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Bayesian Factorial Linear Gaussian State-Space
Models for Biosignal Decomposition
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Abstract— We discuss a method to extract independent dynam-
ical systems underlying a single or multiple channels of observa-
tion. In particular, we search for one dimensional subsignals to
aid the interpretability of the decomposition. The method uses
an approximate Bayesian analysis to determine automatically the
number and appropriate complexity of the underlying dynamics,
with a preference for the simplest solution. We apply this method
to unfiltered EEG signals to discover low complexity sources
with preferential spectral properties, demonstrating improved
interpretability of the extracted sources over related methods.

I. I NTRODUCTION

Decomposing a multivariate time-seriesvn
t , t = 1, . . . , T ,

n = 1, . . . , V into a set ofC simpler subsignals (sources) is
a central goal in signal processing and is of particular interest
in the analysis of biomedical signals. The goal of this paper
is to introduce a model which can automatically determine
the number of sources underlying the observations and in
which we can bias the sources to be in certain frequency
ranges. Furthermore, we are interested in taking into account
the temporal structure of the time-series which can help in
obtaining a good decomposition, especially whenC > V .
More specifically, our criterion for the decomposition is that
independent dynamical systems generate the sources which,
under linear noisy mixing, give rise to the observations. For
any two scalar sourcessi

t and sj
t and all timest, we seek a

model of statistically independent dynamicsp(si
1:T , sj

1:T ) =
p(si

1:T )p(sj
1:T ). Furthermore, the aim is to find a matrixW

that relates the sourcesst = vert(s1
t , . . . , s

C
t ) to observations

vt = vert(v1
t , . . . , vV

t ) through noisy mixing1. This is a form
of Independent Components Analysis (ICA) [1] although it
differs from the more standard assumption of independence
at each time step, that isp(si

1:T , sj
1:T ) =

∏T
t=1 p(si

t)p(sj
t ).

We consider a Linear Gaussian State-Space Model (LGSSM),
which is a powerful, yet interpretable and tractable, model.
We constrain the LGSSM in order that independent dynamical
processes can be identified and furthermore that scalar sources
can be extracted from the signal. To determine the correct
number of underlying processes and bias the solution towards
a certain dynamics, we use a Variational Bayesian analysis
which defines a prior distribution over the model parameters.

There are several existing decomposition methods which
encode constraints such as desired frequencies of the inde-
pendent sources (see for example [2], [3]). However, these
methods do not automatically determine the correct number
of underlying sources nor do they consider the dynamics of
the signal in the model structure. A closely related technique

1vert(a, b, c) is the matrix formed by vertically stackinga, b andc.

to ours is (Non) Linear Dynamical Factor Analysis (NDFA)
[4], [5]. Whilst being an attractive and powerful method,
standard NDFA places no constraint that the observations are
formed from mixing independentscalarsources, which makes
interpretation of the resulting sources difficult. Furthermore,
NDFA does not directly force the sources to contain particular
frequencies but rather attempts to bias the discovered sources
by careful initialization [5]. In addition, NDFA uses nonlinear
state dynamics (and mixing), which hampers inference and
makes the incorporation of known constraints more complex.

Inference in the Variational Bayesian LGSSM has previ-
ously been achieved using Belief Propagation, and differs
from inference in the Kalman filtering/smoothing literature,
for which highly efficient and stabilized procedures exist.A
central contribution of this paper is to show how inferencecan
be performed using the standard Kalman filtering/smoothing
recursions by augmenting the original model.

