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Abstract

Two popular approaches to forming bounds
in approximate Bayesian inference are local
variational methods and minimal Kullback-
Leibler divergence methods. For a large class
of models we explicitly relate the two ap-
proaches, showing that the local variational
method is equivalent to a weakened form
of Kullback-Leibler Gaussian approximation.
This gives a strong motivation to develop ef-
ficient methods for KL minimisation. An im-
portant and previously unproven property of
the KL variational Gaussian bound is that it
is a concave function in the parameters of the
Gaussian for log concave sites. This observa-
tion, along with compact concave parametri-
sations of the covariance, enables us to de-
velop fast scalable optimisation procedures to
obtain lower bounds on the marginal likeli-
hood in large scale Bayesian linear models.

1 BAYESIAN MODELS

For parameter w and data D, a large class of Bayesian
models describe posteriors of the form

p(w|D) =
1

Z
N (w µ,Σ)φ(w), (1.1)

Z =

∫
N (w µ,Σ)φ(w)dw

for a Gaussian factor N (w µ,Σ) and positive poten-
tial function φ(w). This class includes generalised lin-
ear models, see e.g. Hardin and Hilbe (2007), and
Gaussian noise models in inverse modeling, see e.g.
Wipf and Nagarajan (2009). A classic example is
Bayesian logistic regression in which N (w µ,Σ) is the
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prior on the weight w, φ(w) the likelihood p(D|w) and
Z = p(D).

For large parameter dimension, D = dim(w), the nor-
malisation constant Z in equation (1.1) is computa-
tionally intractable, except for limited special cases.
Evaluating Z is essential for the purposes of model
comparison, hyper-parameter estimation, active learn-
ing and experimental design. Indeed, any marginal
function of the posterior p(w|D), such as a moment,
also implicitly requires Z.

Due to the importance of this large model class, a
great deal of effort has been dedicated to finding accu-
rate approximations to posteriors of the form equation
(1.1). Whilst there are many different possible approx-
imation routes, including sampling, consistency meth-
ods such as expectation propagation and perturbation
techniques such as Laplace, see e.g. Barber (2011),
our interest here is uniquely in techniques that form
a lower bound on Z. Such lower bounds are particu-
larly useful in parameter estimation and provide con-
crete exact knowledge about Z. Furthermore, lower
bounds may be coupled with upper bounds on Z to
form bounds on marginal quantities of interest (Gibbs
and MacKay, 2000).

A well studied route to forming a lower bound on
Z is to use a so-called local variational method that
bounds the integrand with a parametric function, see
e.g. Gibbs and MacKay (2000); Jaakkola and Jordan
(1996); Girolami (2001); Nickisch and Seeger (2009);
Palmer et al. (2006). Local variational optimisation
procedures are, however, computationally demand-
ing, requiring the solution of linear systems of di-
mension D. For this reason, considerable attention
has been paid to characterising the convexity of local
bounds and developing fast scalable solvers (Nickisch
and Seeger, 2009; Palmer et al., 2006).

In contrast the Variational Gaussian (VG) method di-
rectly approximates the posterior by minimising the
Kullback-Leibler divergence between a parametrised
Gaussian approximation and the posterior. The VG
method provides a bound on Z for all positive func-
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tions φ(w), whilst the local bounding procedure re-
quires φ to be super-Gaussian1. Whilst such vari-
ational Gaussian (VG) approximations are not new
(Barber and Bishop, 1998; Seeger, 1999; Kuss and Ras-
mussen, 2005; Opper and Archambeau, 2009), we con-
tribute several results concerning this procedure:

• For posteriors in the form of equation (1.1) we
make clear the relationship between local and VG
bounds and show that VG bounds are provably
tighter than local ones. Furthermore, this im-
provement can give rise to differences in the mass
they assign to competing models.

• The VG bound has been considered unfavourable
compared to local bounds due to their important
convexity properties. Here we prove that the VG
bound is in fact also concave for log-concave φ.

• The VG method is often dismissed as impracti-
cal due to the difficulty of specifying covariances
in large systems. We provide explicit scalable
concave parametrisations for the covariance. To
demonstrate the efficacy of our approach, we ap-
ply the method to large datasets, outperforming
the local method in bound value and matching or
exceeding it in terms of computational speed.

1.1 Local variational method

The local variational method replaces φ(w) in equa-
tion (1.1) with a bound that renders the integral an-
alytically tractable. Provided the function φ is super-
Gaussian, one may bound φ(w) by an exponential
quadratic function (Palmer et al., 2006)

φ(w) ≥ c(ξ)e− 1
2wTF(ξ)w+wTf(ξ) (1.2)

where the matrix F(ξ), vector f(ξ) and scalar c(ξ) de-
pend on the specific function φ; ξ is a variational pa-
rameter that enables one to find the tightest bound.

