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Switching Linear Dynamical Systems for Noise
Robust Speech Recognition

Bertrand Mesot and David Barber

Abstract—Real world applications such as hands-free dialling in
cars may have to deal with potentially very noisy environments. Ex-
isting state-of-the-art solutions to this problem use feature-based
HMMs, with a preprocessing stage to clean the noisy signal. How-
ever, the effect that raw signal noise has on the induced HMM
features is poorly understood, and limits the performance of the
HMM system. An alternative to feature-based HMMs is to model
the raw signal, which has the potential advantage that including
an explicit noise model is straightforward. Here we jointly model
the dynamics of both the raw speech signal and the noise, using a
Switching Linear Dynamical System (SLDS). The new model was
tested on isolated digit utterances corrupted by Gaussian noise.
Contrary to the Autoregressive HMM and its derivatives, which
provides a model of uncorrupted raw speech, the SLDS is compar-
atively noise robust and also significantly outperforms a state-of-
the-art feature-based HMM. The computational complexity of the
SLDS scales exponentially with the length of the time series. To
counter this we use Expectation Correction which provides a stable
and accurate linear-time approximation for this important class of
models, aiding their further application in acoustic modeling.

Index Terms—Approximate inference, expectation correction,
isolated digit recognition, linear dynamical system, noise robust-
ness, switching autoregressive process.

I. INTRODUCTION

CURRENT state-of-the-art automatic speech recognition
(ASR) systems use the framework of feature-based hidden

Markov models (HMMs) [1]. While successful under controlled
conditions, this standard approach is often particularly fragile
in the presence of noise [2]. This important issue is commonly
addressed by a preprocessing step which attempts to remove
noise; see for example [2]–[6]. The explicit influence of the
noise on the features extracted is poorly understood, and hence
incorporating noise models directly into standard feature-based
HMM approach would be difficult. An alternative strategy is to
model the raw acoustic signal directly which has the potential
advantage that the noise may also be explicitly modeled.

The early work of Poritz [7] and the more recent switching
autoregressive HMM (SAR-HMM) introduced by Ephraim and
Roberts [8] have shown that, for isolated digit recognition in
clean conditions, modeling the raw speech signal directly can
be a reasonable alternative to feature-based HMMs. The basic
idea behind the SAR-HMM is to model the speech signal as
an autoregressive (AR) process. The intrinsic nonstationarity of
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Fig. 1. Example of a state segmentation given by a SAR-HMM on the digit
“seven” taken from the TI-DIGITS database. The switch state is shown on top
of each segment.

the speech signal is dealt with by switching between a finite
set of AR models (with different parameters); see Fig. 1. While
the SAR-HMM is comparable to state-of-the-art performance
on clean speech, this degrades rapidly under noisy conditions.
A possible explanation for this undesirable behavior is that the
AR process is defined on the (potentially noisy) observed signal
directly; since the model forms predictions on the basis of past
observations, the recognition accuracy of the SAR-HMM drops
significantly if the speech signal is corrupted with noise.

To deal with noise, without having to train a new model,
we extend the SAR-HMM to include an explicit noise process
whereby the observed signal is viewed as a corrupted version
of a clean hidden signal. This approach naturally leads to a
switching linear dynamical system (SLDS) [9] which represents
the signal as a piecewise linear hidden variable model. This
approach enhances noise robustness since the switching AR
process is defined on a hidden clean counterpart of the noisy
signal. Here, we will make the simple assumption of indepen-
dent Gaussian noise, although the method may be extended to
include more complex noise processes.

Contrary to the SAR-HMM, where inferring the posterior
of the hidden variables can be carried out using a standard
forward–backward algorithm, inference is formally intractable
in the SLDS [9], scaling exponentially with the length of the
speech utterance. Arguably, this has been the fundamental
reason why the powerful class of SLDS models has found
relatively little support amongst the ASR community. Two
well-known methods for performing approximate inference in
the SLDS are expectation propagation (EP) [10] and gener-
alized pseudo Bayes (GPB) [9], [11]. They both suffer from
limitations which can be relaxed in the case of the SLDS; see
[12] for a detailed explanation. To overcome limitations in
existing approximate inference procedures, we recently intro-
duced the expectation correction (EC) algorithm [12] which
provides a stable, accurate approximation and scales well to
large applications such as ASR.

