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Abstract

We present an application of independent component analysis (ICA) to the discrimination of mental tasks for EEG-based brain

computer interface systems. ICA is most commonly used with EEG for artifact identification with little work on the use of ICA for direct

discrimination of different types of EEG signals. By viewing ICA as a generative model, we can use Bayes’ rule to form a classifier. We fit

spatial filters and source distribution parameters simultaneously and investigate whether these are sufficiently informative to produce

good results when compared to more traditional methods based on using temporal features as inputs to off-the-shelf classifiers.

Experiments suggest that state-of-the-art results may indeed be found without explicitly using temporal features. We extend the method

to using a mixture of ICA models, consistent with the assumption that subjects may have more than one approach to thinking about a

specific mental task.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

EEG-based brain computer interface (BCI) systems
allow a person to control devices (such as a cursor on a
screen) by using the electrical activity of the brain, recorded
by electrodes placed over the scalp (see [23] for a general
introduction on BCI research). In the case of systems based
on endogenous brain activity, the user concentrates on
different mental tasks (e.g. imagination of hand movement)
which are associated with different device commands. The
main envisaged use of EEG in this context is for persons
with severe physical paralysis. An initial training phase
(ideally as short as possible to avoid user fatigue) is
required in order to calibrate the mental states realised by
the user with a desired command. After this phase, ideally
the subject will be able to reliably use the system actively
for executing simple commands. However, the mental
strategy taken varies widely across and also within subjects.
BCI systems may therefore need to heavily adapt (possibly
with instantaneous feedback) to the user. EEG is popular
in this context since the system is portable and also has a
e front matter r 2006 Elsevier B.V. All rights reserved.
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fine temporal resolution (on the millisecond scale),
enabling relatively rapid estimates of the subject’s mental
state [18]. Tasks are usually selected so that different brain
areas become active while performing each specific task. A
prominent characterization of activity is the attenuation of
rhythmic components. For example, motor cortical areas
which are not engaged in producing motor outputs often
generate an EEG signal with rhythms in the a band
(8–13Hz) and, to a lesser extent, in the b band (18–26Hz),
called m and b rhythms respectively. If a person moves his
hand, the opposite-hemisphere cortical area becomes active
and the rhythms diminish in that area. A similar effect
occurs when a person imagines the movement, but no
physical movement takes place [20].
Whilst EEG is demonstrably capable of containing

meaningful information about the brain state, nevertheless,
some important difficulties exist: the signals are relatively
weak (in the range of 5–100mV) and easily masked by noise
such as mains-electrical interference; artifacts such as eye-
movements and blinks, swallowing and other subject
movements; inaccuracy of electrode placement; DC level
(drift in the base activity of an electrode which is not
correlated with the mental state and is an artifact of the
instrumentation). In addition, other difficulties not specific
to EEG arise, such as inconsistencies in the mental state the
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Fig. 1. One second of EEG signal (in the band 6–26Hz) recorded from

electrodes C3 and C4 while a subject is performing (a) imagined left

movement and (b) imagined right movement.

1Non-zero noise may be dealt with at the expense of approximate

inference [9].
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subject uses when asked to perform a particular task. These
issues make the correspondence between electrode activity
and mental state difficult to achieve reliably. In Fig. 1 we
plot one second of typical EEG signal recorded from a
subject performing (a) left and (b) right imaginary move-
ments at two electrodes commonly used for discriminating
these two mental tasks. The signal has been band-pass
filtered between 6 and 26Hz. No clear difference between
the tasks is visually apparent and automatic procedures are
required to perform task classification. For our machine
learning approaches 17 electrodes were used to form the
automatic classifiers. Standard approaches extract the
frequency content of the signal in the a and b bands,
which is then processed by a classifier. In many cases, a
spatial filter is also applied to the data in order to extract
more informative features. Popular approaches are based
on common spatial pattern algorithms [3,22]. Another
common approach is independent component analysis
(ICA) which transforms the raw signals into statistically
independent sources. The temporal features of the spatially
preprocessed data are then used as inputs to a standard
classifier.