Many models of practical utility have super-Gaussian
potentials, examples of which are the logistic sigmoid
inverse link function φ(x) = (1 + exp(−x))−1, Laplace
potentials where φ(x) ∝ exp(−|x|) and Student’s t-
distribution. We discuss explicit c, F and f functions
for such potentials later, but for the moment leave
them unspecified.

Bounding φ(w) with the squared exponential, we ob-
tain

Z ≥ c(ξ) e
− 1

2µ
TΣ−1µ√

det (2πΣ)

∫
e−

1
2wTAw+wTbdw (1.3)

1A function φ(x) is super-Gaussian if ∃b ∈ R s.t. for
g(x) := log φ(x)− bx is even, and is convex and decreasing
as a function of y = x2 (Seeger and Nickisch, 2010).

where

A ≡ Σ−1 + F(ξ), b ≡ Σ−1µ + f(ξ) (1.4)

Whilst both A and b are functions of ξ, we drop this
dependency for a more compact notation. One can
interpret equation (1.3) as a Gaussian approximation
to the posterior where p(w|D) ≈ N

(
w A−1b,A−1

)
.

Completing the square in equation (1.3) and integrat-
ing, we have logZ ≥ B(ξ), where

B(ξ) ≡ log c(ξ)− 1

2
µTΣ−1µ

+
1

2
bTA−1b− 1

2
log det (ΣA) (1.5)

To obtain the tightest bound on logZ, one then max-
imizes B(ξ) with respect to ξ.

In many practical problems of interest, including gen-
eralised linear models and inverse modelling,

φ(w) =

N∏
n=1

φn(wThn) (1.6)

for local site functions φn and fixed vectors hn. In
this case, a local bound is applied to each site factor
φn. Since the local bounds are all positive, this gives a
bound dependent on the set of variational parameters

logZ ≥ B(ξ1, . . . , ξN )

The problem of integrating over w has thus been ap-
proximated by the requirement to optimise the bound
with respect to the vector ξ of variational parameters.
The formal complexity of evaluating the local bound
equation (1.5) requires computing det (A) and thus in
general scales O

(
D3
)
. Furthermore, optimising the

local bound with respect to ξ requires solving a D×D
linear system N times (Jaakkola and Jordan, 2000;
Girolami, 2001).

Such computations are prohibitively expensive when
D � 1, and scalable solvers have recently been de-
veloped to address this (Seeger, 2009; Nickisch and
Seeger, 2009). The reduced computational burden of
these methods is principally derived from making two
relaxations. Firstly, double loop algorithms are used
that, by decoupling the variational bound, reduce the
number of times that the expensive log det (A) term
and its gradient have to be computed. Further sav-
ings are obtained by employing low rank approximate
factorisations of A. The computational demand of
this procedure shifts then from evaluating the gradi-
ent of log det (A) to calculating the low K-rank ap-
proximate factorisation. This may be achieved using
Lanczos codes whose complexity scale super-linearly
in K. The overall resulting complexity of this ‘re-
laxed’ local method is both problem and user depen-
dent although, roughly speaking, the dimensionality
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contributes O
(
D2
)

to the complexity of each update.
We refer the reader to Nickisch and Seeger (2009) for
a detailed discussion. An unfortunate aspect of this
approximate decomposition is that it does not retain
a bound on Z and indeed the quality of the resulting
approximation to Z can be poor.

2 VARIATIONAL GAUSSIAN
APPROXIMATION

An alternative to the local bounding method is to fit
a Gaussian q(w) = N (w m,S) based on minimis-
ing KL(q(w)|p(w|D)). Due to the non-negativity of
the KL divergence, we immediately obtain the bound
logZ ≥ BKL(m,S), where

BKL(m,S) ≡ −〈log q(w)〉
+ 〈logN (w µ,Σ)〉+ 〈log φ(w)〉 (2.1)

and 〈·〉 denotes expectation with respect to q(w). This
VG bound holds for any φ, compared with the lo-
cal method which requires φ to be super-Gaussian.
An important question, however, is whether the lo-
cal bound equation (1.5) or the VG bound equation
(2.1) is tighter and, furthermore, how these bounds are
related. The VG bound has been noted before both
empirically in the case of logistic regression (Nickisch
and Rasmussen, 2008) and analytically for the spe-
cial case of symmetric potentials (Seeger, 2009) to be
tighter than the local bound. It is also tempting to
presume that the VG bound is to be expected to be
tighter due to the potentially unrestricted covariance
S. In this, however, one needs to bear in mind that
for local site functions φn, n = 1, . . . , N , provided
N > 1

2D(D + 2), the number of variational param-
eters in the local method actually exceeds the number
of parameters in the VG method, and such intuition
breaks down.

