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We analyse online gradient descent learning from finite training sets at non-
infinitesimal learning rates 7. Exact results are obtained for the time-depen-
dent generalization error of a simple model system: a linear network with
a large number of weights N, trained on p = aN examples. This allows us
to study in detail the effects of finite training set size a on, for example,
the optimal choice of learning rate . We also compare online and offline
learning, for respective optimal settings of n at given final learning time.
Online learning turns out to be much more robust to input bias and actually
outperforms offline learning when such bias is present; for unbiased inputs,

online and offline learning perform almost equally well.

1 Introduction

The analysis of online (gradient descent) learning, which is one of the most common
approaches to supervised learning found in the neural networks community, has recently
been the focus of much attention. The characteristic feature of online learning is that
the weights of a network (‘student’) are updated each time a new training example is
presented, such that the error on this example is reduced. In offline learning, on the other

hand, the total error on all examples in the training set is accumulated before a gradient
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descent weight update is made. For a given training set and starting weights, offline
learning is entirely deterministic. Online learning, on the other hand, is a stochastic
process due to the random choice of training example (from the given training set) for
each update; in fact, it can essentially be viewed as a ‘noisy’ version of offline learning.
The two are equivalent only in the limit where the learning rate 5 — 0 (see, e.g., Heskes
and Kappen, 1991). For both online and offline learning, the main quantity of interest
is normally the evolution of the generalization error: After a given number of weight
updates, how well does the student approximate the input-output mapping (‘teacher’)
underlying the training examples?

Most analytical treatments of online learning assume either that the size of the train-
ing set is infinite, or that the learning rate 7 is vanishingly small. Both of these restrictions
are undesirable: In practice, most training sets are finite®, and non-infinitesimal values of
7n are needed to ensure that the learning process converges after a reasonable number of
updates. General results have been derived for the difference between online and offline
learning to first order in 7, which apply to training sets of any size (see, e.g., Heskes and
Kappen, 1991). However, these do not directly address the question of generalization
performance. The most explicit analysis of the time evolution of the generalization error
for finite training sets was provided by Krogh and Hertz (1992) for a scenario very similar
to the one we consider below. Their n — 0 offline calculation will serve as a baseline for
our work. For finite 7, progress has been made in particular for so-called soft commit-
tee machine network architectures (see, e.g., Saad and Solla, 1995; Biehl and Schwarze,
1995), but only for the case of infinite training sets.

In this paper, we give an exact analysis of online learning in a simple model system.
Our aim is twofold: (1) to assess how the combination of non-infinitesimal learning rates
n and finite training sets (containing « examples per weight) affects online learning, and

(2) to compare the generalization performance of online and offline learning. A priori, one

30nline learning can also be used to learn teacher rules that vary in time. The assumption of an
infinite set (or ‘stream’) of training examples is then much more plausible, and in fact necessary for
continued adaptation of the student. We do not consider this case in the following.



may expect online learning to perform worse due to its inherent randomness. We show
that this disadvantage is actually negligible when online and offline learning are compared
on an equal footing, ¢.e., for their respective optimal learning rates. More importantly,
we will see that online learning i1s much more robust to input bias than offline learning

and actually performs better than the offline version in the case of biased inputs.

2 Model definition

We consider training of a linear student network with input-output relation

1
y=—w'x

VN

Here x is an N-dimensional vector of real-valued inputs, y the single real output and w

the weight vector of the network. T’

denotes the transpose of a vector and the factor
1/V/N is introduced for convenience. In online learning, whenever a training example
(x,y) is presented to the network, its weight vector is updated along the gradient of the
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squared error® on this example, z.¢.,

2
1 1 1 1
Aw = -1 Vy - <y - —wa> = (—yx - —XXTW)
N Vw 5) N n N N
where 7 is the learning rate. We are primarily interested in the case of online learning
from finite training sets, where for each update an example is randomly chosen from a

given set {(x¥,y*), p = 1...p} of p training examples. If example y is chosen for update

n, the weight vector is changed to

Wil = {1 — % [x“(x“)T + 7] } wn + 7 \/Lﬁy“x” (online) (1)

4We consider only squared error here, which is probably the most commonly used error measure. We
also restrict our analysis to ‘vanilla’ gradient descent learning, excluding more sophisticated learning
algorithms.



