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Chapter 1Introduction1.1 BackgroundArti�cial neural networks constitute biologically inspired techniques to perform data modelling,widely used in such diverse areas as pattern classi�cation, control, and �nancial forecasting. Oneof the features that make neural networks so attractive is their perceived ability to assimilateor `learn' the underlying rule producing the data. The framework within which this thesis iscast is that of supervised learning: we imagine that there is a unique rule producing the data,which we identify with a teacher.As a demonstration of some of the central ideas involved in the theory of neural networks,let us consider the following scenario. A teacher sits in a room, and upon being given an inputx generates outputs y(x) according to the rule y(x) = y0(x) + �, where � is some noise processcorrupting the clean teacher output y0(x) - some �xed deterministic function. A set of P inputsnx(1)::::x(P )o is drawn independently and identically from an input distribution, and to eachinput, x, the teacher associates an output, y, so that we have a set of noisy training examplesP = n(x(1); y(1)); ::::; (x(P ); y(P ))o. These are given to the student who is asked to infer the(uncorrupted) teacher rule, y0. Without some clue as to what kind of function the teacheris using, the student's task is hopeless. The possible rules that the student could conceivethat �t the training data are endless - she could �t a P dimensional polynomial, or a P + 1dimensional polynomial, or a P dimensional polynomial with a large amplitude oscillation thatinterpolates the training points, and so on... Hence, the task of �tting the data is relativelyeasy, but when the student tests the model against previously unseen training examples, withoutsome a priori knowledge about the teacher, the student's predictions would be no better thanrandom guesses[Wol95, WL92](see �gure(1.1)). What we are really interested in is the student'sgeneralisation ability- how will the student perform on unseen inputs? If the student is toldbeforehand that the uncorrupted teacher rule comes from the class of polynomials with degreeless than 10, we might hope that eventually the student would infer the rule with some accuracy,and have a low expected test error, (termed the generalisation error). Even restricting the setof possible functions to polynomials with degree less than 10 may lead to over-�tting of thenoisy data points. Some degree of regularisation is therefore often required in the presence ofnoisy training examples, which typically takes the form of a penalty for the student complexity- e.g., low degree polynomials should be favoured over high degree polynomials.1



2 CHAPTER 1: INTRODUCTION
y

xFigure 1.1. Curve �tting. The dots represent noisy training points generated by the un-corrupted teacher output given by the solid line. Fitting the training points may lead to theproblem of over-over-�tting in which the student �ts the noise. There are in�nitely many pos-sible functions that we could �t through the training points, but �tting the points does notguarantee good generalisation.Having ascertained that, in order to frame the question of generalisation in a sensible man-ner, we need to restrict the space of possible teachers, we will naturally want to quantify thegeneralisation performance of the student, given a certain amount of data. In order to do this,we assume that the space of possible teacher functions and the space of students (the classof models) are de�ned. Often, the assumption is made that these two spaces are the same.It may be, however, that we choose a student much less sophisticated than the teacher forreasons of computational complexity, in which case the problem is unrealisable, and the task isto quantify the performance of the best student available. Throughout this thesis, however, weshall generally examine learnable problems and set the student and teacher function spaces tobe the same.One approach to evaluating generalisation performance is to bound the error that a studentwill make, given that it has been trained on P examples, and that we know the complexity ofthe class of possible functions. This approach is called the probably approximately correct, orPAC approach, and is typically practised within the computational learning theory school[VC71,Hau94, Val84]. More formally, an algorithm is PAC if there exists a number of training examplessuch that for more examples than this, with some speci�ed con�dence the model will make anerror no greater than some speci�ed accuracy.There are advantages and disadvantages of the PAC approach. An elegant feature of PACis that the results are distribution independent: It might be that the input distribution has alow density in a certain region, and that the �t of the student in that region is correspondinglybad, due to the poor sampling; however, when evaluating the generalisation performance of thestudent, those regions of input space with low density will hardly ever occur, and the student'spoor performance in such regions will have little weight. Furthermore, the generalisation errorbound in the PAC approach depends solely on a measure of the complexity of the function space,called the VC-dimension1. Once the VC dimension has been calculated, the array of results1For the case of binary outputs, the VC dimension is the maximum number P 0 of training examples for



