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ABSTRACT
Models dealing directly with the raw acoustic speech signal
are an alternative to conventional feature-based HMMs. A
popular way to model the raw speech signal is by means of
an autoregressive (AR) process. Being too simple to cope
with the nonlinearity of the speech signal, the AR process is
generally embedded into a more elaborate model, such as the
switching autoregressive HMM (SAR-HMM). A fundamen-
tal issue faced by models based on AR processes is that they
are very sensitive to variations in the amplitude of the signal.
One way to overcome this limitation is to use Gain Adap-
tation to adjust the amplitude by maximising the likelihood
of the observed signal. However, adjusting model parame-
ters by maximising test likelihoods is fundamentally outside
the framework of standard statistical approaches to machine
learning, since this may lead to over tting when the mod-
els are suf ciently exible. We propose a statistically prin-
cipled alternative based on an exact Bayesian procedure in
which priors are explicitly de ned on the parameters of the
AR process. Explicitly, we present the Bayesian SAR-HMM
and compare the performance of this model against the stan-
dard Gain-Adapted SAR-HMM on a single digit recognition
task, showing the effectiveness of the approach and suggest-
ing thereby a principled and straightforward solution to the
issue of Gain Adaptation.

Index Terms— Autoregressive processes, Gain control,
Bayes procedures, Speech recognition

1. INTRODUCTION

Models dealing directly with the raw acoustic speech sig-
nal are an alternative to conventional feature-based Hidden
Markov Models (HMMs). One of the most popular exam-
ples is the Autoregressive (AR) Process which models a sam-
ple yt of a speech signal—represented as a sequence of sam-
ples y1:T —as a linear combination of the R previous samples
plus a Gaussian distributed innovation η

yt =

R∑
r=1

cryt−r + ηt with ηt ∼ N (0, σ
2) (1)

where σ2 is the variance of the innovation and cr are the
AR coef cients. However, an AR process is too simple to

model the strong non-stationarities typically encountered in
speech signals. A possible way to deal with non-stationarity
is to select at each time step t a setting of the AR param-
eters from a discrete set of possible parameter values, with
the switching between the parameters controlled by a Markov
Model. This approach is at the root of the AR Hidden Markov
Model (AR-HMM) proposed by Poritz [1] and its modern-day
counterpart the Switching AR-HMM (SAR-HMM), proposed
by Ephraim and Roberts [2]. At the heart of the above models
lies a standard AR process. However, a fundamental limi-
tation of such AR models is that the innovation variance σ2

does not scale properly with the signal. In particular, if the
signal is scaled by a factor α, we would expect the innovation
variance to scale by a factor α2 as well. In other words, the
‘gain’ of the sequence, σ, needs to be set for each sequence,
and has a strong impact on the likelihood of an observed se-
quence. Finding, therefore, a solution to the gain problem is
a key step in the successfull application of such fundamen-
tal models as AR processes to acoustic signal analysis. A
straightforward approach is to gain normalise the signal such
that it always has unit variance. An alternate and more effec-
tive solution [2, 3] is to replace σ2 in Eq. 1 by the variance
which maximises the likelihood of the speech signal y1:T

σ2ML = argmax
σ2

p(y1:T |σ
2). (2)

This approach, called Gain Adaptation (GA), has been suc-
cessfully used for isolated digit recognition with AR-HMMs
in clean and noisy environments [2, 3, 4]. Whilst useful in
practice, GA does not t into the usual machine learning frame-
work since, formally, model parameters may only be set on
the basis of training data. Otherwise, in exible models, set-
ting model parameters on the basis of test data may lead to
over tting. We therefore consider a statistically principled al-
ternative Bayesian approach to GA which consists in specify-
ing a prior probability distribution on the model parameters.
This approach has two potential bene ts over standard GA:
(i) the variations of the gain can be explicitly controlled, and
(ii) the AR coef cients are allowed to change, which may be
useful to model inter and intra speaker variations for example.

In this paper we present the Bayesian SAR-HMM which
generalises the standard acoustic level SAR-HMM, concur-
rently dealing with the issues of GA and parameter uncer-
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tainty in a computationally ef cient and principled manner.