Here we have also included a weight decay v. The update rule for offline learning is
similar, but here the gradients for all p different training examples are accumulated

before a weight update is made:
Wit = [1 = A+ A)lwyp + —= Zy xH (offline) (2)

Here r is the number of offline weight updates; in order to compare online and offline
learning at equal computational cost, we index the weight vectors for both cases by the

number of gradient calculations, which is n = rp in the offline case. The matrix
1 T
=N Z x"(x")
I3

is the correlation matrix of the training inputs, and A = vya is the weight decay rescaled
by the number of examples per weight, & = p/N. We will generally use A (rather than
%) to characterize the strength of the weight decay, for both online and offline learning.
For simplicity, all student weights are assumed to be initially zero, i.e., w,=¢ = 0.

The main quantity of interest to us is the generalization error of the student and its
evolution during learning. We assume that the training examples are generated by a linear
‘teacher’, ie., y* = wlix"/\/N + & where ¢# is zero mean additive noise of variance

. The teacher weight vector is taken to be normalized to w? = N for simplicity. We
first investigate the case of unbiased inputs ({(x) = 0), assuming that input vectors are
sampled randomly from an isotropic distribution over the hypersphere x> = N (biased
inputs will be considered in Section 4). The generalization error, defined as the average

of the squared error between student and teacher outputs for random inputs, is then

1

LAY A

2 D)
—w,) = ﬁvn where v, = w, — ws.

In order to make the scenario analytically tractable, we focus on the limit N — oo of a

large number of input components and weights, taken at constant number of examples



per weight & = p/N and updates per weight (‘learning time’) ¢ = n/N. In this limit,
the generalization error ¢;(t) becomes self-averaging (see however Section 4) and can be
calculated by averaging both over the random selection of examples from a given training
set and over all training sets. Our results can be straightforwardly extended to the case

of perceptron teachers with a nonlinear transfer function, as in (Sollich, 1995).

3 Unbiased inputs

3.1 Outline of calculation

We begin by deriving from the online learning weight update (1) an update equation
for the ‘selection’ average of the generalization error (i.e., its average with respect to the
random choice of training examples for each update, denoted generically by (.. .)). In fact,
it will turn out to be useful to consider a slightly generalized version of the generalization
€rror, €, = ﬁvIMvn, with M an arbitrary N x N matrix. To get the update equation
for (e,), we first rewrite (1) in terms of v, the difference between student and teacher

weight vectors:

1 A 1 A
Vppl = {] -7 I:ﬁx“(x“)T + ;j| } vp+7 \/—ﬁéj“x“ — %W* (3)

This can now be multiplied by its transpose, with the matrix M inserted, and the selection
average for update n performed. Discarding terms which become negligible in the large

N limit, one finds after a little algebra

N (et = e = T b aw ™M (v = 2 (V7 [+ Jam+ ma)| v )

+ T2 2 TN { €7 = €8 LT (vn) + 5 () T

where 7) = n/a is a rescaled learning rate, and b = 3~ &#x#/VN. We now want to

transform (4) into a closed dynamical equation for {¢,). This means that all selection

