Solving deterministic policy (PO)MDPs using
Expectation-Maximisation and Antifreeze

Thomas Furmston and David Barber

Department of Computer Science
University College London
London WCI1E 6BT, UK

Abstract. The viewpoint of solving Markov Decision Processes and
their partially observable extension refers to finding policies that max-
imise the expected reward. We follow the rephrasing of this problem as
learning in a related probabilistic model. Our trans-dimensional distri-
bution formulation obtains equivalent results to previous work in the
infinite horizon case and also rigorously handles the finite horizon case
without discounting. In contrast to previous expositions, our framework
elides auxiliary variables, simplifying the algorithm development. For any
MDP the optimal policy is deterministic, meaning that this important
case needs to be dealt with explicitly. Whilst this case has been discussed
by previous authors, their treatment has not been formally equivalent to
an EM algorithm, but rather based on a fixed point iteration analogous
to policy iteration. In contrast we derive a true EM approach for this
case and show that this has a significantly faster convergence rate than
non-deterministic EM. Our approach extends naturally to the POMDP
case as well. In the special case of deterministic environments, standard
EM algorithms break down and we show how this can be addressed us-
ing a convex combination of the original deterministic environment and
a fictitious stochastic ‘antifreeze’ environment.

1 Markov Decision Processes

A Markov decision process (MDP) is defined on state-variables z; = 1,..., X,
actions a; = 1,..., A, and utilities (rewards) w;, at times ¢ = 1,...,T. The
model describes situations in which an agent is in state z; = x, decides to take
action a; = a, and receives a utility us(z; = x, a; = a) = u from the environment.
The system is assumed to be Markovian such that a state-action trajectory can
be described by the distribution

t—1
P(a1:, arelm) = p(ar)p(as|zr,) [| p(zrial2r, ar)plar|a,, m) (1)

T=1

where the environment is described by the transition p(a,i1|z;,a;) and the
policy p(a,|x,,). For simplicity we assume that the transitions and policy dis-
tributions are stationary, with the extension to the non-stationary case being

Fig.1. A MDP represented as an Influence Dia-

gram. We define utilities (rewards) to depend on

‘ the current state and action, w(x¢,a:). The policy

@ @ p(a¢|zs) determines the decision and the environ-

ment is modeled by the transition p(z¢|zi—1,at-1).

The diagram represents y_, p(x¢, at)u: (¢, ar) where

the marginal p(x¢,a¢) is determined from the
Markov chain, equation (1).

straightforward. Given a transition and policy, the Markov chain has an occu-
pancy probability p(z¢, a;) computed by marginalizing equation (1). Associated
with each state x; and action a; there is a utility u:(a¢, a:). The total expected
utility over an horizon T is then given by

T
u(m) = Z Z ut(2e, ap)p(xe, at|m) (2)

t=1 x¢,a¢

It is common to constrain the non-stationary utility to be a discounted station-
ary utility using a factor v € [0, 1], so that u;(x2:) = y'u(xt, ar) to encourage
the agent to take actions that maximise utility quickly. In the case of infinite
horizons, the discount factor v < 1 makes u(w) finite. The setup may be de-
picted using an Influence Diagram[4], see figure 1. The MDP task is to find
the policy 7* that maximizes (2). This is a standard problem in operational
research, control and reinforcement learning, for which the classical algorithms
are based on variants of policy and value iteration[8]. As an alternative to these
classical procedures we cast this as a probabilistic inference problem allowing us
to use various methods from that field. In particular we will find 7* through an
Expectation-Maximisation (EM) style-algorithm[2]. Our work builds on the gen-
eral approach introduced in [1] and the viewpoint of solving MDPs as likelihood
optimization in a corresponding probabilistic model[9, 6].