II. FACTORIAL L INEAR GAUSSIAN STATE-SPACE MODELS

In LGSSMs [6], the hidden state vectorsh1:T and the visible
observationsv1:T are linearly related by:

ht = Aht−1 + ηh
t , h1 ∼ N (µ,Σ) , ηh

t ∼ N (0H ,ΣH)

vt = Bht + ηv
t , ηv

t ∼ N (0V ,ΣV ) ,

whereN denotes a Gaussian distribution. The notation0D

stands for aD × 1 zero vector. Probabilistically:

p(v1:T , h1:T ) = p(v1|h1)p(h1)

T
∏

t=2

p(vt|ht)p(ht|ht−1) ,

with p(vt|ht)=N(Bht,ΣV ) andp(ht|ht−1)=N(Aht−1,ΣH).
To make independent dynamical subsystems we use block
diagonal transition and state noise matricesA, ΣH and Σ,
where each blockc has dimensionHc. A one dimensional
source sc

t for each independent dynamical subsystem is
formed fromsc

t = 1T
chc

t , where1c is a unit vector andhc
t is

the state of the dynamical systemc. Combining the sources,
we can write st = Pht, where P = diag(1T

1, . . . , 1T
C),

ht = vert(h1
t , . . . , h

C
t ). The resulting emission matrix is

constrained to be of the formB = WP , where W is the
V × C mixing matrix andP is a C × H projection, with
H =

∑

c Hc. Such a constrained form forB is required to
provide interpretable scalar sources.

BAYESIAN FACTORIAL L INEAR GAUSSIAN STATE-SPACE

MODELS

In our Bayesian treatment of learning we define the priors
p(A|α) andp(W |β), whereα andβ are hyperparameters. We
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do not define any prior forΣH , ΣV , µ and Σ, which will
formally be considered as hyperparameters2. The total set of
hyperparameters isΘ = {α, β,ΣH ,ΣV , µ,Σ}. Therefore:

p(v1:T |Θ) =

∫

A,W

p(v1:T |A,W,Θ)p(A|α)p(W |β)dAdW . (1)

Here we take the ML-II (‘evidence’) framework, which in-
volves maximizing p(v1:T |Θ) with respect toΘ [4], [7].
Ideally, the number of sources effectively contributing tothe
observed signal should be small. This suggests the prior:

p(W |β) =

C
∏

j=1

(

βj

2π

)V/2

e−
βj
2

PV
i=1

W 2

ij .

We can biasA to be close to a desired transition̂A (possibly
zero) by using:

p(Ac|αc) =
(αc

2π

)H2

c /2

e−
αc
2

PHc
i,j=1(Ac

ij−Âc
ij)

2

for each componentc, so thatp(A|α) =
∏

c p(Ac|αc)
3.

Variational Bayes

Optimizing Eq. (1) with respect toΘ is difficult due to the
intractability of the integrals. Instead we consider the lower
bound [4], [7]:

L = log p(v1:T |Θ) ≥Hq(A,W, h1:T ) (2)

+ 〈log p(v1:T , h1:T , A,W )〉q(A,W,h1:T ) ,

where we dropped the explicit dependence onΘ on the rhs4.
The notationHd(x) signifies the entropy of the distribution
d(x), and〈·〉d(x) denotes the expectation operator. For certain
variational distributionsq, we hope to achieve a tractable
bound, which we may then optimize with respect toq and
Θ. The key approximation in Variational Bayes (VB) is
q(A,W |h1:T ) ≡ q(A,W ). Since A and W separate in the
rhs of Eq. (2), optimallyq(A,W ) = q(A)q(W ), hence:

L ≥− D(q(A), p(A)) − D(q(W ), p(W )) + Hq(h1:T )

+ 〈log p(v1:T , h1:T |A,W )〉q(h1:T )q(A)q(W ) ≡ F .

D(q(x), p(x)) is the KL divergence〈log q(x)/p(x)〉q(x). The
VB procedure iteratively performs co-ordinate wise ascentof
F with respect toq(W ), q(A), q(h1:T ) andΘ.

Determining q(W )

By examiningF , optimally, q(W ) is a Gaussian. The co-
variance[ΣW ]ij,kl ≡

〈(

Wij − 〈Wij〉
)(

Wkl − 〈Wkl〉
)〉

(aver-
ages wrtq(W )) is given by the inverse of:

[

Σ−1
W

]

ij,kl
=
[

Σ−1
V

]

ik

∑

t

〈

h̃j
t h̃

l
t

〉

q(ht)
+ βjδikδjl ,

2A Bayesian treatment ofΣH , ΣV , µ and Σ is straightforward using
conjugate priors (see [7], [8]) but is not taken here for space restrictions
and since we have little preference for constraining these parameters.