2.1 Relating the local and VG bounds

We derive a relationship between the local and VG
bounds based on a generic super-Gaussian function
φ(w). We first use the local bound on φ(w), equa-
tion (1.2), in equation (2.1) to obtain a new bound

BKL(m,S) ≥ B̃KL(m,S, ξ)

where
2B̃KL ≡ −2 〈log q(w)〉 − log det (2πΣ) + 2 log c(ξ)

−
〈
(w − µ)

T
Σ−1(w − µ)

〉
−
〈
wTF(ξ)w

〉
+2
〈
wTf(ξ)

〉
Using equation (1.4) this can be written as

B̃KL = −〈log q(w)〉 − 1

2
log det (2πΣ) + log c(ξ)

− 1

2
µTΣ−1µ− 1

2

〈
wTAw

〉
+
〈
wTb

〉

By defining q̃(w) = N
(
w A−1b,A−1

)
we obtain

B̃KL = −KL(q(w)|q̃(w))−1

2
log det (2πΣ)+log c(ξ)

− 1

2
µTΣ−1µ +

1

2
bTA−1b− 1

2
log det (2πA)

Since m,S only appear via q(w) in the KL term, the
tightest bound is given when m,S are set such that
q(w) = q̃(w). At this setting the KL term in B̃KL
disappears and m and S are given by

Sξ =
(
Σ−1 + F(ξ)

)−1
, mξ = Sξ

(
Σ−1µ + f(ξ)

)
(2.2)

Since B(m,S) ≥ B̃(m,S, ξ) we have that,

BKL(mξ,Sξ) ≥ B̃KL(mξ,Sξ, ξ) = B(ξ) (2.3)

Importantly, the VG bound can be tightened beyond
this setting:

max
m,S
BKL(m,S) ≥ BKL(mξ,Sξ) (2.4)

Thus optimal VG bounds are provably tighter than
both the local variational bound and the VG bound
calculated using the optimal local moments mξ and
Sξ. The experiments in section(5) show that the im-
provement in VG bound values can be significant. Fur-
thermore, constrained parametrisations of covariance,
which are required when D � 1, are also frequently
observed to outperform local variational solutions.

2.2 Tractable VG Approximations

The bound equation (2.1) assumes we can compute
〈log φ(w)〉. For generic functions φ, this may not be
practical. However, for the product of site projections
form, equation (1.6), each projection wThn is Gaus-
sian distributed and

I ≡ 〈log φ(w)〉 =
∑
n

〈log φn(µn + zσn)〉N (z 0,1) (2.5)

with µn ≡ mThn and σ2
n ≡ hT

nShn. Hence I can be
readily computed either analytically (for example for
φ(x) ∝ e−|x|) or more generally using one-dimensional
numerical integration (Barber and Bishop, 1998; Kuss
and Rasmussen, 2005).

A further point of interest is that for local sites, equa-
tion (1.6), by differentiating the VG bound with re-
spect to S and equating to zero, the optimal form for
the covariance satisfies

S−1 = Σ−1 + HΓHT (2.6)

where Γ is diagonal such that

Γnn =

〈
zφ′n(µn + zσn)

2σnφn(µn + zσn)

〉
(2.7)
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and H = [h1, . . . ,hN ]. Here Γ is dependent on S
through the projected variance terms σn and we do
not have a closed expression or fixed point procedure
for optimising the bound. Unfortunately, optimising
the bound directly with respect to Γnn is infeasible
due the computational cost of storing and inverting S
when D and N � 1. Furthermore, S parametrised
in the form of equation (2.6) renders the bound non-
concave in Γnn. We shall return to the issue of scalable
alternative parametrisations of S in section(4).

3 VG BOUND CONCAVITY

An attractive property of local variational methods is
that they have been proved to be convex problems
when φ is log-concave (Seeger, 2009). Here we show
that this important property is not restricted to local
variational methods. For log-concave potentials φ(w)
of the form equation (1.6), the VG bound BKL(m,S),
equation (2.1), is jointly concave with respect to the
variational Gaussian parameters m and S.

In order to show this we parametrise the covariance
S of the variational Gaussian distribution q(w) =
N (w m,S) using the Cholesky decomposition S =
CCT where C is a square lower triangular matrix of
dimension D. Since the bound depends on the log-
arithm of φ, without loss of generality we may take
N = 1, and on ignoring constants with respect to m
and S, we have that

BKL(m,C)
c.
=
∑
i

logCii−
1

2
mTΣ−1m+µTΣ−1m

− 1

2
trace

(
Σ−1CCT

)
+
〈
log φ(wTh)

〉
(3.1)

Excluding
〈
log φ(wTh)

〉
from the expression above, all

terms are concave functions exclusively in either m
or C. Since the sum of concave functions on distinct
variables is jointly concave, these terms represent a
jointly concave contribution. To complete the proof
we therefore need to show that

〈
log φ(wTh)

〉
is jointly

concave in m and C. We first transform variables to
write

〈
log φ(wTh)

〉
as

〈log φ(a)〉N (a mTh,hTSh) = 〈ψ(µ(m) + zσ(C))〉z (3.2)

where 〈·〉z refers to taking the expectation with respect
to the standard normal N (z 0, 1) and,

µ(m) ≡mTh, σ(C) ≡
√

hTCCTh, ψ ≡ log φ

Note that establishing the concavity of equation (3.2)
is non-trivial since the function ψ(µ(m) + zσ(C)) is
itself not jointly concave in C and m.