2 Solving MDPs using EM

Our construction of a probabilistic framework in the case of an MDP is similar
to that in [9] but doesn’t require the introduction of auxiliary variables or a time
prior. In order to maximise the total expected utility (2) we first construct a lower
bound on (2). Without loss of generality we consider non-negative utilities which
enables us to form a distribution p(x1.¢, a1, t|7), whose normalization constant
is equal to (2). This is achieved by defining the trans-dimensional distribution

U (Te, ap)p(T1:t, Q1| T0)
u(m)

The reader may verify that this is a correctly normalised distribution since first
summing over Ii.,a1.; gives the expected utility at time ¢ in the numerator

3)

P(T1:4, a1, t|T) =

term. Then summing over ¢ from 1 to T gives the total expected utility w(r)
on the numerator, equalling the denominator term. In order to obtain a lower
bound on (2) we now introduce an auxiliary distribution q(x1.¢, a1.¢,t), which we
call the ¢-distribution. Taking the Kullback-Leibler divergence between ¢ and p
gives!

K L(q[[p) = H(q) — (log us(z+, ar)), = {log (1.4, a1:4|7)) , + log u(m)

where (-) , denotes the average w.r.t. the g-distribution, and H is the entropy
function. We now use the fact that the Kullback-Leibler divergence is non-
negative V distributions p, ¢, to obtain the bound

logu(m) > —H(q) + (logu(w, at)), + (log p(z1.4, ar.|m)), (4)

Instead of maximising equation (2) directly we may alternatively find 7* by max-
imising this bound. This corresponds to a form of EM algorithm that iteratively
optimises this bound using the following two-step procedure:

E-step For fixed 7°¢ find the best ¢ that maximises the r.h.s of (4). For no
constraint on ¢, this gives ¢ = p(x1.7, ar.r, t|m9).

M-step For fixed ¢ find the best 7 that maximises the r.h.s of (4). This is
equivalent to maximising the ‘energy’ (log p(21.¢, a1.¢|m)), with respect to .

2.1 E-step

If we place no functional restriction on the g-distribution we have that the maxi-
mum occurs when K L(g||p) = 0, that is when q(x1.¢, a1.¢,t) = p(w1.¢, a1.¢, t|7o%),
where 7°? is the policy of the previous M-step. The E-step consists of calculating
the quantities required to perform the M-step, namely the marginals ¢(z,, a,,t).
This is straightforward since, as a graphical model, ¢ is simply a chain distri-
bution for which marginal inference can be achieved in linear time O(T) via
standard message-passing techniques[10, 9]. For completeness, we outline here a
suitable dynamic programming method. As the g-distribution is a chain distri-
bution it can be written simply in terms of the forward and backward messages
as

Q(xﬂ ar, t) X ngg’ytﬁtf‘r(x, a)aT (.’ﬁ)

where

u(a,) ift—7=0
Yo wr Bryr—r (@, a)p(2 |z, a)7, . otherwise

sl = {

o (z) = {pO(”") ifr =1 (6)

> a P2, a")T gz 1 (2') otherwise

! The summation over ¢ is implicit in the average over q(z1.¢,a1.t,1).

2.2 M-step

In the M-step we are interested in maximising the distribution w.r.t 7, so sepa-
rating out the policy terms from (4) we obtain the energy term

ZZZ q(zr,ar,t)]log 7, 4. (7)

t=171=1z,,ar

where we use a tabular policy 7, ». = p(a;|z,, 7). For a stationary policy the
resulting M-step may be written as

mxocﬂ"leZVﬂt (,a)a, (z) (8)

t=171=1

2.3 Relation to other EM algorithms

There are several other constructions of EM algorithms that have been designed
to solve MDPs, for example [9, 1, 3]. In [9] the original MDP is cast as an infinite
mixture model of finite-time MDPs. Each finite-time MDP is similar to the origi-
nal MDP in that it has the same initial state, transition and policy probabilities,
but differs in that it emits a binary signal, R, at the final time-step. The mixture
weight is given by p(t) = 4*(1 — 7). The auxiliary binary variable is introduced
only for the purposes of constructing the EM algorithm, and is defined as

p(R = 1la; = a, 2t =) < u(ag, x4) (9)
The mixture model of finite time MDPs is then given by
P(R, @14, 1.4, 1 7) = p(R, T1.t, ar¢|t;)p(2) (10)

With this construction, maximising the likelihood, p(R = 1;m), is equivalent
to solving the original MDP. This likelihood maximization problem is solved
through an EM algorithm which gives policy updates of the form

new old Zp ﬁ'r a .7;) (11>

Taking T' = oo in (8) and performing some simple manipulations then one indeed
obtains updates of the form (11).