Previous applications of the SLDS to ASR (see, for example,
[13] and [14]), have modeled the feature vectors and not the raw
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signal directly. However, work in acoustic modeling [15] sug-
gests that, provided the difficulties of performing inference and
learning can be addressed, the SLDS is a potentially powerful
tool for modeling the raw acoustic dynamics. In the following
section, we rephrase the SAR-HMM and discuss our “correc-
tion” approach for performing inference. This model will sub-
sequently be extended to a noise-robust version by construction
of a suitable SLDS. We then compare the SAR-HMM, SLDS,
and a state-of-the-art feature-based noise reduction method for
recognizing isolated digits from the TI-DIGITS database [16].
Our contribution, which consists of making a joint model of both
the raw speech and noise signals offers improved noise robust-
ness against the other methods. Furthermore, the formal com-
putational limitations of exactly implementing the SLDS are
well-addressed using expectation correction.

II. SAR-HMM

One of the simplest models of a continuous time series is an
AR process. However, due to the intrinsic nonstationarity of the
speech signal, using a fixed set of AR parameters for the whole
signal is too restrictive. The SAR-HMM [8] therefore introduces
a discrete switch variable , for each time , which can be in one
of different states, each corresponding to a particular setting
of the AR parameters. The switch state is assumed Markovian
with transition probability . Given a particular switch
state , the model assumes that the observed sample at time

is a linear combination of the preceding observations plus a
Gaussian distributed innovation

(1)

where denotes a Gaussian distributed random
variable with mean and (co)variance . Probabilistically, this
may be written as1

The role of the innovation is to model variations in the speech
signal from pure autoregression, and does not model a separate
independent additive noise process. In cases where the signal
is indeed inherently noisy, the predictions of the SAR-HMM
would depend directly on previous noisy observations, lim-
iting the suitability of the SAR-HMM in noisy environments.
Nevertheless, the SAR-HMM serves as a baseline raw-signal
model, which we extend to include an explicit noise model in
Section III.

For a sequence of samples of length , the SAR-HMM
defines the joint distribution

(2)

1The notation z refers to the sequence z ; . . . ; z .

This is a form of dynamical Bayesian network (DBN) [17],
whose structure is given in Fig. 2. The initial part of the series
lacks sufficient observations, and hence we define

when

To ensure that switching between the different AR models is not
too rapid, the model is constrained to stay an integer multiple of

time steps in the same state. To achieve this, the transition
probability in (2) is modified as

if
if and
otherwise.

(3)

In practice, the transition probability is usually
defined such that the switch state number cannot decrease.2

With such a setting, the signal is split into a fixed sequence
of segments of variable length, each modeled by a separate
AR process (see Fig. 1). Despite the apparent complexity of
the SAR-HMM, the model remains a specially constrained
version of an HMM, for which inference is computationally
straightforward, scaling linearly with [1].

A. Gain Adaptation

To cope with variations of the energy contour between utter-
ances and across speakers, the variances of the innovation
need to be adapted to each utterance. This procedure, known
has Gain Adaptation, is a key component of the SAR-HMM
and considerably improves recognition accuracy. The state vari-
ance is thus replaced by the segment-state variance —we
refer here to the segmentation induced by the modified transi-
tion probability (3)—which maximises the likelihood of the ob-
served signal. For segment and state , we desire to find the
variance which maximises the segment log-likelihood

which is achieved by setting

(4)

where is the time point at which the segment begins.3

B. Inference and Learning

Following [8], we evaluate the performance of the
SAR-HMM on an isolated digit recognition task from the
TI-DIGITS database [16]. This is achieved by training a sep-
arate SAR-HMM for each of the eleven digits (0–9 and “oh”)
using the expectation-maximization (EM) algorithm [18] on
a set of training utterances. Recognition is then performed

2This is often called a left–right transition matrix in the HMM jargon.
3At the end of the waveform, the final segment will generally consist of fewer

than K time points, and the upper bound of the sum in (4) needs to be modified
accordingly.
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Fig. 2. Dynamic Bayesian network representation of the SAR-HMM; s rep-
resents the discrete hidden switch variable and v is the observed value of the
sample at time t.

by associating the utterance to the digit whose model has the
highest likelihood.