The central aim of this paper is to use directly a
generative ICA model of EEG signals as a classifier. This is
in sharp contrast to more traditional approaches which
commonly view ICA-type methods only as a preprocessing
step, with the exception of [19], where the authors
introduce a combination of hidden Markov models and
ICA as a generative model of the EEG data to detect
switching between baseline activity and imaginary move-
ment. Here we further investigate the use of a generative
ICA model for EEG classification. However, we use a
simplified model with no temporal dependence between the
hidden sources, since we are here interested in whether or
not the spatial information is a reliable indicator of the
task, without the need to explicitly search for the presence
of task-dependent temporal features. Two different data-
sets will be considered for analysis, classifying EEG signals
based on word or movement tasks, as detailed in Section 3.
Our approach will be to fit, for each person, an generative
ICA model to each separate task, and then use Bayes’ rule
to form a classifier. The training criterion will be to
maximise the class conditional likelihood. This will be
compared with the more standard technique of using a
support vector machine (SVM) [7] trained with power
spectral density features. We will compare two temporal
feature types, one computed from raw data and the other
from data preprocessed by a spatial filter.
2. Generative independent component analysis (gICA)

From a basic understanding of the physics of the setup,
linear ICA [12] seems an appropriate model of EEG signals
and has been extensively applied to related tasks, such as
the identification of artifacts and the analysis of the
underlying brain sources [8,14,21]. Under the linear ICA
assumption, signals v

j
t recorded at time t ¼ 1; . . . ;T at scalp

electrodes j ¼ 1; . . . ;V are formed from a linear and
instantaneous superposition of electromagnetic activity hi

t

in the cortex, generated by independent brain processes
i ¼ 1; . . . ;H, that is

vt ¼Wht þ Zt.

Here the mixing matrix W mimics the mixing and
attenuation of the source signals. The term Zt potentially
models additive measurement noise. For reasons of
computational tractability,1 we consider here only the limit
of zero noise. The empirical observations vt are made zero-
mean by a preprocessing step, which obviates the need for a
constant output bias, and allows us to assume that ht also
has zero mean. Hence we can define pðvtjhtÞ ¼ dðvt �WhtÞ,
where dð�Þ is the Dirac Delta function. It is also convenient
to consider square W, so that V ¼ H. Our aim is to fit a
model of the above form to each class of task c. In order to
do this, we will describe each class specific model as a joint
probability distribution, and use maximum likelihood as
the training criterion. Whilst this is a hidden variable model
(h1:Tc

are hidden), thanks to the d function, we can easily
integrate out the hidden variables to form the likelihood of
the visible variable pðv1:Tc

Þ directly [16], in contrast to the
usual application of the EM algorithm in hidden variable
models [17]. Given the above assumptions, the density of
the observed and hidden variables for data from class c is

pðv1:Tc
; h1:Tc

jcÞ ¼
YTc

t¼1

pðvtjht; cÞ
YH
i¼1

pðhi
tjcÞ

¼
YTc

t¼1

dðvt �W chtÞ
YH
i¼1

pðhi
tjcÞ. ð1Þ

Here pðhi
tjcÞ is the prior distribution of the activity of

source i, and is assumed to be stationary. This forms a
generative model of the output data vt since one can first
sample a value of the hidden vector ht, and then generate a
visible vector using vt ¼W cht. By integrating (1) over the
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Fig. 2. Generalized exponential distribution for a ¼ 2 (solid line), a ¼ 1

(dashed line) and a ¼ 100 (dotted line), which correspond to Gaussian,

Laplacian and approximately uniform distributions, respectively.
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hidden variables ht we obtain

pðv1:Tc
jcÞ ¼

YTc

t¼1

Z
ht

dðvt �W chtÞ
YH
i¼1

pðhi
tjcÞ

¼ j detW cj
�Tc

YTc

t¼1

YH
i¼1

pðhi
tjcÞ, ð2Þ

where ht ¼W�1
c vt.

There is an important difference between standard
applications of ICA and the use of a generative ICA
model for classification. In a standard usage of ICA, the
sole aim is to estimate the mixing matrix W c from the data.
In that case it is not necessary to model accurately the
source distribution pðhi

jcÞ [6]. Indeed, the statistical
consistency of estimating W c can be guaranteed using only
two types of fixed prior distributions: one for modelling
sub-Gaussian and another for modelling super-Gaussian
hi. However, the aim of our work is to perform
classification, for which an appropriate model for the
source distribution of each component hi is fundamental.