2. THE SAR-HMM

The standard SAR-HMM [2, 3, 4] has a discrete switch vari-
able which can be in S different states, each state representing
a particular setting of the AR coef cients cr and innovation
variance σ2 used in Eq. 1. From a probabilistic viewpoint,
the model de nes a joint distribution over the sequences of
observed samples y1:T and switch states s1:T of the form

p(y1:T , s1:T ) =

T∏
t=1

p(yt | yt−R:t−1, st) p(st | st−1) (3)

where p(yt | yt−R:t−1, st) ≡ p(yt | y1:t−1, st) if t ≤ R and
p(s1 | s0) ≡ p(s1). The emission probability, corresponding
to Eq. 1, is given by

p(yt | st, ỹt) ∝ exp

{
−

1

2σ2st

(
yt − ỹT

t cst
)2}

(4)

where ỹt = [yt−1 . . . yt−R]
T and cst = [c1(st) . . . cR(st)]

T.
In practice it is not desirable to allow the switch state to

change at each time step because we expect the dynamics to
last for a minimal amount of time—1.75ms in our case1. In
the SAR-HMM, the speech signal is therefore considered as
the concatenation of N xed-length segments over which the
state cannot change. This corresponds to the joint distribution

p(y1:T , s1:N ) =

N∏
n=1

p(sn | sn−1)

tn+1−1∏
t=tn

p(yt | sn, ỹt) (5)

where tn is the time step at which the n-th segment starts.

Gain Adaptation in the SAR-HMM

Given a sequence of samples y1:T , GA is performed in the
SAR-HMM by replacing the state innovation variance σ2s in
Eq. 4 by the per segment and state variance σ2ns which max-
imise the likelihood of the observed sequence y1:T , i.e.,

σ2ns =
1

Tn

tn+1−1∑
t=tn

(
yt − ỹT

t cs
)2

where Tn = tn+1 − tn is the length of the n-th segment.

3. THE BAYESIAN SAR-HMM

In the SAR-HMM the AR coef cients cs and innovation vari-
ances σ2s are considered as free parameters that have to be
learned from data. In the proposed Bayesian approach we
treat them as random variables whose probability distribu-
tions are controlled by hyper-parameters. Fig. 1 shows the

1This corresponds to 140 samples at a sampling frequency of 8 kHz.

sn−1 sn sn+1

cn−1 cn cn+1

yt−2 yt−1 yt yt+1 yt+2

νn

Fig. 1. DBN representation of the Bayesian SAR-HMM. The
graph represents a model with segments of 3 samples and an
AR process of order 2. The index n represents the segment
number. Squares and circles represent discrete and continu-
ous variables respectively.

Dynamical Bayesian Network (DBN) representation of the
Bayesian SAR-HMM. A particular segment n is modelled by
an R-th order AR process whose coef cients cn and inverse
innovation variance2 νn are drawn randomly from a prior dis-
tribution conditioned on the switch state sn. Formally the
Bayesian SAR-HMM de nes the joint distribution

p(y1:T , c1:N , ν1:N , s1:N ) = (6)
N∏

n=1

p(yn | cn, νn, ỹtn) p(cn, νn | sn) p(sn | sn−1)

which is a temporal extension of [5]. Explicitly,

p(yn | cn, νn, ỹtn) =

tn+1−1∏
t=tn

p(yt | cn, νn, ỹt). (7)

The new factor

p(cn, νn | sn) = p(cn | νn, sn) p(νn | sn)

de nes priors on the AR coef cients and the inverse innova-
tion variance of the n-th segment. In order to keep the model
tractable, we use the conjugate priors3

c | ν, s ∼ N (μs, ν
−1Σs) and ν | s ∼ γ(αs, βs)

where N (μ,Σ) is the multivariate normal distribution with
mean μ and covariance Σ, and γ(α, β) is the gamma distri-
bution de ned as

γ(α, β) =
βα

Γ(α)
να−1e−βν .