3For dimensional reasons, we can also assume a Gaussian prior onthe
columns ofW with exponent− 1

2
βjW T

j Σ−1

V
Wj . This simplifies the statistics

of q(W ) and Eq. (4). The same holds forA. This is also convenient when
we assume a prior forΣH andΣV , since it ensures conjugacy [7], [8].

4Strictly we should write throughoutq(·|v1:T ). We omit the dependence
on v1:T for notational convenience.

whereh̃t = Pht andδij is the Kronecker delta function. The
mean is given by:

〈Wij〉 =
∑

k,l,n,t

[ΣW ]ij,kl

[

Σ−1
V

]

k,n

〈

h̃l
t

〉

q(ht)
vn

t .

Determining q(A)

Optimally we have a factorized distributionq(A) =
∏

c q(Ac), whereq(Ac) is Gaussian with inverse covariance
given by (dropping the dependence onc):

[

Σ−1
A

]

ij,kl
=
[

Σ−1
H

]

ik

T
∑

t=2

〈

hj
t−1h

l
t−1

〉

q(ht−1)
+ αδikδjl .

The mean is:

〈Aij〉=
∑

k,l

[ΣA]ij,kl

(

αÂkl+
∑

n

[

Σ−1
H

]

kn

T
∑

t=2

〈

hl
t−1h

n
t

〉

q(ht−1:t)

)

.

Inference on q(h1:T )

Optimally q(h1:T ) is Gaussian since its log is quadratic in
h1:T , being namely5:

−
1

2

T
∑

t=1

〈

(vt − WPht)
TΣ−1

V (vt − WPht)
〉

q(W )
(3)

−
1

2

T
∑

t=2

〈

(ht − Aht−1)
T
Σ−1

H (ht − Aht−1)
〉

q(A)
.

We can carry out the averages overA and W since q(A)
and q(W ) are Gaussian and the above is quadratic in the
parametersA and W . In order to compute the required
statistics〈ht〉q(ht)

and
〈

ht−1h
T
t

〉

q(ht−1:t)
, our aim is to rep-

resent Eq. (3) as thelog q̃(h1:T |ṽ1:T ) of a LGSSM with some
suitable parameters. To do that we use a mean + fluctuation
decomposition:

〈

(vt − Bht)
TΣ−1

V (vt − Bht)
〉

q(W )

= (vt − 〈B〉ht)
TΣ−1

V (vt − 〈B〉ht) + hT
t P TSW Pht ,

where〈B〉 ≡ 〈W 〉P and the fluctuation is by determined by:

[SW ]jl =
V
∑

i,k=1

[ΣW ]ij,kl

[

Σ−1
V

]

ik
, j, l ∈ 1, . . . , C. (4)

Similarly:
〈

(ht − Aht−1)
TΣ−1

H (ht − Aht−1)
〉

q(A)

= (ht − 〈A〉ht−1)
TΣ−1

H (ht − 〈A〉ht−1) + hT
t−1SAht−1 ,

[SA]jl =

H
∑

i,k=1

[ΣA]ij,kl

[

Σ−1
H

]

ik
, j, l ∈ 1, . . . ,H.

To represent Eq. (3) as a LGSSM̃q(h1:T |ṽ1:T ), we augment
vt andB as:

ṽt = vert(vt, 0H , 0C), B̃ = vert(〈B〉 , UA, UW P ),

5For simplicity, we ignore the contribution fromh1 and a constant term.
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Fig. 1. (a) Original sourcesst. (b) Observations resulting from mixing the
original sources,vt = Wst + ηv

t , ηv
t ∼ N (0V , I). (c) Recovered sources

using the Bayesian FLGSSM. (d) Sources found with MAP FLGSSM. The
retained sources have been rescaled to aid visualization.