Although our construction is similar to [9] there are several differences. In our
construction it is unnecessary to introduce the auxiliary variable R, which we
feel makes the construction clearer. It is also unnecessary for us to introduce a
time prior p(t), so that dealing with the case v = 1 requires no special treatment.
This means that our derivation can deal with the finite and infinite horizon cases
in the same derivation.

0.03

——10th M step
0.025r| ——50th M step
——100th M step

0.02

0.015

Time Marginal

Time Steps

(a) (b)

Fig. 2. (a) Maze considered in the MDP experiments. The walls are black, with initial
state in the top left corner (green), the goal state in the top right corner (red) and
the rest of the maze in white. There are in total 240 states. (b) The time marginal
p(t|7) for the maze at the 10*", 50*" and the 100" M-steps. After 50 M-steps a horizon
T =~ 150 suffices, whereas in earlier M-steps a larger horizon is needed to account for
the inferior policy.

2.4 Cut-off time for an infinite horizon

If T is assumed finite and known then our framework can be readily implemented.
However, for T infinite one has to select a point at which to terminate the sum-
mation in (8). Although our framework doesn’t presently yield a formal method,
we may use the time marginal p(t|7r) to gain an indication of a suitable cut-off
point. To demonstrate the cut-off effect, we consider a simple maze navigation
problem where the agent has to learn to traverse a maze from an initial state
to a goal state, see figure 2a. The agent has four actions available; up, down,
right and left. If the agent moves into a wall it remains in its current state. The
environment is stochastic with any action resulting in any of the other actions
being performed with probability 0.05. The discount factor is set to v = 0.95
and the horizon is set to T' = co. The goal is a sink state from which the agent
cannot exit. As the agent remains in the goal state once it has reached it, one
would expect the time marginal to be unimodal with the mode being the most
likely time for the agent to reach the goal, which is indeed the case, see figure
2b. Therefore a suitable effective horizon is some time after the mode such that
the discount factor has significantly reduced the time marginal.

3 Deterministic policies

For every finite MDP the set of optimal policies contains a policy that is deter-
ministic[8]. Indeed, in light of this many classical MDP solution methods restrict
their search to deterministic policies, such as policy iteration and value iteration.
With this in mind we restrict the policy space to deterministic policies where
Taw = 0 (a,a*(x)), and run through the same procedure as in section (2.1). The

Fig. 3. Our deterministic policy EM algo-
_— rithm compared with the EM algorithm of
- | [9] on the maze problem in figure 2. The
1 discount factor was set to v = 1 and the

a
8

\

Total Expected Reward
N oW
8 08

horizon was set to T" = 100. The algorithms

)] each performed 100 M-steps and were ini-
—— tialized with the same uniform policy, the

0 10 20 30 40 60 70 80 9 100

H
5

50
M steps

total expected utility is as given in (2).

function a*(xz = x) = a maps a state x to an single action a and we need to
find the mapping that optimises the energy. Expressed in this form the energy
becomes

T t—1

E(a*)zzz Z Q(m7+17]"75t)logp($7+1|x7'7a*('r7'))

t=11=12+41,2+

+ 33 g, D) logu(y,a*(2r)) (12)

t=1 x;

In contrast to the non-deterministic energy, equation (7), we now have an addi-
tional term from the utility. Note that this shows the non-commutative nature of
taking the deterministic policy limit and optimising — the additional term from
the utility cannot be obtained from taking the deterministic limit of (7), c.f.
[9]. Our procedure then results in an EM algorithm in the deterministic case, as
opposed to the ‘greedy’ policy iteration approach of [9].

