustrated by fig. 4, for example—it can never be greater than % since otherwise n = 0
would give a lower ¢g.
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3 Non-linear Networks

For linear networks, we saw that the difficulties encountered with finite train-
ing sets and non-infinitesimal learning rates can be overcome by extending
the standard set of descriptive (‘order’) parameters to include the effects of
weight update correlations (Sollich and Barber, 1997b). In this section, we
extend our analysis to nonlinear networks. The particular model we choose
to study is the soft-committee machine, which is capable of representing a
rich variety of input-output mappings. Its online learning dynamics has been
studied comprehensively for infinite training sets(Biehl and Schwarze, 1995;
Saad and Solla, 1995). In order to carry out our analysis, we adapt tools
originally developed in the statistical mechanics literature which have found
application, for example, in the study of Hopfield network dynamics (Coolen
et al., 1996).

3.1 Model and Outline of Calculation

For an N-dimensional input vector x, the output of the soft committee ma-

chine is given by
L
1 )
y=>) g|l—=w; x (3.1)
o (g

where the nonlinear activation function g(h;) = erf(h;/v/2) acts on the ac-
tivations h; = w;x/v/N (the factor 1/v/N is for convenience only). This is
a neural network with L hidden units, input to hidden weight vectors wy,
[ =1..L, and all hidden to output weights set to 1.

We remind the reader that in online learning, the student weights are
adapted on a sequence of presented examples to better approximate the
teacher mapping. The training examples are drawn, with replacement, from
a finite set, {(x*,y"), = 1..p}. This set remains fixed during training. Its
size relative to the input dimension is denoted by o = p/N. We take the
input vectors x* as samples from an N dimensional Gaussian distribution
with zero mean and unit variance. The training outputs y* are assumed to be
generated by a teacher soft committee machine with hidden weight vectors
w;., m = 1..M, with additive Gaussian noise corrupting its activations and
output.

The discrepancy between the teacher and student on a particular training
example (x,y), drawn from the training set, is given by the squared difference
of their corresponding outputs,

[z gh) = 3 gl + ) — &

l m

E= % [El:g(hz)—yrzé
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where the student and teacher activations are, respectively

1 1,
hy = NWZTX km = N(wm)Tx, (3.2)
and &,,, m = 1..M and &, are noise variables corrupting the teacher activations
and output respectively.

Given a training example (x, y), the student weights are again updated by
a gradient descent step with learning rate 7,

W — W, =~V E = ———x0), E (3.3)

VN
As before, the generalization error is defined to be the average error that the
student makes on a test example selected at random (and uncorrelated with
the training set), which we write as ¢; = (F).

Although one could, in principle, model the student weight dynamics di-
rectly, this will typically involve too many parameters, and we seek a more
compact representation for the evolution of the generalization error. It is
straightforward to show that the generalization error depends, not on a de-
tailed description of all the network weights, but only on the overlap param-
eters Qu = ~w; wy and Ry, = ~w/w;, (Biehl and Schwarze, 1995; Saad
and Solla, 1995; Sollich and Barber, 1997b). In the case of infinite «, it is
possible to obtain a closed set of equations governing the overlap parameters
@, R (Saad and Solla, 1995). For finite training sets, however, this is no longer
possible, due to the correlations between successive weight updates (Sollich
and Barber, 1997b).

In order to overcome this difficulty, we use a technique developed originally
to study statistical physics systems (Coolen et al., 1996). Initially, consider
the dynamics of a general vector of order parameters, denoted by €2, which
are functions of the network weights w. If the weight updates are described
by a transition probability 7(w — w'), then an approximate update equation
for Q is

o —Q= < / dw' (Qw') = Q(w)) T(w — w')>P(wMQ(W)_Q) (3.4)

Intuitively, the integral in the above equation expresses the average change!®
of Q caused by a weight update w — w’', starting from (given) initial weights
w. Since our aim is to develop a closed set of equations for the order param-
eter dynamics, we need to remove the dependency on the initial weights w.
The only information we have regarding w is contained in the chosen order
parameters (2, and we therefore average the result over the ‘subshell’ of all w

5Here we assume that the system size N is large enough that the mean values of the
parameters alone describe the dynamics sufficiently well (i.e., self-averaging holds).
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which correspond to these values of the order parameters. This is expressed
as the d-function constraint in equation(3.4).