where UA is the Cholesky decomposition ofSA, so that
UT

AUA = SA. Similarly,UW is the Cholesky decomposition of
SW . The equivalent LGSSM is then completed by specifying
Ã ≡ 〈A〉, Σ̃H ≡ ΣH , Σ̃V ≡ diag(ΣV , I, I), µ̃ ≡ µ, Σ̃ ≡ Σ6.
In this way any standard inference routines in the literature
may be applied to computeq(ht) = q̃(ht|ṽ1:T ), including
those specifically addressed at improving numerical stability
[9]. In the experiments, we used the standard predictor-
corrector filtering and Rauch-Tung-Striebel smoothing [9]. A
minor modification to the standard predictor-corrector filtering
routine may be applied for computational efficiency (see [8]
for details). This method is considerably simpler and more
general than the procedure given in [7], which is based on
Belief Propagation and do not correspond to any of the
standard forms in the Kalman filtering/smoothing literature.

Finding the Optimal Θ

DifferentiatingF with respect toΘ we find that, optimally:

βj =
V

∑

i

〈

W 2
ij

〉

q(W )

, αc =
H2

c
∑

i,j

〈

[Ac−Âc]2ij

〉

q(Ac)

,

ΣV =
1

T

T
∑

t=1

〈

(vt−WPht) (vt−WPht)
T
〉

q(W )q(ht)
,

Σc
H =

1

T−1

T
∑

t=2

〈

(

hc
t−Achc

t−1

)(

hc
t−Achc

t−1

)T
〉

q(Ac)q(hc
t−1:t

)
,

Σ =
〈

(h1−µ) (h1−µ)
T
〉

q(h1)
, µ = 〈h1〉q(h1)

.

A. Demonstration

In a proof of concept experiment, we used a FLGSSM to
generate 3 sourcessc

t with random5 × 5 transition matrices
Ac, µ = 0H and Σ ≡ ΣH ≡ I, see Fig. 1a. The sources

6Strictly, we need a time-dependent emissionB̃t = B̃, for t = 1, . . . , T −
1. For timeT , B̃T has the Cholesky factorUA replaced by a zero matrix.

were mixed into three observationsvt = Wst + ηv
t , for W

chosen with elements from a zero mean unit variance Gaussian
distribution, andΣV = I (Fig.1b). We then trained a Bayesian
FLGSSM with 5 sources and7 × 7 transition matricesAc.
To bias the model to find the simplest sources, we used zero
matricesÂc for all sources. In Fig. 1c we plot the estimated
sources from our method after convergence. Two of the 5
sources have been removed, and the remaining three are a
reasonable estimation of the original sources. Another possible
approach for introducing prior knowledge is to use a Maxi-
mum a Posteriori (MAP) procedure by adding a prior term to
the original log-likelihoodlog p(v1:T |A,W,Θ)+log p(A|α)+
log p(W |β). However, it is not clear how to reliably find the
hyperparameters α and β in this case. One solution is to
estimate them by optimizing the new objective function jointly
with respect to the parameters and hyperparameters (this isthe
so-called joint map estimation – see for example [10]). The
complexity of this approach is similar to the unaugmented
Bayesian LGSSM, although in this case solving a Sylvester
equation is required for updating the parameters. A typical
result of using this joint MAP approach on the artificial data
is presented in Fig. 1d. The joint MAP does not estimate the
hyperparameters well, so that an incorrect number of sources
is found, and the sources are not as well estimated as in the
Bayesian procedure.

B. Application to EEG Analysis

In Fig. 2a we plot three seconds of EEG data recorded
from 4 channels (located in the right hemisphere) while a
person is performing imagined movement of the right hand.
As is typical in EEG, each channel shows drift terms below
1 Hz which correspond to artifacts of the instrumentation,
together with the presence of 50 Hz mains contamination.
These effects mask the rhythmical activity related to the
mental task, mainly centered at 10 and 20 Hz, which we
want to extract. Standard ICA methods such as FastICA
do not find satisfactory sources based on raw ‘noisy’ data,
and preprocessing with band-pass filters is usually required.
Additionally, in EEG research, flexibility in the number of
recovered sources is important, since there may be many
independent oscillators of interest underlying the observations
and we would like some way to automatically determine their
effective number. To preferentially find sources at particular
frequencies, we specified a block diagonal matrixÂc with
each block being a rotation at the desired frequencyω:
(

cos (2πω/N) − sin (2πω/N)
sin (2πω/N) cos (2πω/N)