For ease of notation we let σ′ ≡ vec
(
∂σ(C)
∂C

)
, where

vec (X) is the vector obtained by concatenating the

columns of X, with dimension D2; σ′′ ≡ ∂2σ(C)
∂C2 is

the Hessian of σ with respect to C with dimension

D2×D2; µ′ ≡ ∂µ(m)
∂m is a column vector with dimension

D. Then the Hessian of ψ with respect to m and C
can be expressed in the following block matrix form

H[ψ] =

[
∂2ψ
∂C2

∂2ψ
∂C∂m

∂2ψ
∂m∂C

∂2ψ
∂m2

]

=

[
ψ′′z2σ′σ′

T
+ ψ′zσ′′ ψ′′zσ′µ′

T

ψ′′zµ′σ′
T

ψ′′µ′µ′
T

]

The Hessian of 〈ψ(µ(m) + zσ(C))〉z is equivalent
to 〈H[ψ(µ(m) + zσ(C))]〉z, which we now show to
be negative semi-definite. Since the expectation in
〈H[ψ(µ(m) + zσ(C))]〉z is with respect to an even
Gaussian density function, provided that for all γ ≥ 0,
the combined Hessian is negative definite, i.e.

Hz=−γ [ψ] +Hz=+γ [ψ] � 0 (3.3)

then the expectation of H[g] with respect to z is neg-
ative definite. To show this we first note that for all
u ∈ RD2

and v ∈ RD[
u
v

]T
H[ψ]

[
u
v

]
= ψ′′

[
vTµ′ + zuTσ′

]2
+ψ′zuTσ′′u

The first term of the right hand side is negative for all
values of z since ψ′′(x) ≤ 0.

To show that equation (3.3) is satisfied it is sufficient
to show that

(ψ′(µ+ γσ)− ψ′(µ− γσ)) γuTσ′′u ≤ 0

which is true since σ′′ � 0, σ(C) ≥ 0 and because
ψ′(x) is a decreasing function from the assumed log-
concavity of φ.

To see that σ′′ � 0 we write, σ2(C) =
∑
j g

2
j (C) where

gj(C) = |
∑
i hiCij | is convex and non-negative for all

j. For convex and non-negative functions gj and p > 1,

then
(∑W

j=1 gj(x)p
)1/p

is convex (Boyd and Vanden-

berghe, 2004), which reveals that σ(C) is convex on
setting p = 2.

The supplementary material contains a simpler proof
kindly provided to us after the conference by M. K.
Titsias.

4 VG BOUND OPTIMISATION

Whilst highly desirable, concavity of the VG bound
with respect to m and C does not in itself guaran-
tee that optimisation is scalable. Thus an important
practical consideration is the numerical complexity of
a simple gradient based procedure.
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Cfull Cband Cchev Csub Csub&band

Comp. O
(
ND2

)
O (NDB) O (NDK) O

(
NK2

)
O (NKB)

Table 1: Time complexity to evaluate the VG bound
and its gradient for each covariance parametrisation.

Answering this question in full generality is complex
and we therefore restrict ourselves to considering the
common case in which Σ = s2I and φ(w) factorises

such that φ(w) =
∏N
n=1 φ(hT

nw). Note that many
popular models are in this class, such as inverse models
with isotropic Gaussian observation noise, and gener-
alised linear models with isotropic Gaussian priors.

For Cholesky factorisations C of dimension D × D
the computational bottleneck in computing the VG
bound arises from the projected variational variances
σ2
n = ||CThn||2 required in the likelihood term, equa-

tion (2.5). Computing all such terms is O
(
ND2

)
.

Whilst this appears prohibitive, this complexity com-
pares favourably with the local method in which a sin-
gle ξ update involves solving N linear D×D systems,
thus scaling O

(
ND3

)
. Note also that in many prob-

lems of interest, the hn are sparse, in which case D
should be taken as the number of non-zero elements,
often � D. Nevertheless, O

(
D2
)

scaling for the VG
method can be expensive for very large problems. For
such cases, reduced parametrisations of the covariance
S are required, as presented below. These reduced
parametrisations increase the problem size to which
the VG procedure can be applied.

