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Abstract— We present a model for simultaneous tempo
and polyphonic pitch tracking. Both these acoustic analy-
sis tasks are difficult and, arguably, no satisfactory solution
currently exists for polyphonic pitch tracking. Our model, a
form of Dynamical Bayesian Network, embodies a transpar-
ent and computationally tractable approach to this acoustic
analysis problem. An advantage of our approach is that
it places emphasis on modelling the sound generation pro-
cedure. It provides a clear framework in which both high
level (cognitive) prior information on music structure can
be coupled with low level (acoustic physical) information in
a principled manner to perform the analysis. The model is
readily extensible to more complex sound generation pro-
cesses.

I. Introduction

Consider the following scenario: a performer is improvis-
ing freely on a musical instrument. A computer processes
the performance, extracting high level information includ-
ing the pitch, tempo and expressive characteristics. Our
aim in this paper is to consider a computational framework
to move us closer to the realisation of such a scenario[11],
[1]. To interface an acoustical instrument to a computer,
one needs a mechanism to sense and characterize individual
events and expressive components of the sound produced
by the instrumentalist. One potential solution is to use
dedicated hardware and install special sensors on to the
instrument body: this solution is has restricted flexibility
and is applicable only to instruments designed specifically
for such a purpose.

Discounting the above ‘hardware’ solution, we shall as-
sume throughout the rest of this paper that we capture the
sound with a microphone, so that the computer receives
then no further input other than the pure acoustic infor-
mation. In this paper, we desire to analyze such low level
information and extract high level information including
the pitch and tempo, a form of transcription[11]. Clearly,
other kinds of high level information are potentially impor-
tant in defining the musical expression of a performance,
and a long term goal is to be able to extract these features
as well. Whilst not considered here, several motivations for
the subsequent use of such extracted information exist. It
might be that this information is in itself the main interest;
this could be used, for example, as part of a remastering
process. Other uses include giving a response, based on the
computer’s understanding of the musical scene, such that
the computer may be able, to ‘jam’ with a performer during
a live performance[9]. The real time nature of this scenario
motivates the need for fast computational procedures.
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In our view, what is missing in current approaches to this
problem is a consistent modelling framework and compu-
tational machinery to interface low level signal processing
to high level musical knowledge. In this paper we demon-
strate a methodology that focuses on the generative process
underlying a musical performance. This includes modelling
both the instrument (low level) as well as the instrumen-
talist (high level). We use as a running example the task of
estimating the pitch and tempo of a musical performance
but believe that the methods discussed here are generally
applicable to a broad spectrum of applications for real time
human-computer interaction.

II. Model

A basic starting point for music transcription from au-
dio is the extraction of pitch and tempo information from
an acoustic signal. The problem can be conveniently de-
scribed in a Bayesian framework: given the audio samples,
we wish to infer the onset times (times at which a ‘string’
is ‘plucked’), note durations, tempo as well as the pitch
classes of individual notes. We assume that we have es-
sentially one microphone, so that at each time t, we have
a one dimensional observed quantity yt. Multiple micro-
phones (such as required for stereo) would be straightfor-
ward to include in our model. We denote the audio samples
{y1, y2, . . . , yt, . . . , yT } by the shorthand notation y1:T . A
constant sampling frequency Fs is assumed, i.e. the ac-
tual time elapsing between two consecutive samples t and
t+1 is 1/Fs seconds. We conceptualize the physical instru-
ment (including, for example, voice) as a set of vibrating
strings. Our approach considers the quantities we wish to
infer, namely tempo and pitch, as ‘hidden’ (unobserved)
quantities, whilst acoustic recording values y1:T are ‘visi-
ble’ (observed). Let us denote the unobserved quantities by
H1:T where each Ht is a vector. Our hidden variables will
contain, in addition to the tempo and pitch, other variables
required to complete the sound generation procedure. We
will elucidate their meaning later. As a general inference
problem, the posterior distribution is given by

p(H1:T |y1:T ) ∝ p(y1:T |H1:T )p(H1:T ) (1)

The likelihood term p(y1:T |H1:T ) in (1) requires us to spec-
ify a generative process that gives rise to the observed au-
dio samples, i.e., a sound synthesis model for the musical
instrument as well as a performance model that describes
timing characteristics of the performer. The prior term
p(H1:T ) reflects our general knowledge about the nature
of these hidden quantities, e.g., range of pitch classes or
amount of reasonable tempo fluctuations. We will frame



2

Ä ä
Å ä

t d tY c t
t t d tY t

k c l n class
1 0 1 69 A
2 0 1 53 F
3 1 1 52 E
4 1.5 0.5 72 C
5 2.5 0.5 53 F
6 3 1 72 C
7 3 1 55 G

t 1 2 3 4 . . . 465 466 467 . . .