In our EM approach, for each state x we now determine the action a that
maximizes the energy, equation (12). Since transition probabilities are stationary,
this corresponds to finding for each state x that action a that maximises

Z { Z § q(zr41 =X, 27 = x, t)} 10gp(x/|x,a)+{ iq(:ﬁt = X, t)} log u(x, a)

X! t=171=1

(13)

The E-step for the g-distribution is as before, expect that we also require the
two-time marginals q(z,;+1 = X', . = x, t).

Experiments We compare the convergence of our deterministic EM algorithm
with the non-greedy EM algorithm of [9] on solving the problem in figure 2a
with v = 1 and horizon 7" = 100. As can be seen in figure 3 our algorithm
converges to the optimal policy after the first M-step, where as the stochastic
policy EM algorithm of [9] has slower convergence. For comparisons we also ran
policy iteration on this problem and noted that it too converged after the first
policy update.

3.1 Deterministic transitions

The M-step updates in the EM algorithm characteristically ‘freeze’, in a de-
terministic or near-deterministic observation distribution, leading to extremely
small increases in the log-likelihood. This problem occurs in our EM approach
when the transitions and the policy are both deterministic?. In this case all the
weight of the g-distribution is put onto the single state-action trajectory that is
dictated by the policy and the transition, and the M-step performs the trivial
update 7% = 7°¢ To counter this problem it is possible to add ‘antifreeze’
to the environment, rendering it non-deterministic, and then solve the MDP in
this new environment. For each state we define the new transition p(z'|z,a) as
a convex combination of the transition with a distribution

pe(2|z,0) = (1 — €)p(a|x,a) + el (") (14)

where € € [0,1) and I, (z') is an arbitrary probability distribution and then solve
the MDP (X, A, U, p.). The idea behind this is encourage ‘exploration’ during
the E-step and therefore enable the algorithm to escape local minima, similar to
e-greedy policies used in various Mote Carlo solution methods to MDPs [8]. For
completeness we explain below how the above technique can be both theoretically
and practically justified.

4 Antifreeze for EM

4.1 Standard EM learning

To explain the general problem of freezing in EM and a possible resolution,
consider a distribution of the form

p(v]0) =S p(v|h, O)p(h)
h

for which our task is to find the 6 that maximises p(v|f), given an observed value
for v. Treating h as a hidden variable, we may apply the EM algorithm for which
the E-step is

q(h|6ora) o< p (v|h, Oora) p(h)
and the M-step sets

Onew = arggnax(logp(v,h|9)>p(h|90ld): arggnax<10gp(v|h,9)>p(h|90ld)

since p(h) is independent of #. For a deterministic observation distribution
p(v|h) =0 (v, f(h|F)) for some function f(h|f) with parameters 6, we have

p(hlbota) o< & (v, f(R]0)) p(h)

2 For deterministic transitions but a stochastic policy, EM freezing is less problematic.

so that the M-step sets

Oncw = argmax (log 3 (v, f(Al9)))p(nipua)

Since p(h|Oo1q) is zero everywhere except that h for which v = f(h|6), then the
energy is negative infinity for 6 # 6,4 and zero when 6 = 6,,4. Hence zero is the
optimum of the energy, corresponding to a frozen update. This situation occurs
in practice, and has been noted in particular in the context of Independent
Component Analysis[7] although, as explained here, the phenomenon is quite
general. One can attempt to heal this behaviour by deriving an EM algorithm
for the distribution

pe(vlh,0) = (1 —¢e)p(v|h,0) +en(h), 0<e<l

where n(h) is an arbitrary ‘antifreeze’ distribution on the hidden variable h. The
original deterministic model corresponds to po(v|h, 8). Hence