Ot



averages need to be either eliminated or reduced to averages of the same form as (¢, ).
For the two terms linear in (v,), this is straightforward: The selection average of (1)

yields directly
N ((vnt1) = (vn)) = 1 [=(A + A)(va) + b = Aw.].
Starting from vq = —w,, this can easily be solved, with the result (for N — o0)
(vi)=(A+A)"" {b-Aw, —exp[-ijt(A+ A)] (b + Aw.)} (5)

from which the selection average has now disappeared. Learning rate and learning time
enter only through the combination 7 = 7¢; this rescaled time will be useful later on.
In (4), the remaining terms quadratic in v, now present the main problem. The second
term on the r.h.s. shows that the evolution of ¢; = ¢,(M =1) depends on ¢, (M = A)
which in turn depends on €, (M= A?) and so on, yielding an infinite hierarchy of order
parameters. This problem was solved in (Sollich and Barber, 1997a) by introducing
an auxiliary parameter h through M = exp(hA); all order parameters €,(M = A™),
m =1,2,..., can then be obtained by differentiating ¢, (h) = 5%-v exp(hA)v,.

Here we choose a different route, which 1s somewhat more transparent and also more
easily adapted to the case of biased inputs to be considered later. The main idea is
to decompose the evolution of v, into components defined by eigenvectors of the input
correlation matrix A. (This is equivalent to changing to a coordinate system in which
A is diagonal, and then considering the components of v, separately.) More precisely,
let us order the N eigenvalues of A in ascending order and split them into K equal
blocks, labeled by k = 1... K, each containing N/K eigenvalues. Let P* be the projector
matrices onto the spaces spanned by the eigenvectors of each block. Then v,, = P*v,,;
likewise, the generalization error is decomposed as

1 K .
Cg = fzeﬁ; €y = ﬁng“vn



Each of the generalization error components ¢ obeys the update equation (4), with

M = KP*. But these equations now become closed, because
AP® = P*A n a"P"

where a* is an eigenvalue from the x-th block (formally, this approximation becomes
exact in the limit K — oo, where the spread of eigenvalues within each block tends
to zero). This immediately reduces the second term on the right-hand side of (4) to
—27(A+a") (e}). Only the very last term of (4) now remains to be brought into a similar
form. This is achieved by noting that the factors c¢# = (K/N)(x*)*P*x* are ‘within-
sample self-averaging’ (Sollich and Barber, 1997a): Up to fluctuations which vanish as
O(N_l/z) for large N, all ¢# are equal to each other and hence to the training set

(‘sample’) average
K

1 K a
— E cﬁ:LtrAP"N—
p aN e
o
The last approximation again becomes exact® for K — oco. The factors ¢# = a*/a can

therefore be taken out of the sum over p in (4), leaving the selection average

1 T T 1 T 1 K/ K
ZN: ﬁ< TxH(x") Vn> =3 <vn Avn> ~ E;a ()
We now have all the ingredients to write (4) as a closed system of evolution equations
for the €. In the large N limit, the change N (<€,’§+1> - <€Z>) due to an update becomes

the time derivative d;e®, and () — €"(¢). Using the rescaled time 7 = #jt introduced

above, one then has

[0 + 2+ @))€ (1) = VA (r) + AW () it 30 e (1) (6)

®!

5The large K limit needs to be taken after the limit N — oo for ‘within-sample self-averaging’ to
hold; this is why one cannot take K = N from the outset.



Here the functions V*(7) and W*(7) are

K _ I{ K
P 1
W" = a [_QN EN (£1)? — NbT (vn>]

with (v, ) given by (5). Having derived (6), the rest of the calculation is fairly straightfor-
ward. Eq. (6) is formally solved using Laplace transforms with respect to 7, for example

" (z) = fooodr exp(—zT) €®(7):

K _ 1 K Tk ~ 117k ~ g 1 P
G(Z)_z-l-‘Z()\-l-a") 0+ Vi) +aWr(z) +7a KZ,G ¢ (z)] (7
with the initial condition ¢*(0) = %W*TPK'W*. Multiplying by ¢ and summing over &

then gives a self-consistency equation for K= 3" a”é*(z) which is easily solved. Inserting
the solution into (7) then gives an explicit expression for €*(z) and hence for the Laplace
transform of the generalization error, ég(2) = K~1Y__€%(z). As a final step, the average
over all training sets (i.e., training inputs x* and output noises &) is then carried out.
In the end, everything can be written in terms of averages over the known eigenvalue
spectrum (Hertz et al., 1989; Sollich, 1994) of the input correlation matrix A. The
explicit form of the final result (Sollich and Barber, 1997a) is rather cumbersome; we

omit it here and note only the relatively simple dependence on n:

6(2) = é0(s) + Ty (¥

The functions €;(z) (i = 0...2) depend on «, ¢? and X (and, of course, z), but are
independent of 5. The teacher weights do no appear explicitly: because of the isotropy
of the input distribution, only the length of the teacher weight vector matters once an
average over training sets has been taken, and this has already been fixed to w? = N.
The calculation of the generalization error for offline learning is much simpler than

that for the online case due to the absence of the selection average. In fact, the offline



Figure 1: Asymptotic generalization error €., vs 7 and A. a as shown, o2 = 0.1.

weight update (2) can be iterated directly to yield
Vip = (\+ A) 7 b= dw. — [L— g\ + A (b + Aw.)} )

Multiplying this by its transpose gives directly the generalization error, and the average
over training sets can then be carried out in the usual fashion (see, e.g., Hertz et al.,
1989). As expected on general grounds, for 7 — 0 (and only then) one obtains the same

result as for online learning, corresponding to the term éq(z) in (8).

3.2 Discussion

We now briefly highlight some features of our exact result (8) for the generalization error
achieved by online learning; a somewhat more detailed exposition can be found in (Sollich
and Barber, 1997b). We discuss the asymptotic generalization error €, the convergence
speed for large learning times, and the behaviour at small ¢; finally, we compare online
and offline learning. For numerical evaluations, we generally take 02 = 0.1, corresponding
to a sizable noise-to-signal ratio of v/0.1 & 0.32.

The asymptotic generalization error is found directly from (8) using e = €g(t —
00) = lim, 0 2€g(2). As expected, it coincides with the offline result (which is indepen-
dent of ) only for n = 0; as 5 increases from zero, it increases monotonically. Reas-
suringly, our calculation reproduces existing O(n) results for this increase (Heskes and

Kappen, 1991). In fig. 1 we plot ey, as a function of 5 and A for « = 0.5, 1, 2. We



observe that it is minimal for A = ¢ and 5 = 0, as expected from corresponding results
for offline learning (Krogh and Hertz, 1992)¢. We also read off that for fixed A, €., is an
increasing function of n: The larger i, the more the weight updates tend to overshoot
the minimum of the (total, i.e., offline) training error. This causes a diffusive motion of
the weights around their average asymptotic values (Heskes and Kappen, 1991) which
increases €o. In the absence of weight decay (A = 0) and for a < 1, however, €5 is
independent of 7. In this case the training data can be fitted perfectly; every term in
the total sum-of-squares training error is then zero and online learning does not lead to
weight diffusion because all individual updates vanish. In general, the relative increase
€00 (n) /€ (n = 0) — 1 due to nonzero n depends significantly on o. For n = 1 and a = 0.5,
for example, this increase is smaller than 6% for all A (at ¢ = 0.1), and for a = 1 it
is at most 13%. This means that in cases where training data is limited (p ~ N), n
can be chosen fairly large in order to optimize learning speed, without seriously affecting
the asymptotic generalization error. In the large a limit, on the other hand, one finds
€0 = (02/2)[1/a+ 1/(2 — n)]. The relative increase over the value at = 0 therefore
grows linearly with «; already for a = 2, increases of around 50% can occur for = 1.