Factor Analysis parametrisations of the form S =
ΘΘT +diag

(
d2
)

can capture the K leading directions
of variance for a D × K dimensional loading matrix
Θ. Unfortunately, however, this parametrisation is not
of the square Cholesky form in section(3) and indeed
renders the VG bound non-concave. Provided one is
happy to accept convergence to possibly local optima,
this is still a useful parametrisation.

4.1 Reduced Concave Parametrisations

Whilst full rank Cholesky parametrisations are opti-
mal in terms of achieving the tightest possible VG
bound, for D � 1 storing and evaluating the gradi-
ent with respect to C is prohibitive. Below we con-
sider constrained parametrisations which reduce both
the space and time complexity, whilst preserving con-
cavity of the bound.

Banded Cholesky. The simplest option is to con-
strain the Cholesky matrix to be banded, that is
Cij = 0 for i > j+B where B is the bandwidth. Doing
so reduces the cost of a single bound/gradient compu-
tation to O (NDB), see table(1). Such a parametri-
sation however assumes zero covariance between vari-

ables that are indexed out of bandwidth.

Chevron Cholesky. We constrain C such that
Cij = Θij when i ≥ j and j ≤ K, Cii = di for i > K
and 0 otherwise. Importantly, this reduced parametri-
sation does not exclude modelling any individual co-
variates whilst conserving concavity of the bound. For
a Cholesky matrix of this form bound/gradient com-
putations scale O (NDK).

Subspace Cholesky. Another reduced parametrisa-
tion of the covariance can be obtained by considering
arbitrary rotations of the covariance, S = ECCTET

where E forms an orthonormal basis over RD. Sub-
stituting this form of the covariance in equation (3.1)
and for Σ = s2I we obtain, up to a constant,

BKL(m,C)
c.
=
∑
i

logCii −
1

2s2
[
||C||2 + ||m||2

]
+

1

s2
µTm +

∑
n

〈log φ(µn + zσn)〉z (4.1)

where σn = ||CTEThn||. One may reduce the compu-
tational burden by decomposing the square orthonor-
mal matrix E into two orthonormal matrices such that
E = [E1,E2] where E1 is D ×K and E2 is D × L for
L = (D−K). Then for C = blkdiag (C1, cIL×L), with
C1 a K ×K Cholesky matrix,

σ2
n = ||CT

1ET
1hn||2 + c2(||hn||2 − ||ET

1hn||2)

meaning that only the K eigenvectors in E1 need
to be approximated. This effect is due to the as-
sumed isotropy of Σ, which can be generalised for
non-isotropic Σ by using a coordinate transformation
for which in the new system, the prior covariance is
rendered isotropic. Since terms such as ||hn|| need
only be computed once the complexity of bound and
gradient computations scales linearly with K, not D.
Further savings can be made if we use only banded
Cholesky matrices: for C1 having bandwidth B each
bound evaluation and associated gradient computation
scales O (NBK).

The success of this factorisation depends on how well
E1 captures the leading directions of variance. One
simple approach is to use the leading Principal Com-
ponents of the ‘dataset’ H. Another option is to use
a two stage procedure in which we first assume C is
low bandwidth. After optimisation of the VG bound
w.r.t. m and C we then obtain an estimate of the pro-
jections µn and σn. These can be used to approximate
the diagonal matrix Γ in equation (2.7). We then seek
a rank K approximation to this S. The best rank K
approximation is given by evaluating the smallest K
eigenvectors of Σ−1 + HΓHT. For very large sparse
problems D � 1 we use iterative Lanczos methods
to approximate this, using the methods described in
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Figure 1: Bound values vs. K the ‘size’ of covariance
parametrisation: approximate local bound values for a
rank K approximation (red); VG bound calculated us-
ing the implied local variational moments using equa-
tion (2.2) (blue); VG bound optimised with Chevron
parametrised covariance of width K (green); the exact
local variational bound, independent of K, is plotted
for comparison (black). Results obtained on a syn-
thetic binary logistic regression problem: D = 700,
N = 4000.

Seeger and Nickisch (2010). For smaller non-sparse
problems more accurate approximations are available
– see the supplementary material.

5 EXPERIMENTS

To make more concrete the results presented above and
as a numerical validation of them we apply both local
and VG bounding techniques to two common Bayesian
models: binary logistic regression and inverse mod-
elling. Local bound results were obtained using the
publicly available glm-ie code2.

5.1 Bayesian Logistic Regression

Given a dataset, D = {(sn,xn) , n = 1, . . . , N} with
each class sn ∈ {−1, 1} and D-dimensional input
vector xn, Bayesian logistic regression models the
class probability as p(c = 1|w,x) = f

(
wTx

)
, with

f(x) ≡ 1/(1 + e−x). Under a Gaussian prior, p(w) =
N (w 0,Σ), the posterior is given by

p(w|D) ∝ p(w)
∏
n

f
(
snwTxn

)
This is of the form equation (1.1) and equation (1.6)
under log-concave sites φn(x) ≡ f(x) and hn ≡ snxn.