As in [15,19], we use the generalized exponential family
which encompasses many types of symmetric and unimodal
distributions:2

pðhi
jcÞ ¼

f ðaicÞ

sic

exp �gðaicÞ
hi

sic

����
����
aic

 !
,

where

f ðaicÞ ¼
aicGð3=aicÞ

1=2

2Gð1=aicÞ
3=2

; gðaicÞ ¼
Gð3=aicÞ

Gð1=aicÞ

� �aic=2

and Gð�Þ is the Gamma function. Although unimodality
appears quite a restrictive assumption, our experience on
the tasks we consider is that it is not inconsistent with the
nature of the underlying sources, as revealed by a
histogram analysis of ht ¼W�1

c vt. The parameter sic is
the standard deviation,3 while aic determines the sharpness
of the distribution as shown in Fig. 2. In the unconstrained
case, where a separate model is fitted to data from each
class independently, we aim to maximise the class-condi-
tional log-likelihood

LðcÞ ¼ log pðv1:Tc
jcÞ.

In the case where parameters are tied across the different
models, for example, if the mixing matrix is kept constant
over the different models ðW c �W Þ, the objective becomes
instead

P
cLðcÞ. Following the work in [19], we set to zero

the derivatives of LðcÞ with respect to sic, obtaining the
2Importantly, this is able to model both sub and super-Gaussian

distributions, which are required to isolate the independent components.
3Due to the indeterminacy of the variance of hi

t (h
i
t can be multiplied by

a scaling term a as long as the ith column of W c is multiplied by 1=a), sic

could be set to one in the general model described above. However, this

cannot be done in the constrained version W c �W considered in the

experiments.
following closed-form solution:

sic ¼
gðaicÞaic

Tc

XTc

t¼1

jhi
tj
aic

 !1=aic

.

After substituting this optimal value of sic into LðcÞ, the
derivatives with respect to the parameters aic and W�1

c are
used in the scaled conjugate gradient method described in
[2]. These are

qLðcÞ

qaic

¼
Tc

aic

þ
Tc

a2ic

G0ð1=aicÞ

Gð1=aicÞ
þ

Tc

a2ic
log

aic

PTc

t¼1jh
i
tj
aic

Tc

 !

�
Tc

PTc

t¼1jh
i
tj
aic log jhi

tj

aic

PTc

t¼1jh
i
tj
aic

qLðcÞ

qW�1
c

¼ Tc W y
c �

XTc

t¼1

btv
y
t

 !

with

bi
t ¼

signðhi
tÞjh

i
tj
aic�1PTc

t¼1jh
i
tj
aic

,

where the prime symbol0 indicates differentiation and the y
symbol indicates the transpose operator. After training, a
novel test sequence v�1:T is classified using Bayes’ rule
pðcjv�1:T Þ / pðv�1:T jcÞ, assuming pðcÞ is uniform.

3. gICA versus SVM and ICA–SVM

3.1. Dataset I

This dataset concerns classification of the following three
mental tasks:4
(1)
4A
imagination of self-paced left hand movements,

(2)
 imagination of self-paced right hand movements,
vailable from http:www.idiap.ch/�chiappa.

http://www.idiap.ch
http://www.idiap.ch
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(3)
 mental generation of words starting with a letter chosen
spontaneously by the subject at the beginning of the
task.
5The maximization of the log-likelihood (3) is a non-convex problem,