pe(wl6) = 3" po(vlh, 0)p(h) = (1 —)p(v]6) + const.
h

so that applying antifreeze preserves the optima of p(v|f) at the same locations
as those of p.(v|0). An EM algorithm for p.(v|0), 0 < € < 1 satisfies

pe(v‘anew) 7pe(v|00ld) = (1 - 6) [pO('UWnew) 7p0(v‘00ld)] >0

which implies po(v|0new) — Po(v|0o1a) > 0. Hence the EM algorithm for the non-
deterministic case 0 < € < 1 is guaranteed to increase the likelihood under
the deterministic model po(v|f) at each iteration (unless we are at convergence).
Note n(h) can be chosen arbitrarily at each iteration of the EM algorithm, which
can help escape local minima.

4.2 Maximising utility

To translate the antifreeze idea into the maximum utility problem, consider an
objective

F(8) = u(x)p(x|6)

x

for a positive function w(z) with our task being to maximise F' with respect
to . An EM style bounding approach can be derived by defining the auxiliary
distribution

u(z)p(z|0)

p(el0) = s

(15)

so that by considering KL(q(x)|p(z)) for some variational distribution g(x) we
obtain the bound

log F(0) = — (log q(x)) () + (0g u(2)) () + (log p(2]0)) (o)

4

Fig. 4. For each v,e pair we ran 500 experiments
and plot in the figure the fraction of times the cor-
rect optimum value is returned by the EM proce-
dure. As v increases the distribution p(v|f) tends to
°¢ a deterministic distribution and EM optimisation of
os @ fails. This corresponds to the case ¢ = 0. As we
04 increase € noise more noise is included in the pro-
os cess and the EM algorithm succeeds. Note that for
0% 05 035 5% 0% 05 a truly deterministic environment v = oo a value of
epsilon € < 1 still suffices, see figure 5.

35
3
25
E 225
£ 2

©
8175
15

1

0.5

0

The M-step states that the optimal ¢ distribution is given by

Q(-T) = ﬁ(x|90ld)

At the E-step of the algorithm the new parameters 6,,¢,, are given by maximising
the ‘energy’ term

Onew = arglenax <10gp(x|9)>13(x|90m)

For a deterministic distribution

p(x]0) = 0 (z, f(0))

the E-step fails since the energy is negative infinity unless 6,¢,, = 0,4, in which
case the energy is zero. We can attempt to heal this by using the alternative
objective

F(6) = ulx)pe(z|6)

with
pe(al6) = (1 - Op (2l6) + en(z), 0<e<1

and an arbitrary distribution n(z). Our task is to maximise F' with respect to
0. Since

F(0)=(1—-¢€)Fy0) +e¢ Zn(m)u(x)

it is clear that F,(#) has the same optimum as Fy(#). Furthermore, since
Fe(enew) - Fe(eold) = (]- - 6) [FO(enew) - FO(eold)]

provided that for € > 0 we can find a 66, such that F.(0pew) > Fe(bora),
then necessarily Fo(Onew) > Fo(0o14). Using this result, we may derive an EM-
style algorithm that guarantees to increase F.(6) (unless we are already at the

1 0, -2.29
05 20| -23

-2.31
0 -40!
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

(a) (b) (c)

Fig. 5. Maximising a utility L(0) = log 312, u(s)p(s|0), where p(s|) is deterministic,

placing all its mass in the state s = 6. Here u(s) is given, being positive and drawn at
random. The task is to find the optimal 6, which is equivalent in this case to finding
the state s that maximises the given u(s). (a) True utility L(0) as a function over
the 10 @ values. The optimal state is § = 5. (b) The energy for ¢ = 0 and 6°'¢ = 1.
The energy is —logco (cut off here at -36) for all but § = #°'? = 1, where the energy
is zero, displaying the characteristic EM freezing. (c) Energy of modified distribution
using € = 0.99 and 0°'¢ = 1. The new energy has the optimum at the correct place,
0 =5.

optimum) for € > 0 and can therefore guarantee to increase Fy(#). To do so we
use

pe(z|0) = W

in place of equation (15), and then derive an EM algorithm as before.