Fig. 1 also shows that e, diverges as n approaches a critical learning rate n.: As
17 — 7, the ‘overshoot’ of the weight update steps becomes so large that the weights
eventually diverge. From the Laplace transform (8), one finds that 7. is determined by
neéa(z = 0) = 1; it is a function of o and A only. As shown in fig. 2b-d, 7. increases
with A. This is reasonable, as the weight decay reduces the length of the weight vector at
each update, counteracting potential weight divergences. In the small and large o limits
one has 7. = 2(1 4+ A) and 5. = 2(1 + A/a), respectively. For constant A, 7. therefore
decreases” with a (fig. 2b-d).

We now turn to the large ¢ behaviour of the generalization error ¢g(¢). For small 7,

6The optimal value of the unscaled weight decay decreases with a as v = 02/a, because for large
training sets there is less need to counteract noise in the training data by using a large weight decay.

"Conversely, for constant -y, 7c increases with o from 2(1 4 ya) to 2(1 + +): For large o, the weight
decay is applied more often between repeat presentations of a training example that would otherwise
cause the weights to diverge.
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Figure 2: Sketch of definitions of fmin (minimal learning rate for slow mode), 7 (crossover
to slow mode dominated convergence) and 7. (maximal (‘critical’) learning rate at which
convergence still occurs), and their dependence on a.

the most slowly decaying contribution to ¢z(t)—the slowest ‘mode’—varies as exp(—ct),
its decay constant ¢ = [\ + (v/a — 1)?]/a scaling linearly with 7, the size of the weight
updates, as expected (fig. 2a). For larger 5, the picture changes due to a new slow mode
arising from the denominator of (8). Interestingly, this mode exists only for 7 above a
finite threshold nyi, = 2/(0[1/2 +a~1/2_ 1). For finite a, it could therefore not have been
predicted from a small i expansion of ¢,(t). Tts decay constant ¢y decreases to zero as
7 = 17, and crosses that of the normal mode at nx(c, A) (fig. 2a). For n > 1y, the slow
mode therefore determines the convergence speed for large ¢, and fastest convergence is
obtained for n = 7x. However, it may still be advantageous to use lower values of 7 in
order to lower the asymptotic generalization error (see below); values of n > 5, would
deteriorate both convergence speed and asymptotic performance. Fig. 2b-d shows the
dependence of nyin, 7x and 1. on a and A. For A not too large, n, has a maximum at
a & 1 (where ny & 1), while decaying to 7 & %nc for larger a. This can be explained
in terms of the anisotropy of the total training error surface (Sollich and Barber, 1997a),
which is strongest for « = 1 and A — 0.

Consider now the small ¢ behaviour of ¢g(t). Fig. 3 illustrates the dependence of eg(t)
on 7; comparison with simulation results for N = 50 clearly confirms our calculations
and demonstrates that finite N effects are not significant even for such fairly small V.
For o = 0.7 (fig. 3a), we see that nonzero n acts as effective update noise, eliminating
the minimum in €4 (¢) which corresponds to over-training (Krogh and Hertz, 1992). €., is

also seen to be essentially independent of 5 as predicted for the small value of A = 10~*
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A =175 ¢yn=0.75
¢ n=1.50 0n=0.50
On=0.25

0.2 : 0
0 10 20 30 ¢ 0 5 10 15 ¢ 20

Figure 3: ¢, vs ¢ for different . Simulations for N = 50 are shown by symbols (standard
errors less than symbol sizes). A=10"%, 62=0.1. (a) «=0.7, (b) a=5

chosen. For a = 5, fig. 3b clearly shows the increase of e, with 5. Tt also illustrates
how convergence first speeds up as 7 is increased from zero and then slows down again
as e & 2 is approached.