VG Bound. Following the procedure outlined in
section(2), we obtain a bound on the log marginal like-
lihood of the form

2http://mloss.org/software/view/269

2BKL(m,S) = log det
(
SΣ−1

)
+D−trace

(
Σ−1S

)
−mTΣ−1m + 2

∑
n

In (5.1)

where In ≡ 〈log f(µn + zσn)〉z; 〈·〉z is the expectation
with respect to the standard normal, µn = snx>nm
and σ2

n = x>nSxn. In can be computed by any stan-
dard one-dimensional numerical integration method –
for the results presented, quadrature was used. The
gradients for this model are provided in the supple-
mentary material.

Local Bound. Following Jaakkola and Jordan
(1996), the logistic function is bounded by

f(x) ≥ f(ξ)

[
1

2
(x− ξ)− λ(ξ)

(
x2 − ξ2

)]
(5.2)

where λ (ξ) ≡ 1
2ξ

(
f (ξ)− 1

2

)
. Integrating over w gives

log p(D) ≥ 1

2
log det

(
SΣ−1

)
+

1

2
mTS−1m

+

N∑
n=1

[
log f (ξn)− ξn

2
+ λ (ξn) ξ2n

]
(5.3)

for m = S
∑N
n=1

1
2snxn, and covariance S−1 = Σ−1 +

2
∑N
n=1 λ (ξn) xnxT

n. The bound (5.3), can be opti-
mised w.r.t. ξn using the variational update ξ2n =
xT
n

(
S + mmT

)
xn.

5.1.1 Approximate Bound Comparison

It is important to note that VG methods always return
a lower bound to the marginal likelihood, and that
computing the bound at most scales O

(
ND2

)
with re-

duced parametrisations scaling according to table(1).

In contrast, exact evaluation of the local varia-
tional lower bound scales O

(
D3
)
. As discussed in

section(1.1), fast scalable approximate solvers that are
required when D � 1 utilise low rank approximations
to A and give only an approximation to logZ.

Figure 1 plots the approximate and exact local vari-
ational bound versus the VG bound using a Chevron
parametrised covariance matrix for a synthetic binary
logistic regression problem. Since the dimensionality
of this problem is sufficiently small, the exact local
bound and the VG bound implied by the optimal lo-
cal variational parameters can also be computed. The
figure shows that the VG bound improves as more pa-
rameters are used to specify the covariance. However,
for K � D the approximate local bound value can
significantly overestimate the exact local bound value.
Principally this is due to Lanczos codes ignoring the
centre of the eigen-spectrum of A and thus underesti-
mating the magnitude of the log det (A) term. Thus,
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a9a realsim rcv1

VG

Full

VG

Chev

VG

Sub

Local VG

diag

VG

Chev

VG

Sub

Local VG

diag

VG

Chev

VG

Sub

Local

K − 80 80 80 − 100 750 750 − 50 750 750

Bound −5, 374 −5, 375 −5, 379 −5, 383 −5, 564 −5, 551 −5, 723 − −6, 981 −6, 979 −7, 286 −
CPU(s) 85 91 68 5 180 350 575 583 176 424 955 436

Acc. % 15.12 15.10 15.12 15.10 2.86 2.86 2.86 2.87 2.90 2.89 2.94 2.94

Table 2: Approximate local and VG results for the a9a, realsm and rcv1 binary classification tasks. Bound
values in all cases are evaluated using the VG form. K refers to the ‘rank’ of the approximation: VG Chev Θ
is D ×K; VG Sub parametrisation uses K dimensional subspace and a diagonal Cholesky matrix; approximate
local method with K Lanczos vectors. VG diag refers to a bandwidth 1 Cholesky matrix. CPU times were
recorded in MATLAB using an Intel 2.5Ghz Core 2 Quad processor.

in problems of sufficiently large dimensionality, where
necessarily K � D, local approximate bound values
cannot be relied upon to assess model fidelity. In con-
trast the VG procedure offers an exact lower bound
on the marginal likelihood that scales according to
table(1).

5.1.2 Large Scale Numerical Results

To demonstrate the scalability of the VG method we
compare the performance against fast local methods
on three large scale binary classification tasks3, a9a,
realsim and rcv1.

Training (tr) and test sets (tst) were randomly par-
titioned such that: a9a D = 123, tr = 16, 000,
tst = 16, 561 with the number of non zero elements
(nnz) totalling nnz = 451, 592 ; realsim D = 20, 958,
tr = 36, 000, tst = 36, 309 and nnz = 3, 709, 083;
rcv1 D = 42, 736, tr = 50, 000, tst = 50, 000 and
nnz = 7, 349, 450.