thus the choice of the initial parameters may be important. We analyzed

two cases in which the W c matrix was initialized to the identity or to the

matrix found by FASTICA [11] using the hyperbolic tangent (randomly

initialized), while the exponents of the generalized exponential distribution

a were set to 1.5. In both cases we obtained similar performance. We then

decided to initialize W c to the identity matrix in all subsequent

experiments.
EEG potentials were recorded with the biosemi active two
system [10], using the following electrodes located at
standard positions of the 10–20 International System [13]:
FP1, FP2, AF3, AF4, F7, F3, Fz, F4, F8, FC5, FC1, FC2,
FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, CP6, P7,
P3, Pz, P4, P8, PO3, PO4, O1, Oz and O2 (see Fig. 3). The
raw potentials were re-referenced to the common average
reference in which the overall mean is removed from each
channel. The signals were recorded at a sample rate of
512Hz. Subsequently, the band 6–26Hz was selected with
a second order Butterworth filter. This preprocessing filter
allow us to focus on m and b rhythms. Experimentally, we
also found that removing frequencies outside the band
6–26Hz robustified the performance. Out of the 32
electrodes, only the following 17 electrodes were considered
for the analysis: F3, Fz, F4, FC5, FC1, FC2, FC6, C3, Cz,
C4, CP5, CP1, CP2, CP6, P3, PZ, P4 (see Fig. 3). This
electrode selection was done on the basis of prior knowl-
edge and a preliminary performance analysis. The data was
acquired in an unshielded room from two healthy subjects
without any previous experience with BCI systems. During
the initial day, the subjects familiarised themselves with the
system, aiming to produce consistent mental states for each
task. This data was not used for the training or analysis of
the system. In the following two days several sessions were
recorded for analysis, each session lasting around 4min
followed by an interval of around 5–10min. Throughout
all the training and test sessions, no feedback was provided
to the subjects, neither in terms of the consistency of the
mental states produced, nor results from automatic
classification of the EEG signals. During each recording
session, around every 20 s an operator verbally instructed
the subject to continually perform one of the three mental
tasks described above.
In a practical scenario, it is envisaged that a user will

have an initial intense training period after which, ideally,
very little retraining or re-calibration of the system should
be required. The performance of BCI systems needs to be
robust to potential changes in the manner that a subject
performs a mental task from session to session, and indeed
from day to day. Methods which are highly sensitive to
such variations are unsuitable for a practical BCI system.
We therefore performed two sets of experiments. In the
first case, training, validation and testing were performed
on data recorded within the same day, but using separate
sessions. The detailed train, validation and test setting is
given in Table 1. In the second set of experiments, we used
the first day to train and validate the models, with test
performance being evaluated on the second day alone and
vice-versa. In particular, the first three sessions of one day
were used for training and the last session(s) for validation.
Classification of the three mental tasks was performed

using a window of one second of signal. That is, from each
session we extracted around 210 samples of 512 frames,
obtaining the following number of test examples: 1055,
1036 and 1040 for Day 1; 850, 836 and 1040 for Day 2
(subjects A, B and C, respectively).
The non-temporal gICA model described in Section 2

was compared with two temporal feature approaches: the
SVM and ICA–SVM. The purpose of these experiments is
to consider whether or not using gICA can provide state-
of-the-art performance compared to more standard meth-
ods based on using temporal features. Also of interest is
whether or not standard ICA preprocessing would improve
the performance of temporal feature classifiers.

gICA For gICA, no temporal features need to be
extracted and the signal v1:T (downsampled to 64
samples per second) is used, as described in Section
2. Since we assume that the scalp signal is
generated by a linear mixing of sources in the
cortex, provided the data is acquired under the
same conditions, it would seem reasonable to
further assume that the mixing is the same for all
classes ðW c �W Þ, and this constrained version
was therefore also considered. The number of
iterations for training the gICA parameters was
determined using a validation set.5

SVM For the SVM method, we first need to find the
temporal features which will subsequently be used
as input to the classifier. Several power spectral
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Table 1

Dataset I covers two days of data: five recording sessions on Day 1 for all subjects; for Day 2, Subjects A and B have four sessions and Subject C five

sessions. The table describes how we split these sessions into training, validation and test sessions for the within-the-same-day experiments

Day 1 Day 2

Subjects A, B, C Subjects A, B Subject C

Training 1–2–3 4–5 1–2 3–4 1–2–3 4–5

Validation 4 5 2–3 1–2 1–3 3 4 1 2 4 5 2–3 1–2 1–3

Testing 5 4 1 3 2 4 3 2 1 5 4 1 3 2
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density representations were considered. The best
performance was obtained using Welch’s period-
ogram method in which each pattern was divided
into half-second length windows with an overlap
of 1

4
of second, from which the average of the

power spectral density (PSD) over all windows was
computed. This gave a total of 186 feature values
(11 for each electrode) as input for the classifier.
Each class was trained against the others, and the
kernel width (from 50 to 20 000) and the parameter
C (from 10 to 200) were found using the validation
set.

ICA–SVM The data is first transformed by using the
FASTICA algorithm [11] with the hyperbolic
tangent nonlinearity and an initial W matrix equal
to the identity, then processed as in the SVM
approach above.
3.1.1. Results

A comparison of the performance of the spatial gICA
against the more traditional methods using temporal features
is shown in Table 2.6 The setup of how exactly how each
training and test sessions were used is given in Table 1.
Together with the mean, we give the standard deviation of
the error on the test sessions, which indicates the variability
of performance obtained in different sessions. For gICA,
using a different mixing matrix W c for each mental task
generally improves performance. Thus, in the following, we
consider only gICA W c for the comparison with the other
standard approaches.

