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Abstract

Graphical models provide a broad framework for probabilistic inference,
with application to such diverse areas as speech recognition (Hidden
Markov Models), medical diagnosis (Belief networks) and artificial in-
telligence (Boltzmann Machines). However, the computing time is typ-
ically exponential in the number of nodes in the graph. We present a
general framework for a class of approximating models, based on the
Kullback-Leibler divergence between an approximating graph and the
original graph. We concentrate here on undirected approximations of
both intractable directed and undirected graphical models. Simulation
results on a small benchmark problem suggest that this method compares
favourably against others previously reported in the literature.

1 Introduction

Graphical models have recently drawn a great deal of interest, being recognised
as a powerful framework for probabilistic inference[l]. Unfortunately, in gen-
eral, large graphs are computationally intractable and approximations need to
be employed. Recently, variational approximations have been popular[2, 3, 4,
5], and have the advantage of providing rigorous bounds on quantities of inter-
est, such as the data likelihood, in contrast to other approximate procedures
such as Monte Carlo methods[1]. In the neural networks community, one of the
original models, the Boltzmann machine (BM), belongs to the class of undi-
rected graphical models although the lack of a suitable algorithm has hindered
their application to larger problems. In principle, the framework we present
here is applicable to all undirected approximations, although the simplest, non-
trivial of these are BMs, on which we focus here, section (2). We re-derive one
of the main variational approximations in section (2.1) before generalising this
to arbitrary tractable approximations in section (3). In section (3.1) we show
how this can be used to accurately approximate BMs. We apply this framework
to approximate directed graphs in section (3.2) by introducing extra variational
parameters, and include results on a toy benchmark problem.
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Figure 1: A decimation rule for BMs. We remove the upper node on the left
so that the partition function of the reduced graph is the same. This requires
a simple change in the parameters J, h coupling the two nodes on the right.

2 Boltzmann Machines

Boltzmann machines describe probability distributions over binary variables
s; € {0,1},i = 1..N, of the form

1
P(S) = E exp ths, + Z JijSz'Sj (1)

where the normalization constant, commonly called the partition function is

Z = Zexp Zhisi + Z Jij8i8;5 (2)
s 1 i

All quantities of interest can be derived from the partition function, or minor
variants of it. For general connection structures, J, computing Z is intractable
as it involves a sum over 2V states; however, not all Boltzmann machines
are intractable. A standard class of tractable structures is described by a set
of so-called decimation rules in which nodes from the graph can be removed
one by one, fig(1). Provided that appropriate local changes are made to the
BM parameters, the partition function of the reduced graph remains unaltered
(see eg [2]). By repeated application of such rules, the partition function is
calculable in linear time.

2.1 Node elimination variational approximation

For comparison, we re-derive briefly the lower bound approximation of Jaakkola
et al. (see for example, [3]). The central idea is to strip away enough nodes of a
general graph to reveal a tractable (decimatable) subgraph, see fig(2a), whilst
retaining a bound on the partition function. Without loss of generality, we will
remove node 1. Consider the following representation of P

P(s1...80) =P(s1]|s2...8,) P(s2...8p) (3)

We find an approximating distribution Q(s1) to P (s1|s2...s,) by minimizing
the Kullback-Leibler divergence, KL = > _, Q(s1) In(Q(s1)/P (s1]s2 .- - 55)),

KL=H(m)+1In (1 ety Jljsj) —m Zjljsj +hi | >0 (4
J
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Figure 2: A fully connected 4 node BM is not decimatable. Variational ap-
proximations correspond to decimatable subgraphs of varying complexity.

where the binary entropy is given by H (u) = —plng — (1 — p)In (1 — ) and
1 = Q(s1 =1). Since KL > 0, we obtain a bound on the term,

In (1 +eMtL Jljsj) > H () + Z J1js5 + ha (5)
J

Extracting the dependence on node 1 in (2) and summing over the two states

Z= Z (1 + s Jljsj) €xp Z his; + Z Jijsis; (6)

{sn,k#1} il ij£1

Using the bound on 1 + M i (5), we can then write

InZ>H (/Ll) + ]’L1/J,1 +1n Z exp Z iLzSz + Z Jz'jSiSj (7)
{sk,k#1} i#l ij#1

where the new biases are given by hi = hi + p1J1;- We then repeatedly remove
nodes in a similar manner until a tractable (sub)structure is found. The bound
(an extended form of (7)) is subsequently optimized with respect to the varia-
tional parameters {y;}. If we continue to eliminate all the nodes in the graph,
this reduces to the “naive” mean field theory, which is equivalent to a factored

approximation (see fig(2b)), Q(s) =[], u:* (1 — i) % [6].

3 General Kullback-Leibler Approximation

Both the node elimination and naive mean field theory use the KL divergence
bound for tractable variational subgraphs in which any connections J are the
same as in the original graph, but with potentially adaptable biases. Here,
instead of searching for a partially “factored” approximation to P, as in section
(2.1), we consider a general distribution, Q(s), in which all biases and weights
are adaptable. To find the best approximation, we need to calculate the KL
divergence. For convenience, we write the intractable distribution in the form,



P(s|h,J) = e%»/Z,, and the approximating distribution Q(s|h,J) = e%/Z,.
The KL divergence, measuring the discrepancy between @) and P, is

KL:Z(QIHQ_QIHP) = (¢q) —InZ; — (¢p) + const. (8)
s
where (- - -) denotes averages over Q(s).