For a single sequence, given the current setting of the
SAR-HMM parameters , the M-step of EM maximizes the
expected complete log-likelihood4 [18]

(5)

with respect to the new parameter setting . The updated AR
coefficients are given by5

where and are given by

For multiple sequences, the above are summed over all
sequences. In order to calculate the expected complete log-like-
lihood (5), we need to infer the marginal posterior distributions

. Inference in chain-structured distributions, such
as the HMM, is generally achieved by the forward–backward
algorithm [19]. In the SAR-HMM however, the standard
backward pass is more complicated because of the forward
dependencies between the observations (Fig. 2). We therefore
consider a different scheme based on a correction smoother
[20], where the backward pass calculates directly the posterior

by correcting the result of the forward pass. This
method forms the basis of our expectation correction method
used for the more complex SLDS, and hence serves as a useful
introduction.

Forward Pass: The goal of the forward pass is to calculate,
for each time step , the “filtered” posterior which
contains all the information coming from the past. By using the
structure of the distribution (2), if the previous filtered posterior

is known, then the current posterior can be found
by recursion

(6)

4h�i denotes the average with respect to the distribution p.
5 denotes the matrix transpose.

Starting with the initial posterior , the
filtered posterior at each time step can then be found by applying
(6) iteratively.

Backward Pass: The goal of the backward pass is to calcu-
late, for each time step , the smoothed posterior .
A recursion for in terms of can be
derived by considering an equation similar to that used by
the Rauch–Tung–Striebel (RTS) correction smoother for the
Kalman Filter [20]

(7)

(8)

where the second and third terms in (8) are the filtered posterior
at time and the smoothed posterior at time , respectively. In
(7), we used the fact that, in chain-structured graphs like the one
of Fig. 2, is independent of any future information if
the state of is known. The iteration (8) is initialized with the
last filtered posterior . Furthermore, since the tran-
sition distribution is replaced by (3), the smoothed
posterior remains the same over a segment and therefore only
needs to be computed at segment boundaries.

Likelihood: The likelihood of an observed sequence can
be calculated using the recursion

(9)

where is given by the right-hand side (RHS) of
(6), and is the previous partial likelihood. The recur-
sion (9) is initialized with .

III. AR-SLDS

The SAR-HMM is a useful model of clean raw-speech, but is
fragile in the presence of noise. To overcome some of the lim-
itations of the SAR-HMM, we introduce the AR-SLDS which
considers the observed speech sample as a noisy version of
a clean hidden sample. The clean one-dimensional signal is ob-
tained from the projection of a higher dimensional vector ,
whose dynamics follows a stochastic linear recursion, parame-
terized by 6

(10)

Here, is the transition matrix which characterises the dy-
namics of the hidden variable, under state . The “innovation”
(or hidden noise) models variations from pure linear state
dynamics. Equation (10) defines a continuous hidden transition
distribution proportional to

6In order to keep the notation simple, we use H and V to indicate if the vari-
able/parameter is associated with a hidden or visible variable, respectively.
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Fig. 3. Dynamic Bayesian network representing the AR-SLDS. s represents
the discrete hidden switch variable, h the continuous hidden clean signal, and
v is the observed value of the sample at time t.

The observation is given by projecting the vector to a scalar

(11)

Here, the noise models independent additive Gaussian white
noise on the clean signal . Unlike the innovation in the
SAR-HMM (1), models noise on the signal, independently
of the dynamics of the clean signal. Equation (11) corresponds
to the Gaussian distribution

For a sequence of samples of length , the AR-SLDS de-
fines the joint distribution

(12)

where and are prior distributions over the dis-
crete and continuous variables and is the state transi-
tion distribution. The model forms a first-order Markovian dy-
namics on the hidden space, whose graphical structure is de-
picted in Fig. 3. The SLDS models both the dynamics of a clean
underlying signal, plus independent additive noise. It is this joint
signal plus noise modeling which we hope will bring a benefit
over the simpler SAR-HMM.