For Subject A, for which the best overall results are found,
all three models give substantially the same performance,
without loss when training and testing on different days.

For Subject B, for training and testing on the same day,
gICA W c and ICA–SVM perform similarly, and better than
the SVM. However, when training on Day 2 and testing on
6A related version of this dataset also appeared in the third BCI

competition [1]. However, there the task was based on a simpler same-day

training and test situation (also with only a single test session), a larger

classification window (1.44s) and eight electrodes. The best results were

found using a distance based classifier and an SVM with a Gaussian

kernel, giving 31.3% and 31.5% error, respectively. Whilst these results

cannot be compared directly to the results in Table 2, they motivate the

use of the Gaussian SVM in our comparative experiments.
Day 1, the performance of all models degenerates but more
heavily for gICA W c. ICA–SVM still gives some advantage
over SVM. This situation is reversed when training on Day 1
and testing on Day 2.
For Subject C, the general performance of the methods is

poor. Bearing this in mind, the SVM performs slightly
better on average than gICA W c and ICA–SVM when
training and testing on the same day, whereas the two ICA
models perform similarly. For training and testing on
different days, on average, gICA slightly outperforms the
ICA–SVM method, with the best results being given by the
plain SVM method. A possible reason for this is that, in
this subject, finding reliably the independent components is
a challenging task with convergence difficulties often
expressed by FASTICA, and the performance of the
classifier may be hindered by this numerical instability.

In summary
(1)
 Training and testing on different days may significantly
degrade performance. This indicates that some subjects
may be either fundamentally inconsistent in their
mental strategies, or the recording situation is not
consistent. This more realistic scenario is to be
compared with relatively optimistic results from more
standard same-day training and testing benchmarks [1].
(2)
 ICA preprocessing generally improves classification
performance. However, in poorly performing subjects,
the convergence of FASTICA was problematic, in-
dicating that the ICA components were not reliably
estimated, and thereby degrading performance.
(3)
 gICA and ICA–SVM have similar overall performance.
This indeed suggests that, for this dataset, state-of-the-
art performance can be achieved using gICA, compared
with temporal feature based approaches.
3.2. Dataset II

The second dataset analyzed in this work was provided
for the BCI competition 2003 [4,5]. The subject had to
perform one of two tasks: depressing a keyboard key with a
left or right finger. This dataset differs from the previous
one in that here the movements are real and not imagined,
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Table 2

Mean and standard deviation of the test errors in classifying three mental tasks using gICA with a separate W c for each class (gICA W c), gICA with a

matrix W common to all classes (gICA W), SVM trained on PSD features (SVM) and SVM trained on PSD features computed from FASTICA

transformed data (ICA–SVM). Random guessing corresponds to an average error of 66.7%

gICA W c gICA W SVM ICA–SVM

Subject A

Train Day 1, Test Day 1 33:8� 6:5% 34:7� 5:8% 35:8� 5:2% 34:7� 5:5%
Train Day 2, Test Day 1 34:2� 5:3% 36:1� 5:0% 33:3� 5:1% 32:8� 5:6%
Train Day 2, Test Day 2 24:7� 7:5% 26:8� 7:1% 24:5� 5:9% 25:1� 6:3%
Train Day 1, Test Day 2 23:6� 4:7% 24:6� 5:0% 22:7� 4:5% 24:0� 2:4%

Subject B

Train Day 1, Test Day 1 31:4� 7:1% 34:9� 7:4% 38:4� 5:2% 32:9� 6:1%
Train Day 2, Test Day 1 45:6� 5:1% 49:1� 3:7% 42:1� 4:7% 36:6� 7:2%
Train Day 2, Test Day 2 32:5� 4:4% 35:1� 5:1% 36:7� 3:0% 28:9� 2:3%
Train Day 1, Test Day 2 31:4� 2:3% 35:7� 3:3% 39:3� 4:3% 40:5� 1:6%

Subject C

Train Day 1, Test Day 1 50:5� 2:8% 49:4� 4:2% 45:5� 3:1% 49:0� 3:4%
Train Day 2, Test Day 1 52:7� 3:6% 55:7� 3:3% 48:1� 4:7% 52:5� 3:8%
Train Day 2, Test Day 2 43:1� 2:6% 45:0� 4:2% 44:3� 4:4% 44:8� 3:5%
Train Day 1, Test Day 2 50:2� 2:5% 55:3� 4:2% 48:7� 3:5% 54:9� 2:9%