3.1 Approximating Undirected Graphs

Since, for BMs, each term ¢, and ¢, is a quadratic function of the variables s,
we need to be able to calculate first and second order correlations, (s;), (s;s;)-
Under the representation s € {0,1},

(Sz'Sj):Q(SiZ].,Sj:].): Z Q(Sl,...sizl,...Sj=].,...SN)

su, k£i,j
= lbsthisaii) 7 (0, 5) 12 (b, 9), 9)

where hj, = ﬁk + 2 (jzk + jjk). The partition function Z_[; j; relates to a

graph in which nodes %,j have been removed. The correlations (s;) can be
computed similarly!. With these tools, we can approximate any BM by another,
tractable BM by minimizing (8) with respect to J, h. For example, one can
approximate a fully connected graph by the largest decimatable (sub)structure,
fig(2c). In contrast to the node elimination scheme, all the connection strengths
and biases of the approximating graph are adaptable leading, in general, to a
more powerful approximation.

3.2 Approximating Directed Graphs

Directed probability distributions have the form P(s) = [[, P(si|pa(s;)), where
pa (s;) is the parent set of node i[1]. For concreteness, we consider here sigmoid
belief networks in which each local probability has the form

P(Si = 1|pa (S,)) =0 Z J,'ij + h; (10)

where o (2) = 1/ (1+ e~ *). We use the convention that the connection J;; is
directed from node j to node ¢ with no self-interactions, J;; = 0. The network
is composed of visible (V) and hidden units (H), and the quantity of interest
is the likelihood of the visible units,

P(V)=)_P(H,V) (11)
H

IThere is a faster way to compute the term Z s QIn Q. Consider the partition function
InZy(A) = Y g erbstsJs), Then 3 QInQ = ZInz, (>\)|A_1 —1In Z4. This derivative
can be approximated numerically extremely accurately using only two partition functions.



Figure 3: Directed graph toy problem (left). The hidden units (black) are
approximated by a BM (right), one of many possible tractable structures.

Since this involves summing over all the states of the hidden units, we attempt
to apply the framework of section (3) for approximating partition functions.
We write the directed graph probability distribution as?

P(H,V)= Hexp [2isi — Ina)y) (12)

where z; =) j Jijsj + h; and the local normalization functions are ¢; = 14 €.
The first quadratic term in each exponential factor of (12) is equivalent to a BM
factor, but the local normalisations v;, prevent the distribution being exactly
representable by a BM. In calculating the KL divergence between an approxi-
mating BM and P(H, V), we need to compute averages over ln 1);, which cannot
be written in a compact form. We make use instead of the approximation® [4]

(In[l+e]) <&(z) +In <e—€z + e<1—€>Z> (13)

where £ is a variational parameter that lies in the interval [0, 1]. Application of
(13) in (8) results in a tractable expression for the KL divergence®. We then
optimize the parameters of the BM, J, &, together with £, by minimizing the
KL divergence numerically®.

3.3 A toy benchmark problem

A toy problem presented in [4] provides a suitable benchmark for our method.
Layered networks with 6 hidden and 6 visible units (see fig(3)) are randomly
generated, with their parameters J;; and h drawn from a uniform distribution
over [—1,1]. In all cases, the visible units have their states clamped to zero and
we wish to approximate the likelihood P(V). The true likelihood of the visible
units can be computed exactly for this small problem. Naive mean field applied
using the bound (13) has a mean relative error of 0.0156[4]. Mixtures of mean
field® was used in [5], which gave a mean relative error for a five component

*In the notation of section (3), ¢p = 3, [zii — Inty;], and Zp = 1.

3A more accurate bound is possible using a quadratic (tractable) function of 2.

41t is possible to first approximate sigmoid belief networks by BMs and subsequently this
by a tractable BM. We believe our approach to be more elegant and also more accurate.

5Fixed point equations can be derived from solving for zero derivatives of the KL diver-

gence, although they are not presented here.
i j i 1-s; _
6In this case Q(s) = 2]. Aj Q(s|w?) where Q(s|p) = 1_[Z wi% (1 — pi)” % and Zj Aj =1



0 0.002 0.004 0.006 0.008 0.01

(a) Mean Field (b) Tractable graph

Figure 4: Histogram of relative error In P,ppr05(V)/In Peyyet (V) — 1 for 500
random networks - note the different scales. Mean error: (a) 0.0156 (b) 0.0020

mixture (corresponding to roughly 80 variational parameters) of 0.0114. In our
approach, we use a BM to approximate the hidden unit distribution. Many
choices are possible, and the one we use is displayed in fig(3), a decimatable
structure. This 15 parameter BM, in conjunction with the 10 bound parameters
¢, gives a much lower mean relative error of 0.0020 when used in our method.

4 Conclusion

We have elucidated a general class of tractable undirected approximations of
graphical models, based on the Kullback-Leibler divergence. Our method is
complementary to other approaches since, for example, mixtures of this method
are possible. We believe, however, that it is important to employ mixtures of
‘strong’ components, having maximal similarity with the original graph. We
have also developed a similar approach based on directed graphical approxi-
mations, which has roughly the same accuracy, although possibly improved
convergence properties [7].
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