Model parameters and local optimisation procedures
were, for the purposes of comparison, fixed to the val-
ues stated in Nickisch and Seeger (2009): τ , a scal-
ing on the likelihood term p(cn|xn) = f(τwTxn), was
set to 1 in the a9a dataset and τ = 3 for realsim

and rcv1; the prior variance was fixed Σ = s2I with
s2 = 1. The VG bound was optimised using a conju-
gate gradients procedure.

Results for various concave parametrisations of covari-
ance are presented in table(2). Local VG bound values
are not presented for the larger problems since evaluat-
ing m and S using equation (2.2) and the optimal local
variational parameters is not computationally feasible,
whilst the approximate local bound values are too in-
accurate to make meaningful comparisons (see fig(1)).
The local bound value for the a9a data set was ob-
tained by translating the returned optimal local pa-
rameter ξ to a VG Gaussian using equation (2.2). This

3www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets

VG Gaussian is guaranteed to provide a higher bound
than the local method itself.

Whilst the local method is significantly faster for the
small D problem a9a (albeit with a worse bound) than
the VG method, this is due only to different over-
heads in the corresponding implementations. In the
larger problems, the results show that a simple VG
gradient based optimisation procedure, coupled with
constrained parametrisations of the covariance, can
achieve results in terms of speed and accuracy on a
par with or in excess of fast local solvers.

5.2 Bayesian Inverse Modelling

Bayesian inverse modelling assumes an observed real
vector y ∈ RN is drawn from the generative model
y = Mw + η for w ∈ RD, for a model matrix M of
dimension N ×D with N � D and additive spherical
Gaussian noise η ∼ N

(
0, s2I

)
. Sparsity can be im-

posed on the inferred object by using a prior of the
form φ(w) ≡

∏
i p(wi), where each p(wi) is super-

Gaussian. Given y, the posterior is then of the form

p(w|y) =
1

Z
N
(
y Mw, s2I

)
φ(w) (5.4)

Due to the symmetry N (w µ,Σ) ≡ N (µ w,Σ), and
since M is a linear operator, then provided that φ(w)
is log-concave, the arguments of section(3) apply. For
Laplace sparsity priors φ(w) =

∏
i

1
2τi
e−|wi|/τi both

the VG and local bounds are concave.

VG bound. Following the procedure outlined in
section(2) we obtain the following bound on the
marginal likelihood,

2BKL(m,S) ≡ −N log(2πs2) + 2

D∑
i=1

〈log p(wi)〉

− 1

s2
[
||y||2 − 2yTMm + ||CTM||2 + ||Mm||2

]
+ 2 log det (2πC) +D (5.5)

Evaluating the integral 〈log p(w)〉q(w) in this case is
analytic, the precise form of which, including vari-
ational gradients, is presented in the supplementary
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material. Inspecting the form of equation (5.5), it is
important to point out that the computational bot-
tleneck is equivalent to that for the generalised lin-
ear model case discussed previously, namely comput-
ing ||CTmn||2 where mn is the nth column of M.

Local bound. As originally presented by Girolami
(2001), a lower bound on logZ can be obtained by
bounding each Laplace site using,

e−|x| ≥ λ(ξ)N (x 0, |ξ|) ,where λ(ξ) ≡
√

2π|ξ|e− 1
2 |ξ|

Bounding the prior terms with this form gives,

log p(y|M, s2) ≥
D∑
i=1

log λ(ξi)−
N

2
log(2π)

− 1

2
log det (A)− 1

2
yTA−1y (5.6)

where A = MΓMT + s2I, Γ = diag (|ξ1|, ...|ξD|).

5.2.1 Numerical Comparison

As a numerical comparison of the local and VG ap-
proximate methods for the inverse modelling problem
we simulate a hyperparameter selection task, assuming
identical priors τi = τ , in which the true value of the
hyperparameter τ used to generate the data is known.

The data vector y was sampled according to the gen-
erative model with parameters set such that τ true =
0.05× 1 and s2 = 10−3. The model matrix M has di-
mensionN×D whereN = 100 andD = 200, with each
element generated by sampling U [−1, 1]. VG bound
values are presented in fig(2). Local results were ob-
tained using using both the exact and approximate
optimisation procedures with K = 50 Lanczos vec-
tors. VG results are presented for a full Cholesky and
a constrained Chevron parametrisation with K = 50.

Whilst the fully optimal VG parametrisation is guar-
anteed to outperform the local variational bound, the
results presented in fig(2) show that the constrained
VG parametrisation can also outperform both the ex-
act and approximated local solutions.