Applying antifreeze on a toy problem To demonstrate that the effect of
adding on noise to the deterministic distribution is non-trivial and can heal
the EM algorithm, we carried out a simple experiment, see figure 4. We define
a distribution® p(s|f) oc exp (7I[s = 0]) over the states s = 1,...,5. For each
experiment the utility for each state u(s), s =1,...,5 is drawn from a uniform
distribution between 0 and 1. The task is to find 6 that maximises > _ u(s)p(s|6)
using an EM style algorithm. To attempt to resolve ‘freezing’ we added uniform
noise by an amount e to the distribution p(s|f). In figure 4 we compute the
number of times that starting from a random starting state we will, under EM,
converge to the correct optimum state. As we can see, for no noise added, € = 0,
and in a deterministic limit (v large) we are in the optimum state only 20%
of the time, since no updating occurs, and we start in the correct state with
probability 0.2. As we increase ¢, EM unfreezes and we begin to find the correct
optimum. One may have the impression that for a truly deterministic p(s|@) we
would need to set ¢ = 1 to unfreeze EM and thereby destroy the problem in the
process. To show that this is not the case, consider the example in figure 5 which
considers a truly deterministic p(s|f) yet, by applying antifreeze with e < 1, we
find the optimum at the correct place.

3 This ~ is not to be confused with discounting.

Fig. 6. Maze considered in the deterministic transition and
deterministic policy experiments. The colour scheme is the
same as previously, that is the walls are black, the initial state
is green (top left corner) and the goal state is red (top right
corner), with the remaining states in white. The discount
factor was set to v = 1 and the horizon set to T" = 40. There
are a total of 27 states.

4.3 Antifreeze on an MDP

To illustrate the validity of the ‘antifreeze’ method in an MDP setting we con-
sider the simple maze problem in figure 6. The transitions are deterministic and
the policy is initialised in the worst possible way, taking an action that moves
in the opposite direction of the optimal policy, e.g. when the agent is in the
initial state it will move upwards instead of downwards. Since the environment
is deterministic, the normal deterministic EM algorithm would perform trivial
updates on this problem and freeze. When implementing antifreeze one has to
select the amount of noise and the form of the noise distribution. In the experi-
ments we use an antifreeze distribution I';(z') to be uniform for all states that
satisfy the condition fr(z) = 0, i.e. states that have zero probability of receiv-
ing a reward under the current policy. The transitions of the remaining states
where left unchanged. When adding noise to the transitions ¢ was set to 0.35.
The results of the experiment are shown in figure 7 where we can see that our
algorithm converged in a single M-step. We also ran the EM algorithm of [9] and
policy iteration on this maze problem with the transition probabilities. Policy
iteration converges to the optimal policy after roughly 20 policy updates and
the EM algorithm of [9] converges more slowly (since it does not explicitly seek
a deterministic policy). It should be noted that policy iteration also converges
quickly if we add a small amount of noise to the transitions.

5 POMDPs

In a Partially Observed MDP (POMDP) the agent no longer has complete knowl-
edge of its state but instead has only a belief of its state[5]. The agent’s belief
is periodically updated using information gathered through observations o1.7.
The agent then makes decisions based on its belief and the present observation.
Whilst in the MDP the policy is a function of the state, in the POMDP case
only a distribution b of the state is known, and optimally the policy needs to
be a function of this distribution, rather than the state itself. We do not deal
here with the full POMDP case, for which the belief corresponds to the filtered
distribution given past observations and actions[5]. Instead we follow the model
introduced in [9] which we describe below.