The model presented so far is generic and it would be inter-
esting to see what potential performance it has on ASR. How-
ever, to demonstrate possible improvement in noise robustness
using the SLDS over the SAR-HMM, we construct a specific
SLDS which, when , mimics the SAR-HMM. To do
this, we set to be an matrix where the first row
contains the AR coefficients and the rest is a shifted
down identity matrix. For example, in the case of a third order
AR process, we would have

The projection matrix extracts the first component of
:

Since the SAR-HMM innovation only influences the most re-
cent observation, the hidden covariance matrix must be
set such that all elements are zero, except the top-left most which
is set to , i.e., the innovation variance used in (1). In this
way, the model exactly mimics the SAR-HMM if .
For , the model is effectively an SAR-HMM model of
clean speech, plus a model of additive Gaussian white noise,
and should thus provide a level of noise robustness. As for the
SAR-HMM, we use the likelihood of an utterance to perform
classification. Since gain adaptation is a key component of a suc-
cessful SAR-HMM system, we include this also for the SLDS,
as explained next.

A. Gain Adaptation

We perform gain adaptation in the AR-SLDS by adjusting the
innovation covariance to each utterance. Following the
same approach as for the SAR-HMM, we replace the hidden co-
variance by the segment-state hidden covariance matrix

that maximises the likelihood of the observed sequence. An
explicit formula for cannot be obtained; we use EM instead
to estimate that quantity. Given the current estimate of , the
M-step of EM maximizes the expected complete log-likelihood

with respect to the new parameters . This yields the update

(13)

where the average is taken with respect to the posterior
. The posterior distribution re-

quired by (13) is obtained by inference on the distribution
(12), conditioned on . Contrary to the SAR-HMM, where
the posterior distribution can be computed exactly,
inferring in an SLDS is , and therefore
requires approximations [9]. To address this, we recently
developed the expectation correction algorithm [12] which is
a generic algorithm for approximate inference in SLDSs, as
briefly described in the next section.

B. Inference Using Expectation Correction

The EC algorithm approximates the smoothed posteriors
in two steps: the forward pass first finds the

filtered posteriors and the backward pass cor-
rects the filtered estimate to form the smoothed posterior

. Both passes are linear in , compared with the
complexity of exact inference.

Without loss of generality, we may represent the filtered and
smoothed posteriors as a product of a continuous and a discrete
distribution

Space here is too limited to provide more than a cursory ex-
planation of the algorithm and the reader is referred to [12] for
further details. The procedure presented below is not specific to
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the AR-SLDS, whose particular structure allows some compu-
tational savings, as described in Appendix I.

Forward Pass: If we denote as the hidden
variables, the generic form of the forward recursion is

Using the structure of the DBN of Fig. 3, the RHS can be ex-
panded as

The filtered posterior at time is therefore a mixture of Gaus-
sians of the form

(14)

with

(15)

(16)

where the average is taken with respect to the filtered pos-
terior and is obtained
by integrating the RHS of (16) over . The recursion
is initialized with and

, where is the
discrete prior, and is the indexed Gaussian prior on the
continuous hidden state. The number of mixture components
required to represent the filtered posterior exactly is multiplied
by at each time step and thus grows exponentially with . A
simple remedy is to collapse the mixture obtained at each time
step to a mixture with fewer components. This corresponds
to the so-called Gaussian sum approximation [21] which is a
form of assumed density filtering [10]. For the experiments
presented in this paper, we simply collapsed the mixture to a
single Gaussian, which proved sufficiently accurate.