θ -1 -0.99 -0.99 -0.97 . . . -1.23 -1.23 -1.22 . . .

v 0 0.002 0.004 0.006 . . . 0.998 1.001 1.003 . . .

k 0 0 1 2 . . . 2 2 3 . . .

ho 0 0 0 1 . . . 1 1 1.5 . . .

κ 0 1 1 0 . . . 0 1 0 . . .

Fig. 1. (Top) Simple polyphonic score and the sequence of note
events it represents. The k’th note has three attributes: the score
position ck, duration lk and the pitch index nk. (Bottom) A possible
realization from the generative model. Variables are described in the
text.

our model as a Dynamical Bayesian Network which are ex-
tensions of Kalman Filters[6]; references to inference and
learning issues in such networks are given in [4].

III. Model

Musical signals have a very rich temporal structure, both
on physical (signal) and cognitive (symbolic) level. From a
statistical modeling point of view, such a hierarchical struc-
ture induces very long range correlations, that are difficult
to capture with conventional signal models. Moreover, in
many music applications, such as transcription or score fol-
lowing, we are usually interested into a symbolic represen-
tation (such as a score) and not so much into the “details”
of the actual waveform. To abstract away from the signal
details, we define a set of intermediate variables (a sequence
of indicators and pitches), somewhat analogous to a “pi-
ano roll” representation. This piano roll representation will
form an “interface” between a symbolic representation and
the actual signal process. We will first introduce a Score
and a Timer model to induce a prior on piano rolls. Con-
ditioned on the piano roll, we will define a Signal model;
a sinusoidal model that we will formulate as a condition-
ally Gaussian process (a Kalman filter model). Roughly,
the score model describes how a piece is composed, a timer
model describes how it is performed, and a signal model
describes how the actual waveform is synthesized.

A. Timer and Score Models

Our timer model, when viewed as a probabilistic gener-
ative model, is analogous to a MIDI sequencer, a program
that schedules note events and generates control signals
that drive a sound generating device. We imagine that
each performance is a realization from a score. The score
itself is generated by a score model and is “performed” by
an “expressive” sequencer. An expressive sequencer, like
a human performer, can fluctuate the tempo or introduce
timing deviations (plays scheduled notes a little bit earlier
or later). The generated control signals, when viewed as
functions of actual time, constitute an intermediate repre-
sentation analogous to a piano roll. In Figure 1, we show
a simple polyphonic score and the corresponding note se-

quence.
We implement the timer mechanism as follows: At each

time step, a continuous variable, v, the score position
pointer, is increased monotonically with a rate proportional
to the tempo. Each time the pointer v reaches the next note
in the score, an interrupt is generated. We represent the
tempo in log-period by θt. For example, a tempo of 120
beats per minute corresponds to θ = log2 60/120 = −1. At
each new sample, we allow the tempo to change by a small
amount εθ ∼ N (0, Σθ).

θt = θt−1 + εθ

vt = vt−1 + 2−θt/Fs

When θ becomes large, the score pointer v is incremented
less so the tempo gets effectively slower.

To represent the score, we define a counter variable kt

that counts the number of notes we have generated so far.
We also define ho,t, the onset threshold, that specifies the
score position of the next note cnew

kt = kt−1 + [κt−1 = onset]
cnew ∼ f(c|ho,t−1, kt)
ho,t = ho,t−1[κt−1 6= onset] + cnew[κt−1 = onset]

Above f(c|ho,t−1, kt) is a distribution on score positions of
notes, that reflects the statistics of scores that we expect
to generate. If the score would be given, then cnew = ckt+1

and f would be a deterministic (degenerate) distribution.
Here, [Q] is an indicator that evaluates to 1 (0) when the
Boolean proposition Q is true (false). We generate an in-
terrupt if vt ≥ ho,t ,i.e., when the score pointer has reached
the onset threshold; this decision is made “softer” by using
a sigmoid σ(x) ≡ 1/(1 + exp(−ax)) where we define the
probability of an onset as

p(κt = onset|vt, ho,t) = σ(vt − ho,t)