)

, whereN is the number

of samples per second. In order to extract the dominant drifts
below 1 Hz, the mains contaminations and the oscillations
related to the mental task, we defined the following 16
groups of frequenciesω: [0.5], [0.5], [0.5], [0.5]; [10,11],
[10,11], [10,11], [10,11]; [20,21], [20,21], [20,21], [20,21];
[50], [50], [50], [50]. Hence, the total hidden dimension ofthe
FLGSSM isH = 48. The temporal evolution of the sources
obtained after training the Bayesian FLGSSM is shown in
Fig. 2b (grouped by frequency range). This method removed
4 unnecessary sources from the mixing matrixW , that is one
[10,11] Hz and three [20,21] Hz sources. We can see that the
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Fig. 2. (a) Three seconds of unfiltered EEG data recorded from4 electrodes.
(b) The 16 sourcesst estimated by the Bayesian FLGSSM. (b) Sources
estimated by the MAP FLGSSM. (c) The 16 factors estimated by NDFA.
The retained sources have been rescaled to aid visualization.

first 4 sources (counting from the top down) contain dominant
low frequency drift, source 5, 6 and 8 contain [10,11] Hz,
while source 10 contains [20,21] Hz centered activity. Out
of the 4 sources initialized to 50 Hz, only 2 retained 50 Hz
activity, while theAc of the other two have changed to model
other frequencies present in the EEG.

The MAP FLGSSM approach is presented in Fig. 2c. We
can see that none of the [10,11] Hz sources has been removed,
even if contribution of source 8 to the observations is relatively
small. OneAc biased at [10,11] Hz includes other frequencies
in addition to 10 Hz (source 7). As in the Bayesian case, only
one [20,21] Hz component is retained. There are two dominant
50 Hz components, however none of 50 Hz sources has been
removed. In conclusion, the Bayesian FLGSSM seems better
able to remove unnecessary components and gives cleaner
sources at the desired frequencies.

To asses the advantage of using prior frequencies for ex-
tracting task-related information and the potential limitations
of using a linear model, we compared our method with NDFA
[4]. We extracted 16 factors using a NDFA model in which
both MLPs had one hidden layer of 30 neurons. In Fig. 2d
we show the temporal evolution of the resulting factors. The
first 10 factors from the top give the strongest contributionto
the observations. In agreement with the Bayesian FLGSSM,

there are 2 main 50 Hz sources (first two factors), although a
small 50 Hz activity is present also in other factors, namely
7, 11, 12 and 14. The slow drift has not been isolated and
is present in almost all factors. The information related to
hand movement, namely [10,20] Hz activity, is spread over
factors 3, 4, 9, 10 and 13, which however contain also other
frequencies. The prior specification of independent dynamical
processes at particular frequencies has therefore helped the
Bayesian FLGSSM to better isolate the activity of interest
into a smaller number of sources and, among these sources,
to separate the contribution of oscillators at 10 Hz and 20 Hz.

III. C ONCLUSION

We presented a method to identify independent dynamical
sources in noisy temporal data, based on a Bayesian procedure
which automatically biases the solution to finding a small
number of sources with preferential dynamics. This proce-
dure is closely related to others previously proposed in the
literature, but has the property that the sources are themselves
projections from higher dimensional independent linear dy-
namical systems. Here we concentrated on the projection to a
single dimension since this aids interpretability of the signals,
being of particular importance for applications in biomedical
signal analysis. An advantage of our linear dynamics approach
is tractability of inference, and we demonstrated how the
statistics of the hidden variables in the Bayesian LGSSM can
be estimated by using any Kalman filtering/smoothing routine.
The method is able then to automatically extract signals, for
example, biased towards particular frequencies.
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