Backward Pass: The backward recursion is similar to that
used in the RTS method. It has the generic form

Note that the first factor is independent of the future observa-
tions because it is conditioned on . Expanding the
RHS yields

(17)

where the average is taken with respect to the smoothed poste-
rior . Without loss of generality the average
in (17) can be written as

This is difficult to evaluate because of the dependency between
and . In EC, the average is approximated by

(18)

The first factor corresponds to the continuous part of the
smoothed posterior distribution. Its form is the same as in the
RTS method and can be evaluated exactly by conditioning on

the joint distribution

(19)
which can be obtained by forward propagation.

The second factor in (18) is still difficult to evaluate exactly.
The simplest approach within EC is to approximate it by

(20)

where is the mean of with respect to the
smoothed posterior . More sophisticated ap-
proximation schemes may be applied, but practically the pro-
posed one has proven to be accurate enough for the application
considered here. Note also that this approximation is less severe
than that used in the GPB backward pass, where

This approximation, proposed by Kim [22], [23], depends only
on the filtered posterior and does not include any information
coming from the continuous variable . Finally, (20) can be
evaluated by considering

where is obtained by marginalizing (19)
over .

In summary, the smoothed posterior, as given by (17), is a
mixture of Gaussians of the form

(21)

In its most generic form, EC approximates each term by

where the average is taken with respect to the smoothed poste-
rior . As in the forward pass, the number of
mixture components is multiplied by at each iteration. In EC,
we therefore collapse the mixture (21) to a mixture with fewer
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components. For the experiments presented in this paper, col-
lapsing to a single Gaussian proved to be sufficient.

IV. TRAINING AND EVALUATION

SAR-HMM: Following [8], we trained a separate SAR-HMM
model for each of the eleven digits (0–9 and “oh”) from the
TI-DIGITS database [16]. The training set for each digit was
composed of 110 single digit utterances downsampled to 8 kHz,
each one pronounced by a male speaker. Each SAR-HMM was
composed of ten states with a left–right transition matrix. Each
state was associated with a tenth-order AR process, and the
model was constrained to stay an integer multiple of
time steps (0.0175 s) in the same state. The number of param-
eters to be trained was therefore ten AR coefficients per state
and nine transition probabilities. This makes a total of 109 free
parameters, without counting the innovation variance which is
implicitly obtained from each utterance.

For each training utterance, the adapted gain associated
to each pair of segment and state was computed according to (4).
After this procedure had been carried out for each utterance of
the training set, the parameters of the model, i.e, the transition
matrix and the AR coefficients of each state, were updated and
a new iteration took place if

where represents the th utterance and and the
old and new sets of SAR-HMM parameters, respectively.
The model was then evaluated on a test set composed of 112
utterances of each of the eleven digits, each pronounced by
a different male speaker from that used in the training set.
For each test utterance and for each model, the adapted gain

was computed and used to evaluate the likelihood of the
sequence given the model. The recognition was then performed
by selecting the model with the highest likelihood.

AR-SLDS: The AR-SLDS was not trained directly. Instead
its parameters were simply set to the same value as in the cor-
responding trained SAR-HMM, i.e., the AR coefficients
are copied into the first row of the matrix , and the same
state transition distribution is used. The model was
then tested on the same test set as used for the SAR-HMM. The
innovation covariance was iteratively adapted using (13) until
the relative likelihood difference between two consecutive it-
erations was less than 10 . To seed recursion (13), an initial
estimate of was obtained from the training set by using the
SAR-HMM maximum-likelihood estimate of for each state

The initial was defined to have all elements equal to zero
except for the top-left element which was set to , thus disre-
garding the segment number . Compared to the SAR-HMM,
the AR-SLDS has one additional parameter, the noise variance

.

The complexity of the EC forward and backward pass is
and , respectively. The backward pass

is slightly more complex because, at each segment boundary,
three matrix inversions are required, and the complexity of
the matrix multiplications cannot be reduced as in the forward
pass. The total number of bytes required by the forward pass is

. The total number of bytes used
by the backward pass is . As
an example, the total amount of space required to evaluate a se-
quence of 7000 samples with a ten-state tenth-order AR-SLDS
is about 300 MB and the time required to evaluate all of the
1232 digits of the test set with only one model is around 3 days
on a 3.2-GHz Pentium 4 machine.