The sigmoid parameter a adjusts the timing accuracy: a
smaller a allows for more deviation from the value specified
by the threshold ho,t. A numerical example of this onset
generation is given in Figure 1. The graphical submodel of
the timer and score process are shown in the top section
of Figure 2. At any time t, we assume that our idealized
polyphonic instrument can produce at most M indepen-
dent voices or notes, i.e. has M sound generators. A loose
analogy would be a guitar with M strings or a piano with
M keys. When an onset is generated by the timer process,
the index of a sound generator is drawn mnew ∼ f(m|kt).
If the score would be known and each generator would be
assigned to a unique note (e.g. as in a piano) then f would
be a deterministic mapping. We denote the label of the
selected sound generator by mt. We reserve mt = 0 for the
case when no onset is to be generated at time t. Thus :

mt = 0 · [κt−1 6= onset] + mnew[κt−1 = onset]

With each sound generator j = 1 . . . M , we associate a
sequence of threshold variables hj,t that denote the score
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Fig. 2. Graphical Model. Signal model parameters ωt, ρt, transient
noise process zt and periodic process st are not explicitly shown,
but are summarized as x. The rectangle box denotes “plates”, M
replications of the nodes inside. Some links are plotted dotted only
to improve readability.

position of the next note offset

dnew ∼ f(d|kt) nnew ∼ f(n|kt)
hnew = vi + dnew

j = 1 . . . M

hj,t = hj,t[j 6= mt] + hnew[j = mt]
nj,t = nj,t[j 6= mt] + nnew[j = mt]

The distribution f(d|kt) specifies how the current note is
articulated, possibly depending upon its length lkt as no-
tated in the score. Similarly, f(n|kt) specifies the pitch
of current note. Each indicator rj,t is binary, with values
“sound” or “mute”. Given hj,t and vt, the state of the
indicator rj,t is deterministic:

rj,t = sound[vt ≤ hj,t] + mute[vt > hj,t]

The collection of variables r1:M,1:T and n1:M,1:T represent
the piano roll.

B. Signal Model

Musical instruments tend to create oscillations with
modes that are roughly related by integer ratios, albeit
with strong damping effects and transient attack charac-
teristics [3]. It is convenient to model such signals as the
sum of a periodic component and a transient component
[10], [8]. The sinusoidal model is often a good approxima-
tion that provides a compact representation for the peri-
odic component. The transient component can be modeled
as a correlated Gaussian noise process [5], [2]. Our signal
model is also in the same spirit, but we will define it in state
space form, because this provides a natural way to couple
the signal model with the onset generation process. Con-
sider a Gaussian process where typical realizations y1:T are

damped “noisy” sinusoidals with (possibly variable) angu-
lar frequency ω:

st = ρtB(ωt)st−1 + εs (2)
yt = Cst (3)

Here B(ω) =
(

cos(ω) − sin(ω)
sin(ω) cos(ω)

)
is a Givens rotation matrix

that rotates a two dimensional vector by ω degrees counter-
clockwise. C is a projection matrix defined as C = [1, 0].
The phase and amplitude characteristics of yt are deter-
mined by the initial conditions s0. The damping factor
0 ≤ ρ ≤ 1 specifies the rate st contracts to 0. The tran-
sition noise term εs summarizes contributions of unknown
factors, e.g., error terms due to nonlinearities that we are
not modelling.

In reality, musical instruments (with a definite pitch)
have several modes of oscillation that are roughly located at
integer multiples of the fundamental frequency ω. Hence,
we can model such signals by a bank of simple oscillators
giving a block diagonal transition matrix

At(ωt, ρt) = diag (ρ1,tB(ωt), ρ2,tB(2ωt), . . . ρH,tB(Hωt))

where H denotes the number of harmonics, assumed to
be known. The state st of this system is concatenation of
individual oscillator states. To reduce the number of free
parameters, we further assume that ρh,t = ρh

t , motivated
by the fact that damping factors of harmonics in a vibrating
string scale approximately geometrically with respect to
that of the fundamental frequency, i.e. higher harmonics
decaying faster.