Above, we saw that the asymptotic generalization error e, is minimal for n = 0.
Fig. 4 shows what happens if we minimize ¢(t) instead for a given final learning time
t, corresponding to a fixed amount of computational effort for training the network. As

t increases, the optimal 1 decreases towards zero as required by the tradeoff between

(a) 1.0 px (b) 0.25
0.8
06 0.20
Topt g
047 0.15
0.2
0 L | L | L | L | L 0.10 L | L | L | L | L
0 10 20 30 40 50 ¢ 0 10 20 30 40 50 t

Figure 4: (a) Optimal learning rate 5 vs. final learning time ¢ for online (bold) and offline
learning (thin lines), and (b) resulting generalization error ¢;. a = 1, 02 = 0.1, X as
shown. Note that although we plot offline results as continuous lines to avoid visual
clutter, they are actually defined only at discrete values of the learning time, t = ra,
with  the number of offline weight updates.
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asymptotic performance and convergence speed. For large ¢, the functional form of this
decay is Nope = (a + bInt)/t with ¢-independent coefficients @ and b (Sollich and Barber,
1997a).

We now compare the performance of online learning to that of offline learning as
calculated from (9). (The number of gradient calculations required for r offline weight
updates is n = rp, corresponding to a learning time ¢ = n/N = ra; the generalization
error €g(t) is therefore only defined for learning times ¢ which are integer multiples of a.)
To compare online and offline learning on an equal footing, we again consider optimized
values of 5 for given final learning time ¢. Fig. 4b shows that the performance loss from
using online instead of offline learning is actually negligible. This may seem surprising
given the stochasticity of weight updates in online learning, in particular for small .
However, fig. 4a shows that online learning can make up for this by allowing larger values

of 1 to be used.

4 Biased inputs

4.1 Modifications to calculation

We now investigate how online and offline learning are affected by input bias (x) = x # 0.
As a simple scenario of this kind, consider the case where the deviations Ax = x — x of
the inputs from their average are still distributed isotropically over a hypersphere. We
choose the radius R of this hypersphere such that the average value of x? is the same
(N) as for the unbiased case, i.e., R? = N(1 — m?) where m? = x?/N measures the size
of the bias. The generalization error (the squared deviation between student and teacher

outputs averaged over all inputs) now has two components,

= g [KTva) + (1 = m)v2] (10)

As before, we consider a teacher with weight vector of length w? = N. In the presence of

input bias, however, we also need to specify the average teacher output y = xTw, /V/N.

13



This parameter 1s not constrained by our other assumptions; however, to limit the number
of free parameters in the model, we choose it to have its typical root-mean-squared value
when the directions of w, and % are uncorrelated: 7> = m?.

As for the case of unbiased inputs, the evolution of the generalization error is largely
determined by the eigenvalue spectrum of the input correlation matrix A. This has
been determined by a number of authors (LeCun et al., 1991; Wendemuth et al., 1993;
Halkjeer and Winther, 1997) and shows the following features: There is a ‘normal’ part
of the spectrum, with eigenvalues which tend to finite values as N — oo; the eigenvalues
in this part of the spectrum are identical to those for the unbiased input case, expect for
a rescaling by the factor (1 —m?). Additionally, however, there is one isolated eigenvalue
any = Nam? which is proportional to N and exists only in the presence of input bias.
Intuitively, this corresponds to the fact that the component of the student weights along
the direction of x is much more strongly determined by the training data because all
input vectors have a component along x. Not surprisingly, therefore, the eigenvector
corresponding to ay is along the direction® of x.

We can see immediately that input bias has a drastic effect on offline learning by
considering eq. (9): For the offline learning process to converge, the product of  and
the largest eigenvalue of A + A must be less than two. In the presence of input bias,
this gives the condition n < 2/(Nam?) (neglecting A, which gives a negligible correction
for N — o0). The maximal learning rate is therefore drastically reduced from order
unity to O(N~'). A little reflection then shows that only the first contribution of the
generalization error (10) decays for finite learning times; carrying out the average over
training sets, one finds

1 1
eg(t:ra) = §m2(1—N7]am2)27+§(1—m2) (11)

81In fact there is a small angle between this eigenvector and X, which however decreases as O((aN)_1/2)
as N grows large. LeCun et al. (1991) claimed that this angle is exactly zero; however, their argument
cannot be quite correct as it would also entail that A has only two different eigenvalues (whereas in
reality it has a continuous spread of eigenvalues for any finite o).