As the results in section(5.1.2) testify, the optimal re-
duced concave covariance parametrisation (Chevron
versus Banded Cholesky etc. ) is problem dependent.
Characterising the effects of covariance parametrisa-
tion, including those implied by local approximate op-
timisation procedures, is an important topic for future
research. However, until such issues are better un-
derstood, the VG bound to the marginal likelihood
provides a practical means by which to assess the ac-
curacy of different covariance parametrisations in large
systems.
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Figure 2: Hyperparameter selection for a sparse lin-
ear model. Bound values are calculated using the VG
form with posterior moments obtained under each ap-
proximation τ true = 0.05. Inferred optimal hyperpa-
rameter values under each approximate method are:
VG full τ∗ = 0.058, VG Chev τ∗ = 0.043, local full
τ∗ = 0.12 and local approx τ∗ = 0.043.

6 DISCUSSION

We have presented several novel theoretical and prac-
tical developments regarding the application of varia-
tional Gaussian KL approximations:

For posteriors of the form in equation (1.1) optimal
variational Gaussian bounds are always tighter than
local bounds that use squared exponential site bounds.

An important practical issue in finding the optimum
of the variational Gaussian bound is its concavity. We
have proved that the VG bound is concave in terms of
the mean and covariance of the approximating Gaus-
sian.

To enhance scalability and optimisation we have pre-
sented constrained covariance parametrisations which
retain concavity of the bound. An important prac-
tical point is the ease with which VG methods can
be implemented; off the shelf gradient based optimis-
ers and constrained concave parametrisations of co-
variance can achieve fast and scalable approximate in-
ference for a large class of Bayesian generalised linear
models.

These observations on the variational Gaussian bound
make it, to our minds, an attractive alternative to the
more recent focus on local bounding methods.

Code is available at mloss.org/software/view/308

Acknowledgements

We are grateful to Peter Sollich and the referees of
a previous version of the paper for their technical in-
sights.



Edward Challis, David Barber

References

D. Barber. Bayesian Reasoning and Machine Learn-
ing. Cambridge University Press, 2011.

D. Barber and C. Bishop. Ensemble Learning in
Bayesian Neural Networks. In Neural Networks and
Machine Learning, pages 215–237. Springer, 1998.

S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

M. Gibbs and D. MacKay. Variational Gaussian Pro-
cess Classifiers. IEEE Transactions on Neural Net-
works, 11(6):1458–1464, 2000.

M. Girolami. A Variational Method for Learning
Sparse and Overcomplete Representations. Neural
Computation, 13(11):2517–2532, 2001.

J. Hardin and J. Hilbe. Generalized Linear Models and
Extensions. Stata Press, 2007.

T. Jaakkola and M. Jordan. A variational approach
to Bayesian logistic regression problems and their
extensions. In Artificial Intelligence and Statistics,
1996.

T. Jaakkola and M. Jordan. Bayesian parameter esti-
mation via variational methods. Statistics and Com-
puting, 10(1):25–37, 2000.

M. Kuss and C. Rasmussen. Assessing Approximate
Inference for Binary Gaussian Process Classifica-
tion. Journal of Machine Learning Research, 6:
1679–1704, 2005.

H. Nickisch and C. Rasmussen. Approximations for
Binary Gaussian Process Classification. Journal of
Machine Learning Research, 9:2035–2078, 10 2008.

H. Nickisch and M. Seeger. Convex Variational
Bayesian Inference for Large Scale Generalized Lin-
ear Models. International Conference on Machine
Learning, 26:761–768, 2009.

M. Opper and C. Archambeau. The Variational Gaus-
sian Approximation Revisited. Neural Computation,
21(3):786–792, 2009.

A. Palmer, D. Wipf, K. Kreutz-Delgado, and B. Rao.
Variational EM algorithms for non-Gaussian latent
variable models. In B. Schölkopf, J. Platt, and
T. Hoffman, editors, Advances in Neural Informa-
tion Processing Systems (NIPS), number 19, pages
1059–1066, Cambridge, MA, 2006. MIT Press.

M. Seeger. Bayesian Model Selection for Support Vec-
tor Machines, Gaussian Processes and other Ker-
nel Classifiers. In S. Solla, T. Leen, and Müller,
editors, Advances in Neural Information Processing
Systems (NIPS), number 12, pages 603–609, Cam-
bridge, MA, 1999. MIT Press.

M. Seeger. Sparse linear models: Variational approx-
imate inference and Bayesian experimental design.
Journal of Physics: Conference Series, 197(1), 2009.

M. Seeger and H. Nickisch. Large Scale Varia-
tional Inference and Experimental Design for Sparse
Generalized Linear Models. Technical report,
Max Planck Institute for Biological Cybernetics,
http://arxiv.org/abs/0810.0901, 2010.

D. Wipf and S. Nagarajan. A unified Bayesian frame-
work for MEG/EEG source imaging. NeuroImage,
44(3):947–966, 2009.