7We analyzed 100Hz sampled data. The raw potentials were re-

referenced to the common average reference. Then, the following 14

electrodes were selected: C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz,

CP2, CP4 and CP6. For analyzing m and b rhythms, each epoch was zero-

mean and filtered in the band 10–32Hz with a 2nd order Butterworth

(zero-phase forward and reverse) digital filter. For BP, each epoch was

low-pass filtered at 7Hz using the same filtering setting, then the first 25

frames of each epoch were disregarded. This pre-processing was based on

a preliminary analysis taking into consideration the best performance

obtained in the BCI competition 2003 on this dataset [22].
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the assumption being that similar brain activity occurs
when the corresponding movement is imagined only.

EEG was recorded from one healthy subject during three
sessions lasting 6min each. Sessions were recorded during
the same day at intervals of some minutes. The key
depression occurred in a self-chosen order and timing. For
the competition, 416 epochs of 500ms EEG were provided,
each ending 130ms before an actual key press, at a
sampling rate of 1000 and 100Hz. The epochs were
randomly shuffled and split into a training-validation set
and a test set consisting of 316 and 100 epochs,
respectively. EEG was recorded from 28 electrodes cover-
ing the primary sensory motor area: F3, F1, Fz, F2, F4,
FC5, FC3, FC1, FCz FC2, FC4, FC6, C5, C3, C1, Cz, C2,
C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, O1 and O2
(see Fig. 3).

The synchronous protocol used to record this data
makes possible to consider, in addition to m and b rhythms,
another important EEG feature related to movement
planning, called the Bereitschaftspotential (BP). BP is a
slowly decreasing cortical potential which develops 1–1.5 s
prior to a self-paced movement. The BP shows larger
amplitude contralateral to the moving finger. The differ-
ence in the spatial distribution of BP is thus an important
indicator of left or right finger movement. Indeed, the
particular temporal shape of the BP may also be specific to
the task and be a useful feature to aid classification. In
order to include such a feature in the ICA or gICA
approach, it is likely that a non-symmetric prior (or a non-
symmetric FASTICA approach) would need to be con-
sidered. To keep this paper relatively focused, we will apply
only the symmetric gICA (and FASTICA) models to a
preprocessed form of this dataset in which we filter to
consider only m–b bands, thereby removing any large scale
shape effects such as the BP.7 For the other methods not
solely based on ICA, we retained possible BP features for a
point of comparison to see if the use of BP features indeed
is critical for reasonable performance on this database. The
following methods were considered:

m–b-gICA The m–b filtered data is used as input to the
generative ICA model described in Section 2.

BP-SVM This method focuses on the use of the BP as the
features for a classifier. Here we preprocessed raw
data in the ‘BP band’ (350 dimensional feature
vector, 25 for each of the 14 electrodes). A
Gaussian kernel was used and its width learned
(in the range 10–5000), together with the strength
of the margin constraint C (in the range 10–200),
on the basis of the validation set.

m–b-SVM This method focuses on the m–b band, which
precludes therefore any use of a BP for classifica-
tion. The data was first filtered in the m–b band as
described above. Then the power spectral density
was computed (168 dimensional feature vector).

BP-m–b-SVM Here the combination of BP features and
m–b spectral features were used as input to an
SVM classifier.
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Table 3

Mean and standard deviation of the test errors in classifying two finger

movement tasks. Random guessing corresponds to an error of 50%

m–b-gICA W m–b-gICA W c BP-SVM m–b-SVM

16:0� 1:2% 17:0� 2:3% 21:6� 1:5% 25:4� 3:1%
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m–b-ICA-SVM Here the m–b filtered data is further
preprocessed using FASTICA to form features to
the SVM classifier.