CHAPTER 1: INTRODUCTION 3relating to PAC learning can be read o�. However, determining the VC dimension is oftendi�cult and to date the VC dimension has been determined for only a limited class of functionspaces[Ant95]. Another drawback of PAC learning is that it tends to give a rather conservativeestimate of the generalisation ability of the student - the typical generalisation performance ofthe student is often much better than the accuracy speci�ed in the PAC approach[EvdB93].Some e�orts have been made recently to make PAC results more comparable to the typicalperformance of students by introducing speci�c classes of distributions for the model. For ageneral review of PAC learning see [Ant95].1.1.1 Average Case FormalismIf we assume that we know the input distribution, teacher space, and student generating algo-rithm, we can attempt to calculate the generalisation error directly. However, if the varianceof the test error is large, then the expected error (the generalisation error), in itself, does notshed much light on the test error distribution, and it is important to have an estimate of thevariance of the test error. In attempting to perform the requisite averages inherent within anaverage case analysis, one invariably runs into technical di�culties and approximations needto be introduced. Much of the work carried out within the physics community in calculatingthe expected error has been through formal analogies drawn between data set averages and\quenched" averages in statistical physics (for a review, see[WRB93]). These calculations havetypically been carried out with recourse to the thermodynamic limit in which the dimensionof the inputs x is taken to be in�nite. In the limit of an in�nite input dimension, with thenumber of training examples P / N , the test error becomes self-averaging - the variance of thetest error distribution is zero. As in�nite networks are unrealistic, it is important to quantifythe variance of the test error distributions explicitly in order to justify the relevance of thethermodynamic limit[Sol94a]. Other approaches have been made using statistical mechanics tocalculate the maximum deviation of the test error from the generalisation error, which is anapproach closely allied to the PAC worst case theory[EvdB93, EF93]. Another approach whichemploys statistical mechanics is that used by Haussler et al.[HKST94] to relate the entropy ofthe student space and the probability of minimising the test error on a random test set, al-though at the moment this theory has only been fully developed for cases in which the teacherspace is a set of �nite cardinality.Within an average case Bayesian formalism, Amari[AF92] has examined the asymptoticdecay of the generalisation error using the annealed approximation, which can lead to qualita-tively correct results. Interestingly, Amari found that there exist essentially only four kinds ofasymptotic decay with the number of examples P presented, classi�ed according to whether ornot the student is stochastic, the teacher output is corrupted by noise, the set of parametersspecifying the teacher is unique, or has �nite measure. However, some considerable care mustbe taken in employing the annealed approximation as this can lead to wildly incorrect results,as discussed in Seung et al.[SST92].Throughout this thesis, we shall assume that the known input distribution is normal (gaus-sian), and similarly for the noise process. As more random examples are presented, the in-formation content of each new training example decreases. In order to improve the e�ciencyof learning from examples, there has recently been much interest in active learning or querywhich all possible 2P 0 output con�gurations are achievable by appropriate settings of the student parameters.



4 CHAPTER 1: INTRODUCTION
y wNw1x1 xN

Figure 1.2. The simple perceptron. The input components are represented by the Ndimensional vector x. The activation is the weighted sum of these input components,h = PNi=1N� 12wixi = N� 12w �x. The �nal output of the perceptron is the transfer of theactivation, y = g(h).learning in which new training examples are selected by the student in order to maximise someobjective measure of their usefulness such as information (entropy) gain (for references, see[Plu94, Sol95]), although this framework is beyond the scope of this thesis.1.2 The PerceptronArti�cial neural networks are composed of simple neuron like units which perform a mappingfrom RN to R, where the output y is some function of the weighted sum of the inputs into thatneuron(�gure(1.2)),y = g  1pNw�x! (1.1)and each component of the vector x represents a real valued input to the network and g(�) iscalled the activation function (the factor N� 12 is for convenience). The vector of connectionstrengths w is called the weight vector. More complicated networks can be constructed fromthese simple devices by connecting the output of such a device to the input of another. In thisthesis, we shall be concerned with a particular class of network architectures, namely feedforwardnetworks, in which we assume that the outputs of each simple perceptron connect only to simpleperceptron inputs in a subsequent layer. More complicated cases in which feedback connectionsare present are studied in the theory of recurrent neural networks (see e.g., [Pin87]).1.2.1 Training neural networksAlthough the concept of neural networks has been around for many years[Heb49, Ros62] it isonly comparatively recently that they have found widespread use. One of the reasons for thiswas the lack of a suitable training algorithm, especially for networks more complicated than thesimple perceptron. A particularly fruitful approach to developing training algorithms comesfrom de�ning an energy function, or training error[Hop82]. For a set P consisting of the P