It is clear that if the integral in (3.4) depends on w only through Q(w),
then the average is unnecessary and the resulting dynamical equations are
exact. This is in fact the case for « — oo and Q = {Q, R}, the standard
order parameters mentioned above (Saad and Solla, 1995). If this cannot be
achieved, one should choose a set of order parameters to obtain approximate
equations which are as close as possible to the exact solution. The motiva-
tion for our choice of order parameters is based on the linear perceptron case
treated in Section 2 where, in addition to the standard parameters () and
R, the overlaps projected onto eigenspaces of the training input correlation
matrix A = %Zﬂzlx“ (x*)T are required!®. We therefore split the eigenvalues
of A into K equal blocks (k = 1...K) containing N' = N/K eigenvalues
each, ordering the eigenvalues such that they increase with x. We then define
projectors P* onto the corresponding eigenspaces and take as order parame-
ters:

1

1 1
Q= WWITP’"”WI/ Rf = —w/P'w’ Uf=—w/P'b, (3.5)

N’ N!

where the b, are linear combinations of the noise variables and training inputs,

1 p
by = —— Hxch, 3.6
Tv,;é: x (3.6)

As K — o0, these order parameters become functionals of a continuous
variable!”.

The updates for the order parameters (3.5) due to the weight updates
(3.3) can be found by taking the scalar products of (3.3) with either projected
student or teacher weights, as appropriate. This then introduces the following
activation ‘components’,

K K K K K * K K K K
By = 1/ﬁwfp x k= ,/ﬁ(wm)TP x =4 X P, (37)

so that the student and teacher activations are h; = %En h; and k,, =
% >« ki, respectively. For the linear perceptron, the chosen order parameters

form a complete set - the dynamical equations close, without need for the
average in (3.4).

16The reader may wonder why the order parameters QQ and R did not show up explicitly
in our treatment of the linear case in Section 2. This is because R can be calculated directly
(simply take the scalar product of (2.5) with w*). Given R, () and the generalization error
€, are trivially related because é; = () — 2R + 1)/2 in the linear case.

"Note that the limit K — oo is taken after the thermodynamic limit, i.e., K < N. This
ensures that the number of order parameters is always negligible compared to N (otherwise
self-averaging would break down).
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For the nonlinear case, we now sketch the calculation of the order param-
eter update equations (3.4). Taken together, the integral over w' (a sum of p
discrete terms in our case, one for each training example) and the subshell av-
erage in (3.4), define an average over the activations (3.2), their components
(3.7), and the noise variables &, £. These variables turn out to be Gaussian
distributed with zero mean, and therefore only their covariances need to be
worked out. One finds that these are in fact given by the naive training set
averages. For example,

1 K T T
K - - - PrxH (x* *
(hi’km) p§ v (Wi) TP () e,
K
= a—N(Wl)TPKAW:n = _le’ (3.8)

where we have used P*A = a,P" with a, ‘the’ eigenvalue of A in the k-th
eigenspace; this is well defined for K — oo (see (Sollich, 1994) for details
of the eigenvalue spectrum). The correlations of the activations and noise
variables explicitly appearing in the error in (3.3) are calculated similarly to
give,

Gy,
hlhl’ = Z Qul
a’h} K,
hl m) = Z le <kmkm' = Z E mm’
hlgs Z Uls <km§s> = 0 <fsfs’> = 655’0'?
(3.9)
where the final equation defines the noise variances. The T} , are projected
overlaps between teacher weight vectors, 7% . = ~ (w5 ) P*w;,. We will

assume that the teacher weights and training inputs are uncorrelated, SO
that T, is independent of k. The required covariances of the ‘component’
activations are

K oz K K Qg K K
<kmhl> = Ele <kmkm'> = ETmm’ <km§5> =0
ali K K K a/K,
(cShi) = o s (cEkm) = 0 (c5€s) = 303655’
(o K K (P % K 1 K
<hfhl’> = EQll' <hl km’) = Ele <hl §s> = aUls

(3.10)
Using equation (3.3) and the definitions (3.7), we can now write down the
dynamical equations, replacing the number of updates n by the continuous
variable ¢ = n/N in the limit N — oo:

OiRpy, = =1 (kyOn, E)
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U, = —n{cionE)
Qg
8,Qr = —77<h78hl,E>—n(hﬁahlE)+772;<6hlE8hl,E> (3.11)

where the averages are over zero mean Gaussian variables, with covariances
(3.9,3.10). Using the explicit form of the error E, we have

OnE = g (h) [z,g(hy) S gk 4 ) — so] (3.12)

which, together with the equations (3.11) completes the description of the
dynamics. The Gaussian averages in (3.11) can be straightforwardly evaluated
in a manner similar to the infinite training set case (Saad and Solla, 1995),
and we omit the rather cumbersome explicit form of the resulting equations.