V. EXAMPLES OF SIGNAL RECONSTRUCTION

In order to demonstrate the noise robustness capabilities
of the AR-SLDS, we plotted in Fig. 4: (top) the original
raw speech signal taken from the TI-DIGITS database and
down-sampled to 8 kHz, (middle) its artificial Gaussian white
noise corrupted version and (bottom) the corresponding re-
constructed clean speech signal of the AR-SLDS. The latter is
obtained by taking, for each time step, the mean of the
smoothed posterior where the state segmentation
is given by . The clean reconstructed
sample at time is then given by . Fig. 4 also shows, for
each signal, the corresponding state segmentation given by the
AR-SLDS.

In Fig. 4, both noise-corrupted signals are correctly recog-
nized by our SLDS procedure. This is encouraging since when
the SNR is close to 0 dB, the shape of the original clean speech
signal has almost disappeared and any denoising method which
does not consider the dynamics of the clean signal will most
likely fail. In this example, the reconstructed signal is reminis-
cent of a digit “one” for the higher SNR level on the right of
Fig. 4 the reconstruction is much closer to the original clean
signal. The noisy “one” shown on the left side of Fig. 4 has
a likelihood of 2.0 when evaluated with the AR-SLDS corre-
sponding to “one” and a likelihood of 1.9995 with the model
corresponding to “oh.” This demonstrates that, under extremely
noisy conditions, an accurate approximation of the likelihood is
important, since many digit models are likely to have generated
such a noisy example. In both examples shown in Fig. 4, the
models stay in the second state for too long; this problem arises
because the dynamics of the initial section of the speech signal
is difficult to distinguish from silence. The performance could
therefore be improved by explicitly modeling the state duration
[15].

VI. RESULTS

For the TI-DIGITS database, we compared the noise robust-
ness of the SAR-HMM against the AR-SLDS and a state-of-
the-art denoising method using a frequency domain feature-
based HMM. Each test utterance was corrupted with additive
noise independently sampled from a Gaussian with zero mean
and covariance .

The features for the HMM were computed using unsuper-
vised spectral subtraction (USS) [2], thereby providing filtered
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Fig. 4. Two examples of signal reconstruction using the AR-SLDS: (top) original clean signal taken from the TI-DIGITS database, (middle) noisy signal, i.e., clean
signal artificially corrupted by Gaussian noise; (bottom) reconstructed clean signal. The dashed lines and the numbers show the most-likely state segmentation.

features to the HMM recognizer. The setup used for the fea-
ture-based HMM was the same as that used to obtain the base-
line performance on the AURORA task [24], namely 18 states,
left–right transition matrix, a mixture of three Gaussians per
state and 39 MFCC features, including first and second temporal
derivatives as well as energy. The number of parameter to be
trained was therefore 18 3 39 2106 mean values (one for
each MFCC feature), 2106 variances (one for each MFCC fea-
ture), and 17 transition probabilities. This makes a total of 4229
parameters. For the SAR-HMM and the AR-SLDS, no prior fil-
tering was applied. Each AR-SLDS digit model was explicitly
tested with a range of noise variances and recognition was per-
formed by picking the model with the highest likelihood.

Table I shows the recognition accuracies obtained by the
different models for various levels of noise. As expected, the
performance of the SAR-HMM rapidly decreases with noise.
Thanks to USS, the feature-based HMM is able to maintain a
recognition accuracy above 90% as long as the SNR is higher
than 20 dB, below which the noise is too strong to be filtered
out accurately without considering the dynamics of the clean
signal. In contrast, the AR-SLDS has a recognition accuracy of
61.2% with an SNR close to 0 dB, while the performance of the
other two methods is equivalent to random guessing (9.1%).