Instead of the true belief we use an auxiliary variable with a fixed small
number of states, which we also call the belief and denote with b, that is used to

16

y ‘ — Fig.7. Antifreeze experiment for a de-
» ‘ — | terministic policy and env1rA0rA1m.ent, figure
0 / | 6. We compare our deterministic EM an-
| tifreeze algorithm, ¢ = 0.35 to the EM al-

‘ | gorithm of [9] and policy iteration. The two

‘ our deterministic EM algorithm | | EM algorithms each performed 100 M-steps

— Toussaint et al. EM algorithm | | and were initialized with the same deter-
— Policy Iteration

N B o @
~_

ministic policy, the total expected utility is
as given in (2).

o

0 20 40 60 80 100

capture the agent’s previous experience. We therefore make the policy a function
of the current observation and belief, p(a:|bs,0). As we are no longer dealing
with the true belief we now have to introduce a model for the belief transitions,
p(b'|b, 0). The use of a finite set of belief states can be considered a surrogate for
the true filtered belief distribution, as described in [9].

We briefly derive the updates of the belief transitions and then deal with
the non-deterministic and deterministic policy updates separately. Following the
procedure in section (2) we have the following bound on the expected utility of
the POMDP given a policy ,

lOg u(ﬂ-) Z 7H(q) + <10gu(xt7 at)>q + <10gp(‘r1:t7 bl:t7 O1:t, A1:t, t|’/T)>q (16)

where the probability p(x1.t, b1.¢, 014, a1.t, t|7) is given by

t—1
p(0t|$t)p($1)p(b1) H p(xT+1 |1‘7—, aT)p(aT|bT7 OT)p(bT-'rl |b7'7 OT)p(OT‘xT)

T=1

Since we wish to maximise the bound (16) w.r.t p(b'|b,0) we isolate the belief
transition terms, which we denote collectively as A, to obtain the pertinent energy

T t—1

E()‘) = ZZ Z q(b7-+1,b7.,07—,t) logp(bT-HabTaOT) (17)

t=17=1b,41,br,0+

Making the assumption that the belief transitions are stationary then the time
dependence of these terms can be removed and the M-step results in the updates

T t—1

p(t[b,0) o< > " qlbryy =V, b =b,0, = 0,1) (18)

t=171=1

In the case of the non-deterministic policy updates one runs through the same
argument for the policy terms and obtains updates of the form

T
0 X Z Zq(bT =b,0, = 0,t) (19)

t=171=1

Whilst in the case of the full POMDP there is no reason to expect the optimal
policy to be deterministic, our POMDP model is similar to a MDP in that
decisions are made on the basis of a discrete variable, rather than a distribution.
In this case one may expect the optimal policy to be deterministic. With this in
mind we again restrict the policies to be deterministic and re-derive the M-step,
giving the following updates

T z’,x

where
T
q(z,b,0) = Zq(xt =x,by = b0, = o,1t)
t=1
T t-1
Q(xlv‘ra b,O) = Z ZQ(I'TJA = IC/, Ty =x,b; = b0, = o0, t)
t=171=1

5.1 Experiments

We compare our deterministic policy POMDP EM algorithm with the non-
deterministic policy algorithm of [9] (for which no deterministic algorithm was
previously known). The maze problem is depicted in figure 8. Unlike the previous
magze problem the agent is unaware of its position in the maze and can only make
decisions on the current observation (the configuration of walls that are currently
adjacent to the agent) and its belief in its position. The observations are with
respect to a constant ‘northward’ orientation, i.e. the agent is always assumed to
be facing northward, so the observation 0111 at the initial state means no wall
north, wall east, wall south, wall west. The actions that the agent can make are
moving North, South, East or West, where a movement into a wall will result
in the agent remaining in the same state. The environment is stochastic in the
sense that any action will result in another action being taken with probability
0.05.

The results of the experiment are shown in figure 8, where we can see that
our EM algorithm converges in the first M-step, supporting the intuition that
the optimal policy in this framework is indeed deterministic. We also ran the EM
algorithm of [9] on this problem where we can see that it has still to converge after
100 M-steps, although it does display rapid progress in the initial stages. Whilst
we have demonstrably some success with our deterministic POMDP approach
it should be noted that our experience is that our algorithm can be more fragile
that the stochastic variant [9]. A pragmatic approach in practice therefore is to
alternate between the deterministic and stochastic policy algorithms once a local
optimum has been reached.