CHAPTER 1: INTRODUCTION 5training example pairs (x1; y1)::(xP ; yP ), the training error is de�ned to be the sum quadraticloss of the P examples,Etr(wjP) = 12 PX�=1 (y(w;x�)� y�)2 :where y(w;x�) is the output of the student (with weight connection parameters w), and y� isthe output of the teacher for input x�. The student parameters can be adapted to minimise thetraining error by (stochastically) descending the training error surface, updating the studentsparameters at time t by gradient descent (see e.g., [WRB93]),@wi@t = �@Etr(wjP)@wi + Fi(t);where Fi(t) is white noise such that hFi(t)Fj(t0)i = 2T�ij�(t � t0) and T is the learning tem-perature. This type of learning is known as batch learning as the student weights are updatedaccording to their error on a batch of P training examples. The alternative approach, termedon-line learning can be thought of as a limiting case of batch learning in which the weights aremodi�ed from a stream of single examples. Learning is carried out at some �nite temperature inorder to avoid local minima in the error surface, and a heuristic annealing schedule for loweringthe temperature is typically implemented. The equilibrium (t ! 1) distribution of studentsthat this algorithm produces is a Gibbs distribution,P (wjP) = 1ZP pri(w) exp(�Etr(wjP)=T ); (1.2)where P pri(w) represents prior constraints on the student and Z is a normalisation constant.The dynamics of batch learning will not concern us here, and the reader is referred to otherworks (for a discussion, see[KH92]). In the limit of zero learning temperature, the Gibbsdistribution becomes uniform over the set of student weight vectors that exactly reproduce thetraining set, and zero elsewhere; the Gibbs algorithm then selects a student randomly fromthis distribution. This is also known as exhaustive learning and the space of zero training errorstudents is termed the version space[WL92]. The performance of the students generated by theGibbs learning algorithm is tested on a test set of M examples, M = f(x�; y�) ; � = 1::Mg,and measured by the test error, de�ned by�test(wjM;w0) = 12M MX�=1 (y(x�)� y�)2 (1.3)Ideally, one would like to know the generalisation function, i.e., the expected error that astudent drawn from P (wjP) will make on a random test example, and this is found by averagingthe test error over the distribution of test sets. As the generalisation function is still dependenton the examples that were used to train the student and also on the Gibbs weight distribution,a further average over the Gibbs distribution and training set are taken in the de�nition ofthe generalisation error. In some cases it may be possible to carry out these averages exactly,and where we have been able to do so, we shall present such exact results, although thesesituations are rare[Han93]. Within this framework, there are several sources of randomness:The randomly distributed training data is employed by a stochastic learning algorithm which