We model the transient component zt as white noise with
exponentially decaying variance

qt = αqt−1

zt = q
1/2
t εz,t[rt = sound] + ε0

where εz,t ∼ N (0, 1), ε0 ∼ N (0, R) and 0 ≤ α < 1. We
assume here that all the transient component parameters
(initial variance q0, variance decay parameter α and the
variance R of the “steady state” noise ε0 is known. The
parameter update equations for each sound generator j =
1 . . . M

ωnew ∼ f(ω|nj,t) snew ∼ f(s)
onsetj = (rj,t−1 = mute ∧ rj,t = sound)
log ωj,t = (log ωj,t−1 + εω)[¬ onsetj ] + log ωnew[onsetj ]

ρj,t = ρsoundj [rj,t = sound] + ρmute[rj,t = mute]
qj,t = αqj,t−1[¬onsetj ] + q0[onsetj ]

where ρsound and ρmute are decay coefficients such that
1 ≥ ρsound > ρmute > 0. We use a deterministic mapping
f(ω|nj,t) to generate the rotation angle given the pitch la-
bel. To allow for mistuned notes one can also use a narrow
Gaussian. We assume a Gaussian initial state distribution
f(s) = N (0, S). The total energy injected into the string
at an onset (mute → sound transition in rj) is propor-
tional to det S and the covariance structure of S describes
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how this total energy is distributed among the harmonics.
Thus, f(s) captures the timbre characteristics of the sound.
Given the parameters, each sound generator j = 1 . . .M
produces the next sample

sj,t = At(ωj,t, ρj,t)st−1[¬ onset] + snew[onset] + εs,j,t

zj,t = q
1/2
j,t εz,j,t[rj,t = sound] + ε0

yj,t = Csj,t + zj,t

In the above, C is a 1 × 2H projection matrix C =
[1, 0, 1, 0, . . . , 1, 0] with zero entries on the even compo-
nents. This effectively sums contributions of each har-
monic. Finally, the observed audio signal is the superposi-
tion of the outputs of all sound generators.

yt =
∑

j

yj,t

IV. Results and Discussion

The dynamical model introduced here is a dynamic
Bayesian network [4] in which exact computation of poste-
rior features is intractable. We are currently investigating
efficient approximation methods mainly focusing on Rao
Blackwellized sequential importance sampling and iterative
improvement [1]. Such a hybrid approach enables us to ex-
ploit analytical structure and deterministic relations. For
example, the signal model, given ω and the indicators r,
is a factorial Kalman filter model, where integrations can
be computed analytically. Space here does not allow us to
detail a full inference procedure for our model, which will
be described elsewhere (in preparation).

In Fig. IV we show some preliminary results for tempo
and pitch tracking, using sequential Monte Carlo. We have
rendered a signal yt from the score Fig. IV(a) with an accel-
erating tempo. A small segment of this sequence is shown
in the upper part of Fig. IV(b). In this example, to demon-
strate tempo tracking and pitch tracking we assume that
we know κ1:T . The lower part show that we can recon-
struct the original signals essentially perfectly. Knowing
the onsets and observation sequence alone, we can infer ac-
curately the hidden pitch labels Fig. IV(c) – that is, which
‘notes’ are being played in the given section of sound. Sim-
ilarly, the tempo can be inferred reasonably well. These
preliminary results are encouraging, but do not yet consti-
tute a full and efficient procedure for inferring all hidden
quantities. However, these initial results demonstrate that
accurate pitch and tempo tracking is possible using our
framework, although computational obstacles still need to
be overcome to achieve real-time performance.

The work presented here is a model driven approach
where transcription is viewed as a Bayesian inference prob-
lem. In this respect, our approach is similar to previous
work of [12], [2], [7]. On the other hand, in our knowledge
our work the first demonstration of a compact and realistic
generative model for musical signals that combines a dy-
namical segment model and a signal model. By integrating
tempo tracking with signal analysis one can design fast ap-
proximation techniques for detection of onsets, i.e. change
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Fig. 3. (a) Original Score (b) The upper plot shows a section of the
original acoustic signal yt and reconstructed signals of the first three
notes for the same time window. These reconstructions are indis-
tinguishable from the original sources. Added together, the sources
almost perfectly reconstruct the original signal yt. (c) Given the on-
sets and note durations, we can estimate the pitch, which is an exact
representation of the original score. (d) Assuming the correct onset
sequence, we can estimate the tempo.

points. For example, in a performance is almost constant,
the tempo gives a lot of information about locations of fu-
ture onsets. The model can also be used to construct a
score follower, essentially by just clamping the score vari-
ables and inferring the score position pointer. Similarly,
a multipitch tracker can be formulated as a procedure to
infer p(ω1:M,1:t|y1:t).
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