BP-m–b-ICA–SVM Here the combination of BP features
with m–b-ICA features forms the input to the SVM
classifier.
BP-m–b-SVM m–b-ICA–SVM BP-m–b-ICA–SVM

18:8� 0:8% 22:2� 2:3% 16:2� 0:8%

3.2.1. Results

The comparison between these models is given in Table
3, in which we present the mean test error and standard
deviation obtained by using 5-fold cross-validation8. Given
the low number of test samples, it is difficult to present
decisive conclusions. However, by comparing m–b-SVM
and m–b-ICA–SVM, we note that using an ICA decom-
position on m–b filtered data improves performance. For
this dataset, gICA-type models obtain superior perfor-
mance to methods in which ICA is used as preprocessing.
Finally, and perhaps most interestingly, the performance of
gICA on m–b is comparable with the results obtained by
combining m–b and BP features (BP-m–b-ICA–SVM). The
results from the gICA method are comparable to the best
results previously reported for this dataset.9

4. Mixture of generative ICA

Although the performance of gICA is reasonable, if used
in any BCI system, it would still achieve far from perfect
performance. Whilst the reason for this may simply be
inherently noisy data, another possibility is that the
subject’s reaction when asked to think about a particular
mental task drifts significantly from one session and/or day
to another. It is also natural to assume that a subject has
more than one way to think about a particular mental task.
The idea of using a mixture model is to test the hypothesis
that the data may be naturally split into regimes, within
which a single model may accurately model the data,
although this single model is not able to model accurately
all the data. This motivates the following model for a single
sequence of observations

pðv1:Tc
jcÞ ¼

XMc

m¼1

pðv1:Tc
jm; cÞpðmjcÞ,

where m describes the mixture component. The number of
mixture components Mc will typically be rather small,
being less than 5. We will then fit a separate mixture model
to data for each class c. To ease the notation a little, from
8For each of the methods, we split the training data into five sets and

performed cross-validation for hyperparameters by training on four sets

and validating on the fifth. The resulting model was then evaluated on the

separate test set. This procedure was repeated for the other four

combinations of choosing four training and one validation set from the

five sets. The mean and standard deviation of the five resulting models (for

each method) are then presented.
9The winner of the BCI competition 2003 applied a spatial subspace

decomposition filter and Fisher discriminant analysis to extract three types

of features derived from BP and m–b rhythms, and used a linear

perceptron for classification. The final accuracy on the test was 16.0% [22].
here we drop the class dependency. Training this model by
maximising the likelihood directly is cumbersome. A more
elegant approach is afforded by the EM algorithm [17],
which enables us to perform maximum likelihood in the
context of latent or hidden variables, in this case being
played by m. EM is an iterative procedure which, at each
iteration, computes the set of parameters (in our case fsim,
aim, W m, pðmÞg) which maximises the so-called expectation
of the complete data log-likelihood, computed using the
parameters from the previous iteration. In the mixture case
we have a set of sequences vs

1:T , s ¼ 1; . . . ;S each of the
same length T. The expected complete data log-likelihood
is given by

L ¼ log
YS

s¼1

pðvs
1:T jmÞpðmÞ

* +
pðmjvs

1:T
Þ

¼
XS

s¼1

XT

t¼1

log jdetW�1
m jpðW

�1
m vs

tÞ þ log pðmÞ

* +
pðmjvs

1:T Þ

,

ð3Þ

where S indicates the number of sequences and h�i indicates
the expectation operator. Here vs

t is the vector of
observations at time t from sequence s. At each iteration
of the EM algorithm, the prior is updated as

pðmÞ ¼
1

S

XS

s¼1

pðmjvs
1:T Þ,

where

pðmjvs
1:T Þ ¼

pðvs
1:T jmÞpðmÞPM

m0¼1

pðvs
1:T jm

0Þpðm0Þ

.

The other parameters are then updated analogously to
the single component case by computing the derivatives of
Eq. (3).

4.1. gICA versus mixture of gICA

4.1.1. Dataset I

We first fitted a mixture of three gICA models to the first
three sessions of Day 1. The aim here is that this may enable
us to visualise how each subject switches between its mental
strategies, and therefore perhaps to form an idea of how
reliably each subject is performing. These results are
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Fig. 4. We show here results of fitting a separate mixture model with three components to each of the three tasks for the first three sessions of Day 1. Time

(in seconds) goes from left to right. At any time, only one of the three classes (corresponding to the verbal instruction to the subject), and only one of the

three hidden states for that class (the one with the highest posterior probability), is highlighted in white. The plot shows how the subjects change in their

strategy for realising a particular mental task with time. The vertical lines indicate the boundaries of the training sessions, which correspond to a gap of

5–10min.