IS

&
\
|
\

=

IS
>
T T

Total Expected Reward

IS
a

—— Toussaint et al. EM algorithm

" —— Deterministic EM-algorithm

IS
R

.
10 20 30 40 50 60 70 80 90 100
M steps

(a) (b)

o

Fig. 8. (a) Maze for the POMDP experiments for deterministic EM algorithms. The
initial state is in the bottom left corner (green), with the goal state in the bottom right
corner (red). The rest of the maze consists of walls (black) and remaining possible
positions (white). There are in total 26 states with 11 different distinct observations
(generally one could expect there to be up to 16 different possible observations in an
arbitrary maze). (b) Comparison of convergence of our deterministic policy POMDP
algorithms with that of [9]. The discount factor was set v = 1, and the horizon limit
was set T' = 50.

6 Discussion

We discussed a framework for policy learning in MDPs that treats the prob-
lem as learning in a related probabilistic model. Our approach draws heavily on
previous work [9] though the framework is simpler in that no auxiliary reward
variables are required and the method directly handles the case of no discounting.
In particular we derived a true EM style procedure for MDPs and POMDPs re-
stricted to deterministic policies, which differ from the standard policy iteration
updates previously derived [9] for the MDP, and introduces a novel determinis-
tic policy update in the case of the POMDP. Treating the deterministic policy
case correctly is important since in the MDP the optimal policy is determinis-
tic. In future extensions of this work our aim is to attempt to solve large scale
MDPs using techniques in approximate inference, for which a correct variational
treatment of the deterministic case is a required starting point.

An important limitation of all EM approaches is that in a deterministic
environment (in a standard EM problem this corresponds to the observation
distribution being deterministic, and in the MDP case the analog is that the
environment transitions are deterministic) EM freezes, and no updating occurs.
This also happens for low noise environments. We introduced a principled ‘an-
tifreeze’ method that potentially heals this problem by considering a modified
environment being a convex combination of the true environment and a noise
distribution.

Software Demonstration software for solving (PO)MDPs for both deterministic
and stochastic policies may be found at www.cs.ucl.ac.uk/staff/D.Barber.

Acknowledgement We would like to thank Marc Toussaint for helping clarify
the relationship between his and our framework.

References

1.

2.

10.

P. Dayan and G. E. Hinton. Using Expectation-Maximization for Reinforcement
Learning. Neural Computation, 9:271-278, 1997.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. J. Royal Stat. Soc, 39:1-38, 1977.

T. Hoffman, N. de Freitas, A. Doucet, and J. Peters. An Expectation Maximiza-
tion Algorithm for continuous Markov Decision Processes with Arbitrary Rewards.
AISTATS, 2009.

F. V. Jensen and T. D. Nielson. Bayesian Networks and Decision Graphs. Springer
Verlag, second edition, 2007.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in
partially observable stochastic domain. Artificial Intelligence, 101:99-134, 1998.
H. J. Kappen. An introduction to stochastic control theory, path integrals and
reinforcement learning. In Proceedings 9th Granada seminar on Computational
Physics: Computational and Mathematical Modeling of Cooperative Behavior in
Neural Systems, volume 887, pages 149-181. American Institute of Physics, 2007.
K. B. Petersen and O. Winther. The EM algorithm in independent component
analysis. In IEEFE International Conference on Acoustics, Speech, and Signal Pro-
cessing, ICASSP, volume 5, pages 169-172, 2005.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

M. Toussaint, S. Harmeling, and A. Storkey. Probabilistic inference for solving
(PO)MDPs. Research Report EDI-INF-RR-~0934, University of Edinburgh, School
of Informatics, 2006.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305,
2008.