4. TRAINING

The free parameters of the Bayesian SAR-HMM are, μs, Σs,
αs, βs, for each state s, and the transition probability aij ≡

2To ease notation we prefer using the inverse variance ν = 1/σ2.
3The segment number has been dropped to simplify the notation.
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p(sn = j | sn−1 = i) for each pair (i, j) of switch states.
Training the model consists of maximising the likelihood of
the observed training data

p(y1:T ) =
∑

c1:N ,ν1:N ,s1:N

p(y1:T , c1:N , ν1:N , s1:N ). (8)

To achieve this, we use the standard Expectation Maximisa-
tion (EM) algorithm: given the current setting of the model
parameters φ, an updated setting φ̂ is found by maximising
(M-step) the expected complete log-likelihood (E-step)

〈
log p
(
y1:T , c1:N , ν1:N , s1:N | φ̂

)〉
q

(9)

where 〈·〉q is the average with respect to the posterior

q ≡ p(c1:N , ν1:N , s1:N | y1:T , φ). (10)

The formulae for the posterior and the updated parameter set-
tings are given in Appendices A and B respectively. A de-
tailled derivation can be found in [6].

5. PERFORMANCE

We compared the Bayesian SAR-HMM to the original SAR-
HMM proposed in [2], with and without gain adaptation, and
also against a standard feature-based HMM. The task was to
recognise isolated digits pronounced by various male speak-
ers from the TI-DIGITS database [7]. The training/test sets
were composed of 110/112 utterances for each of the eleven
digits (0–9 and ‘oh’), spoken by 55/56 different speakers re-
spectively. Each digit class was modelled by a separate SAR-
HMM and recognition was performed by associating the ut-
terance to the digit whose model had the highest likelihood.
Whilst this speech classi cation problem is relatively easy,
the effective amplitude of each utterance is different so that,
for AR-based models, some form of GA is crucial for good
performance.

The three types of SAR-HMMs were composed of S =
10 states, a left-right transition matrix and 10-th order AR pro-
cesses. This corresponds to the setting proposed in [2]. The
Bayesian SAR-HMM was initialised with a uniform left-right
transition matrix, i.e, p(st+1 | st) = 0.5 only if st+1 ∈ {st, st+
1}. For each state s, the model parameters where initialised as
follows: (i) each speech utterance of the training set was split
into S sequences of equal length, (ii) all the s-th sequences
were gathered together and used to train an AR process for
state s, (iii) the shape of the Gamma prior was arbitrarily set
to αs = 10 and βs was set such that the mean of the Gamma
distribution matched the inverse innovation variance 1/σ2s ob-
tained by training the AR process, i.e., βs = αsσ

2
s , (iv) the

AR coef cients cs obtained were used as the mean in the
Gaussian prior, i.e., μs = cs, (v) the covariance of the AR co-
ef cients was set to the identity matrix, i.e, σ2sΣs = I, (vi) a

Model Word Accuracy

HMM (HTK) 100%

SAR-HMM (no gain) 88.3%

SAR-HHM (gain) 97.2% (98.5%)

Bayesian SAR-HMM 98.7%

Table 1. Word accuracy of three different models on a sin-
gle digit recognition task on the TI-DIGITS database; gain
and no gain indicates whether or not gain adaptation has been
used. The performance of the gain adapted SAR-HMM re-
ported in [2] is indicated between parenthesis.

new state segmentation was obtained by doing Viterbi decod-
ing with the so-de ned Bayesian SAR-HMM and steps (ii) to
(vi) were then repeated three times. The feature-based HMM
was composed of 18 states with a left-right transition matrix,
a mixture of three Gaussians per state and used 13MFCC fea-
tures, including energy. It was implemented using HTK [8].

Table 1 shows the word accuracy of each model. The
performance of the gain adapted SAR-HMM is reproduced
from [2]. All the other results have been obtained by our
own implementation of the respective models. That the accu-
racy we obtained for the gain adapted SAR-HMM is slightly
below that reported in [2]—this is likely to be due to differ-
ences in the intialisation or in the stopping criterion used. The
Bayesian and gain adapted SAR-HMM have a word accuracy
which is 10% higher than that of the non gain adapted SAR-
HMM. This demonstrates that dealing with the gain problem
is crucial to ensure good performance. The performance of
the Bayesian SAR-HMM demonstrates that the Bayesian ap-
proach is an alternative principled alternative to ad-hoc max-
imum likelihood gain adaptation.