Table 4

Mean and standard deviation of the test errors in classifying three mental

tasks using gICA with a separate W c for each class (gICA W c) and a

mixture of gICA with a separate W c for each class (MgICA W c)

gICA W c MgICA W c

Subject A

Train Day 1, Test Day 1 33:8� 6:5% 31:1� 4:9%
Train Day 2, Test Day 1 34:2� 5:3% 33:6� 5:0%
Train Day 2, Test Day 2 24:7� 7:5% 22:3� 6:4%
Train Day 1, Test Day 2 23:6� 4:7% 22:4� 3:0%

Subject B

Train Day 1, Test Day 1 31:4� 7:1% 30:6� 3:8%
Train Day 2, Test Day 1 45:6� 5:1% 40:0� 10:0%
Train Day 2, Test Day 2 32:5� 4:4% 29:1� 3:0%
Train Day 1, Test Day 2 31:4� 2:3% 29:5� 6:0%

Subject C

Train Day 1, Test Day 1 50:5� 2:8% 52:2� 4:8%
Train Day 2, Test Day 1 52:7� 3:6% 52:2� 2:7%
Train Day 2, Test Day 2 43:1� 2:6% 44:6� 3:2%
Train Day 1, Test Day 2 50:2� 2:5% 51:6� 1:6%
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presented in Fig. 4, where switching for each subject between
the three different mixture components is shown. Interest-
ingly, we see that for Subjects A and B and all three tasks,
only a single component tends to be used during the first
session, suggesting a high degree of consistency in the way
that the mental tasks were realised. For Subject C, a lesser
degree of reliability is present. This situation changes so
that, in the latter two sessions, a much more rapid switching
occurs (indeed this switching happens much more quickly
than the time prescribed for a mental task). This suggests
that the consistency with which subjects perform the mental
tasks deteriorates with time, highlighting the need to
potentially account for such drift in approach.

To see whether or not this results in an improved
classification, we trained the mixture of gICA model, as
described above, on the dataset. Table 4 compares the
performance between gICA and the mixtures of gICA
models using a separate W c matrix for each class. The
number of mixture components (ranging from 2 to 5) was
chosen from the validation set. The W c was initialized
adding a small amount of noise to W c found using one
mixture. Whilst the mixture of ICA model seems to be
reasonably well motivated, disappointingly, only a minor
improvement with respect to the single mixture case is found
on Subjects A and B. It is not clear why the performance
improvement is so modest. This may be due to the fact that
whilst drift is indeed an issue and better modelled by this
approach, the model does not capture the online nature of
adaptation that may occur in practice. That is, a stationary
mixture model may be inadequate for capturing the dynamic
nature of changes in user mental strategies.

4.1.2. Dataset II

The result of using a mixture model with a separate W c for
each class is 19:4� 2:6%. Compared with the results
presented from the single gICA and other methods in
Table 3, this result is disappointing, being a little (though not
significantly) worse than the single gICA method. Here, the
number of mixture components (from 2 to 5) is chosen on
the basis of the validation set and this should, in principle,
avoid overfitting. However, the validation error for a single
component is often a little better than for a number of
mixture components greater than 1, suggesting indeed that
the model is overfitting slightly.

5. Conclusions

In this work, we have presented an analysis on the use of
a spatial generative independent component analysis
(gICA) model for the discrimination of mental tasks for
EEG-based BCI systems. We have compared gICA against
other standard approaches, where temporal information
from a window of data (power spectral density) is extracted
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and then processed using an SVM classifier. Our results
suggest that using gICA alone is powerful enough to
produce good performance for the datasets considered.
Furthermore, using ICA as a preprocessing step for power
spectral density SVM classifiers also tends to improve the
performance, giving roughly the same performance as
gICA. An important point is that performance generally
degrades when one trains a method on one day and tests on
another, although for some subjects this is less apparent.
This more realistic scenario is a more severe test of BCI
methods and, in our view, merits further consideration.
For this reason, we investigated whether or not a mixture
model, which may cope with potentially severe changes in
mental strategy, may improve performance. Indeed, the use
of mixture models appears to be well-founded since, based
on the training data alone, switching between mixture
components tends to increase with time. However the
resulting performance improvements for classification were
rather modest (or even slightly worse), suggesting that the
model is overfitting slightly. Indeed, the model does not
deal well with the potentially dynamic nature of change.
An online version of training may be a reasonable way to
avoid this difficulty, by which some form of continual
recalibration based on feedback is provided.
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