14



The second contribution would only decay for learning times of O(N), which are inac-
cessibly long in the limit N — oo that we consider.

Online learning, on the other hand, is not plagued by the same problem, as we now
show. Consider the first contribution to the generalization error, which we write as
€g1 = %52 with

1

bp = —=X v,

VN

From the update equation (3) one derives that

g1 = (1 —nm?)é, + n&rm? (12)

up to correction terms which vanish for N — oco. Starting from the initial value dg = —,

this can easily be iterated and the selection average carried out to give

4l - (1 - 777"2)2” 12(6;1)2

62 :—21_ 2\2n 2
(0p) =9°(1 —ym”?) +nm—1—(1—nm2)2pu

up to O(N 1) corrections; an average over training sets then gives p~1 Zu(ﬁ“)z — a2,
For n =t = 0, only the first term is nonzero. On the other hand, for nonzero learning
time ¢ (and values of the learning rate such that convergence occurs, i.e., 0 < n < 2/m?)
only the second term survives because n = Nt — oo for N — co. We therefore have for

the average value of the first contribution to the generalization error:

nm?

— 1
(1t =0) =" =, {e(t>0) = 50" o

(13)

The discontinuous change at ¢ = 0 reflects the fact that <§Z> changes from its initial to
its asymptotic value after a number of updates n which does not increase with system

size N. °

We still have to calculate the evolution of the second component €z 5 = (1-m?)v2/(2N)

?Note also that we have written the selection average in (13) explicitly because €1 is no longer
self-averaging: Each weight update (12) causes a change in §» and ¢g; of order unity, and hence the
fluctuations of ¢g 1 remain nonzero even for N — co.
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Figure 5: Critical learning rate 7. for online learning vs input bias m?, for weight decay
A as shown and training set size « = 0,1,...,5 (bottom to top). Compare fig. 2 for the
case of unbiased inputs.

of the generalization error (10) for the case of online learning. At first sight, the O(N)
eigenvalue of A appears to complicate this task. However, the component of v,, along X,

the corresponding eigenvector, contributes only negligibly to ¢g,2:

1 (1 P

_T -1
(=%, ) = e = O(N
2N <|5<| v ) Nz et = OV

Thus only components of v,, along directions corresponding to the O(1) eigenvalues of A
need to be considered; their evolution can be calculated exactly as in Section 3. The only
change is the rescaled eigenvalue spectrum of A; in fact, one finds that ¢; /(1 — m?) is
exactly the same as €; = v2 /2N for unbiased inputs of length x? = N (1—m?). It is easily
checked that this change of effective input vector length can be effected by replacing A, o2
and 7 in the expressions for ¢, by the rescaled values X' = A/(1—m?), (¢/)? = 0?/(1—m?)

and 7' = (1 — m?), and so no new calculations need to be carried out.

4.2 Discussion

We have already mentioned that the critical learning rate for offline learning is dras-
tically reduced to 1. = 2/Nam? by the presence of input bias. For online learning, 7.
is affected in two ways: first through the ‘rescaling’ of 5 and A explained above for the

calculation of ¢ 5, and secondly through the presence of the term ¢, 1; eq. (13) shows
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Figure 6: (a) Optimal learning rate i vs. final learning time ¢ for online learning in the
presence of input bias m? (values as shown; @ = 1, 02 = 0.1, A = 0.001). (b) Resulting
generalization error €z, with results for offline learning shown for comparison (thin lines).
Note that while offline learning performs (marginally) better than online learning for
unbiased inputs (m? = 0), it is far worse as soon as the input bias is nonzero.

that for the latter to remain finite one requires n. < 2/m?. Fig. 5 illustrates the resulting
variation of 5. with m? for several values of o and A: As the bias increases from 0, the
critical learning rate first increases until it reaches the value 2/m?; from that point on-
wards, it follows the curve 5. = 2/m? (independently of a and A) until it reaches 7. = 2
at'® m? = 1. In marked contrast to the case of offline learning, the critical learning
rate 7. for online learning therefore never decreases below values of order unity, and can
actually be increased by the presence of input bias.