We note that, in contrast to the infinite training set case, the student
activations h; and the noise variables c; and &; are now correlated through
equation (3.10). Intuitively, this is reasonable as the weights become corre-
lated, during training, with the examples in the training set. In calculating
the generalization error, on the other hand, such correlations are absent, and
one has the same result as for infinite training sets. The dynamical equations
(3.11), together with (3.9,3.10) constitute our main result. They are exact
for the limits of either a linear network (R,Q,T — 0, so that g(z) x )
or a — 00, and can be integrated numerically in a straightforward way. In
principle, the limit K — oo should be taken but, as shown below, relatively
small values of K can be taken in practice.
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Figure 7: ¢; vs t for student and teacher with one hidden unit
(L=M =1); a =2,3,4 from above, learning rate n = 1. Noise
of equal variance was added to both activations and output (a)
0? = 02 = 0.01, (b) 0} = 2= 0.1. Simulations for N = 100 are
shown by circles; standard errors are of the order of the symbol
size. The bottom dashed lines show the infinite training set result
for comparison. K = 10 was used for calculating the theoretical
predictions; the curved marked “+” in (b), with K = 20 (and
a = 2), shows that this is large enough to be effectively in the
K — oo limit.
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3.2 Results and Discussion

We now discuss the main consequences of our result (3.11), comparing the
resulting predictions for the generalization dynamics, €,(¢), to the infinite
training set theory and to simulations. Throughout, the teacher overlap ma-
trix is set to T;; = &;; (orthogonal teacher weight vectors of length VN).

In figure(7), we study the accuracy of our method as a function of the
training set size for a nonlinear network with one hidden unit at two different
noise levels. The learning rate was set to n = 1 for both (a) and (b). For small
activation and output noise (02 = 0.01), figure(7a), there is good agreement
with the simulations for o down to a = 3, below which the theory begins to
underestimate the generalization error, compared to simulations. Our finite
a theory, however, is still considerably more accurate than the infinite o
predictions. For larger noise (02 = 0.1, figure(7b)), our theory provides a
reasonable quantitative estimate of the generalization dynamics for o > 3.
Below this value there is significant disagreement, although the qualitative
behaviour of the dynamics is predicted quite well, including the overfitting
phenomenon beyond ¢ =~ 10. The infinite o theory in this case is qualitatively
incorrect.

In the two hidden unit case, figure(8), our theory captures the initial evo-
lution of €,4(t) very well, but diverges significantly from the simulations at
larger ¢; nevertheless, it provides a considerable improvement on the infinite
a theory. One reason for the discrepancy at large ¢ is that the theory predicts
that different student hidden units will always specialize to individual teacher
hidden units for ¢ — oo, whatever the value of c. This leads to a decay of ¢,
from a plateau value at intermediate times ¢. In the simulations, on the other
hand, this specialization (or symmetry breaking) appears to be inhibited or
at least delayed until very large ¢. This can happen even for zero noise and
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Figure 8: ¢, vs t for two hidden units (L = M = 2). Left: o = 0.5,
with o = 0o shown by dashed line for comparison; no noise. Right:
a = 4, no noise (bottom) and noise on teacher activations and
outputs of variance 0.1 (top). Simulations for N = 100 are shown
by small circles; standard errors are less than the symbol size.
Learning rate n = 2 throughout.
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Figure 9: (a) Variance of (¢t = 20) vs input dimension N for
student and teacher with two hidden units (L = M = 2), a =
0.5, n» = 2, and zero noise. The bottom curve shows the variance
due to different random choices of training examples from a fixed
training set (‘training history’); the top curve also includes the
variance due to different training sets. Both are compatible with
the 1/N decay expected if self-averaging holds (dotted line). (b)
Distribution (over training set) of the activation h; of the first
hidden unit of the student. Histogram from simulations for N =
1000, all other parameter values as in (a).

a > L, where the training data should should contain enough information to
force student and teacher weights to be equal asymptotically. The reason for
this is not clear to us, and deserves further study. Our initial investigations,
however, suggest that symmetry breaking may be strongly delayed due to
the presence of saddle points in the training error surface with very ‘shallow’
unstable directions.

When our theory fails, which of its assumptions are violated? It is con-
ceivable that multiple local minima in the training error surface could cause
self-averaging to break down; however, we have found no evidence for this, see
figure(9a). On the other hand, the simulation results in figure(9b) clearly show
that the implicit assumption of Gaussian student activations — as discussed
before eq. (3.8) — can be violated.

3.3 Conclusions for the non-linear theory

In summary, the main theoretical contribution of this section is the extension
of online learning analysis for finite training sets to nonlinear networks. Our
approximate theory does not require the use of replicas and yields ordinary
first order differential equations for the time evolution of a set of order pa-
rameters. Its central implicit assumption (and its Achilles’ heel) is that the
student activations are Gaussian distributed. In comparison with simulations,
we have found that it is more accurate than the infinite training set analysis
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at predicting the generalization dynamics for finite training sets, both qual-
itatively and also quantitatively for small learning times ¢. Future work will
have to show whether the theory can be extended to cope with non-Gaussian
student activations without incurring the technical difficulties of dynamical
replica theory (Coolen et al., 1996) (see also Coolen et al., this volume),
and whether this will help to capture the effects of local minima and, more
generally, ‘rough’ training error surfaces.
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