If all possible noise effects can be enumerated a priori—for
example, if it is known that noise of variance either or is
added to the signal—then an alternative would be to train the
SAR-HMM on noisy versions of the clean utterances. While
of limited practical value,7 we carried out such an experi-
ment as a comparative method of improving noise robustness
in the SAR-HMM. To our surprise, the performance of the
SAR-HMM trained with the same level of noise as that for
which it was tested on, gave better results than the AR-SLDS
initialised with the SAR-HMM trained on clean. As can be seen

7In more practical scenarios the noise distributions are generally not sta-
tionary, nor even from a finite fixed set of possible distributions.

TABLE I
COMPARISON OF THE RECOGNITION ACCURACY OF THREE MODELS WHEN

THE TEST UTTERANCES ARE CORRUPTED BY VARIOUS LEVELS OF GAUSSIAN

NOISE. THIS PERFORMANCE IS WORSE THAN WITHOUT UNSUPERVISED

SPECTRAL SUBTRACTION, WHICH GIVES 95.5%

TABLE II
RECOGNITION ACCURACY OF THE SAR-HMM TRAINED

I890AND TESTED WITH THE SAME NOISE VARIANCE

in Table II, at SNR 0 dB, the accuracy is more than 10% higher
than that of the AR-SLDS and significantly better otherwise.
A possible explanation is that adding stationary Gaussian
noise on the samples has a regularizing effect which prevents
overfitting. Since noise makes the signal less predictable, the
AR coefficients obtained after training on noisy utterances are
therefore more conservative than those obtained on clean, and
tend to model the part of the signal which is the more stable.
This explanation is plausible since the performance with a
noise variance of 10 is actually better than with 10 and on
clean speech. A Bayesian alternative to the SAR-HMM [25]
may therefore be worthwhile considering.

VII. DISCUSSION AND CONCLUSION

Our main goal was to investigate how much improvement we
could expect by embedding a SAR-HMM trained on clean sig-
nals into a SLDS, and to present the underlying theoretical as-
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pects. We concentrated on stationary noise, but nonstationary
sources of noise may also be modeled, such as found in the
AURORA [24] database. For example, we could model an ob-
served noisy signal as the superposition of a clean hidden signal,
modeled by an AR-SLDS, and noise, modeled by a Bayesian
Kalman filter [26]. The Bayesian Kalman filter is particularly
useful in this situation because it allows the parameters of the
noise model to be adapted automatically. This is important since
the noise dynamics in practice would not be known a priori.

In summary, modeling signals as an explicit combination of
speech and noise signals may be a viable route to noise reduction
in speech recognition. While we concentrated here on isolated
digit recognition, it would be interesting to extend the approach
to filter more generic speech units embedded in noisy signals,
which then could be used for example as a preprocessing step
in standard speech recognition models.

VIII. CODE AVAILABILITY

The code as well as the complete setup that we used during the
preparation of this paper are available at the following address:
http://www.idiap.ch/~bmesot/arslds.

APPENDIX I
EC APPLIED TO THE AR-SLDS

EC as described in Section III-B does not take into account
the particular structure of the AR-SLDS, in particular the seg-
mentation implied by the modified discrete transition proba-
bility (3). Inside a segment, the state does not change, and the
sum over in (14) therefore disappears and one is left with
the simpler expression

which corresponds to a Kalman Filter. A nice property of the
Kalman filter is that the variance of does not depend on the
observations and quickly converges to a fixed value [9]. This
is useful in practice since the filtered covariance matrices used
during the backward pass, which otherwise must be stored for
each time-step, can be replaced by their segment converged ap-
proximations. Furthermore, conditioning (19) on defines a
reversal of the dynamics which requires a matrix inversion (see
[12] for details). However, the inversion depends only on the fil-
tered covariance matrix and on and . Using the same fil-
tered covariance matrix over a whole segment, and the left–right
structure of the transition matrix, this can be reduced to in-
versions per segment.

APPENDIX II
SNR COMPUTATION

The SNRs shown in Table I have been computed using the
following formula:

where , and are the variance of the clean speech signal,
clean noise and additional noise, respectively. was computed
by retaining, for each utterance of the test set, only the sam-
ples whose energy was higher than 10% of the maximal energy.

Those samples were assumed to belong to the speech signal.
The remaining were used for computing .
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