The different effects of input bias on the critical learning rates of online and offline
learning are also reflected in the generalization performance for optimal values of 7 at
given final learning time. For offline learning, eq. (11) shows that the optimal n =
1/(Nam?), whatever the (integer) value of r = #/a. This reduces the first contribution
to the offline generalization error to zero for any » > 1, but still leaves a nonzero term
¢g = (1 —m?)/2 (which as explained above would start to decay only for extremely long
learning times ¢ = O(N)).

For online learning, on the other hand, the optimal learning rate remains of order one

even in the presence of input bias. This was to be expected from the analogous results

10This is the maximal bias in our scenario since <x2> =N > %2 = NmZ2.
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for the critical learning rate, and can be seen explicitly in fig. 6(a). Fig. 6(b) shows the
resulting generalization error, which is seen to decrease as the input bias increases. Online
learning therefore successfully exploits the presence of the input bias to achieve better
generalization performance!!. This contrasts markedly with the case of offline learning),
where generalization performance (at finite learning times ¢) deteriorates as soon as an

input bias is present!Z.

5 Conclusions

In this paper, we have obtained exact results for the generalization error achieved by
online learning from finite training sets at non-infinitesimal learning rates. These apply
directly only to the simple linear model that we have considered, but also exhibit generic
features which we expect to be of general relevance. For example, the calculated depen-
dence on 7 of the asymptotic generalization error €+, and the convergence speed shows
that, in general, sizable values of 1 can be used for training sets of limited size (a & 1),
while for larger « it is important to keep learning rates small. More important from a
practical point of view is probably the explicit comparison between online and offline
learning that our results allow us to make. To make this comparison fair, we considered
the generalization performance of both algorithms for the respective optimal values of
the learning rate at a given final learning time ¢. For unbiased inputs, we found in this
way that online learning performs only marginally worse than offline learning, whereas it
is in fact vastly superior as soon as there is any kind of input bias. This suggests strongly

that online learning should generally be preferred over offline learning in problems where

11Wendemuth et al. (1993) view the input bias as ‘additional information’ which leads to improved
generalization. In our case, the same conclusion can be arrived at by considering the extreme limit of
maximal bias, m? = 1: In this case, the distribution of input vectors collapses to the point x = %, and so
perfect generalization is obtained after only one training example has been presented. (For noisy training
outputs, more examples would be needed; the generalization error then decays roughly as ¢g ~ o2 /n,
which however still gives perfect generalization ¢g = 0 for any finite learning time ¢.)

12For biased inputs, we found an offline generalization error of g = (1- m2)/2 for optimally chosen
n, which is arbitrarily close to % for m? sufficiently small. For unbiased inputs, on the other hand, €g

for optimal 7 is generally significantly smaller than a half, as illustrated by fig. 4, for example—it can

never be greater than % since otherwise 7 = 0 would give a lower ;.
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biased inputs cannot be a priori excluded.

In the future, we hope to extend our analysis to dynamic (t-dependent) optimization
of n; based on the results of (Luo, 1991; Heskes and Wiegerinck, 1996), however, one may
suspect that performance improvements over optimal fixed 7 may be small. More impor-
tantly, more complicated network architectures need to be studied in which the crucial
question of local minima can be addressed. We speculate that the superiority of online
learning may be even more pronounced here, due to its stochastic weight updates which
should facilitate the escape from local minima. We have done some exploratory work
along those lines for soft-committee machine architectures, using a fairly simple-minded
approximation scheme (Sollich and Barber, 1998). Considerable challenges remain, how-

ever, and there is much scope for future work in this direction.
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