6. CONCLUSION

Modelling the raw acoustic signal is an alternative strategy
to using feature based HMMs for speech recognition. A mo-
tivation for this is that strong signal models may be used to
remove noise, and can also form the basis of powerful hier-
archical models of the signal. However, signal models based
on AR-processes are over-sensitive to signal amplitude, and
this problem is typically healed using ad-hoc GA methods. In
contrast, our Bayesian approach provides a statistically prin-
cipled and straightforward exact alternative to standard Max-
imum Likelihood Gain Adaptation. The result is a simple up-
date formula which correctly deals with the uncertainty in the
parameter estimates from the training set, and automatically
computes the posterior distribution of parameters in light of
test data. This is an encouraging step towards the develop-
ment of more complex signal and noise models, in which the
exibility of the models is ever increasing.

Code implementing the standard and Bayesian SAR-HMM
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is available from http://www.idiap.ch/∼bmesot.

A. INFERENCE

The posterior distribution is obtained using a forward-backward
algorithm. The forward pass calculates the ltered poste-
rior4 p(cn, νn, sn |y1:n) and the backward pass nds the pos-
terior p(cn, νn, sn |y1:N ) by correcting the ltered posterior.

Forward Pass

The ltered posterior p(cn, νn, sn |y1:n) for the n-th segment
is proportional to

p(cn, νn | sn, ỹtn ,yn) p(yn | sn, ỹtn) (11)

×
∑
sn−1

p(sn | sn−1) p(sn−1 |y1:n−1).

The mean μn and covariance ν−1Σn of cn are obtained by
iterating, for tn ≤ t < tn+1:

σ2t = ỹT
tΣt−1ỹt + 1, Kt =

1

σ2t
Σt−1ỹt,

μt = μt−1 +Kt

(
yt − ỹT

t μt−1

)
, Σt = Σt−1 −Ktỹ

T
tΣt−1

where the recursion is initiated with μsn and Σsn . Similarly,
p(νn | sn, ỹtn ,yn) is a Gamma distribution with parameters

α̂ = α+
Tn

2
and β̂ = β +

∑
t

1

2σ2t

(
yt − 〈yt〉

)2
.

Integrating p(yn, cn, νn | sn, ỹtn) over cn and νn, we obtain

p(yn | sn, ỹtn) =
βα

Γ(α)

Γ(α̂)

β̂α̂

∏
t

1

(2πσ2t )
1/2

.

The ltered state posterior p(sn |y1:n) is obtained by inte-
grating (11) over cn and νn.

Backward Pass

The posterior p(cn, νn, sn |y1:N ) is given by

p(cn, νn | sn, ỹtn ,yn)
∑
sn+1

p(sn | sn+1,y1:n) p(sn+1 |y1:N )

with p(sn | sn+1,y1:n) ∝ p(sn+1 | sn) p(sn |y1:n).

B. PARAMETER UPDATING

Differentiating 8) with respect to the updated mean μ̂s and
covariance Σ̂s and setting the result equal to zero, gives the
following update formulae5

μ̂s = 〈cn〉q̃(s), Σ̂s =
〈
νn
(
cn − μs

)(
cn − μs

)T〉
q̃(s)

.

4Notationally, p(· |y1:n) ≡ p(· | y1:tn+1−1).
5This is presented for a single training example. The extension to multiple

examples is straightforward.

where

〈·〉q̃(s) ≡
1∑

n q(sn = s)

∑
n

q(sn = s) 〈·〉q(cn,νn | sn=s)

Similarly, optimising over β̂s gives β̂s = α̂s/ 〈νn〉q̃(s). Dif-
ferentiating with respect to α̂s gives

log α̂s − ψ(α̂s) = log〈νn〉q̃(s) −
〈
log〈νn〉q(νn | sn=s)

〉
q̃(s)

where ψ(α̂s) is the digamma function. Whilst no explicit for-
mula for α̂s exists, the equation is well-behaved and can be
solved using Newton-Raphson’s method, for example. The
updated transition distribution is given by

âij ∝
∑
n

q(sn−1 = i, sn = j).
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