6 CHAPTER 1: INTRODUCTIONis then tested on randomly distributed data. In order to measure these di�erent sources ofrandomness, we calculate test error (co)variances, and use the notation,var (�test : A) � D[�test � h�testiA]2EE ; (1.4)cov(�test; �0test : A) � h[�test � h�testiA] [�0test � h�0testiA]iE ; (1.5)where E denotes all sources of randomness and A is a set denoting one or more sources ofrandomness2. In words, var (�test : A) is the variance of �test over A, averaged over all sourcesof randomness (and similarly for cov(�test; �0test : A)). The di�erent kinds of (co)variances thatwe can consider come from the di�erent possible settings of A, which are combinations ofP;M;L;W;W0. P is the set of training examples, and M the set of test examples, with theirunion L denoting the dataset. W is the set of student weights consistent with the studentpost-training distribution, andW0 is the set of teacher weights consistent with the training set.All sources of randomness are therefore contained in the union, E = L [W [W0.Rather than enter into a detailed discussion of the possible measures of variance here, weshall introduce them when necessary in the text. Nevertheless, the quantity that we shallmainly be interested in measures the typical deviation of the test error from the average testerror (generalisation function) and is given by,var (�test :M) = D(�test � h�testiM)2EE : (1.6)As an application of the techniques we use for calculating variances, we also evaluate thevariance of cross-validation estimates of the generalisation error. Cross-validation is a widelyused statistical technique used to estimate, for example, the generalisation error with a limitedamount of data. Rather than splitting a dataset into a single training set on which a singlestudent is trained, and then tested on the remaining data, cross-validation partitions the datasetinto multiple training and test sets, with a separate student being trained on each test/trainingpartition[Sto74, Sto77]. The cross-validation estimate of the error is then the average of themultiple cross-validation student errors. There has been a great deal of work carried out onthe analysis of cross-validation, much of it, however, concerned with the asymptotic limit of alarge amount of data. We show how analytic results can be obtained for cross-validation usingideas from statistical mechanics for all amounts of data.1.3 Structure of thesisA great deal of work has been carried out in the average case formalism for one of the simplestpossible networks, the linear perceptron - a single layer perceptron with a linear activationfunction. In chapter(2) we examine the linear perceptron in the noiseless case (and hencewithout regularisation), introducing some of the methods that can be employed to calculatevariances exactly and approximately. Details of the calculations will normally be relegatedto appendices at the end of each chapter. An analysis of cross-validation is carried out forthis simple model, with a comparison made between variants of cross-validation. For the more2Strictly speaking, in general A is a set only in the limit of zero training temperature, otherwise it representsa distribution.



CHAPTER 1: INTRODUCTION 7realistic case of a teacher corrupted with noise, we perform a detailed analysis of the varianceof the linear perceptron with a regularisation parameter in chapter(3), continuing with a com-parison of variants of cross-validation. With the introduction of a regularisation parameter, weconsider issues of model selection and how we can use cross-validation to di�erentiate betweentwo competing models. In chapter(4) we calculate test error variances for a representativenon-linear student/teacher, the binary perceptron - a single layer perceptron with a sign acti-vation function. These results enable us to make some connections between our work and thePAC formalism. We examine a two layer perceptron in chapter(5) using a di�erent learningalgorithm from batch learning, namely online learning, in which the student's weight vectorsare updated after presentation of a single example in a stream of data examples. A detaileddiscussion is made of �nite size e�ects for the soft-committee-machine architecture, including ascheme to both reduce the �nite-size e�ects and also facilitate learning via the introduction ofan extra student weight constraint. As this extra constraint on the student leads to a reductionin the generalisation error, we examine briey in chapter(6) whether it is always the case thatthe extra knowledge in the form of additional student weight constraints necessarily leads to areduction in the generalisation error. We conclude with a summary of the main results in thethesis in chapter(7) and an outlook on future research. Appendix(A) contains details of thereplica formalism employed throughout much of the thesis in the calculation of (co)variances.



Chapter 2The Linear Perceptron I: Sphericalconstraint AbstractWe calculate the uctuations in the test error induced by random, �nite, trainingand test sets for the noise free, zero temperature linear perceptron of input dimen-sion N with a spherically constrained weight vector. This variance enables us toaddress such issues as the partitioning of a data set into a test and training set, forwhich we �nd that the optimal assignment of the test set size scales with N2=3. Fur-thermore, we examine the variance of cross-validation errors in the non-asymptoticdata regime.2.1 The Spherical Linear PerceptronA training set is de�ned to be a set of P input/output pairs, P = f(x�; y�) ; � = 1::Pg.Each component of the input vectors x� is drawn from the zero mean, unit variance normaldistribution, and the outputs y� are generated by a noiseless teacher perceptron, y� = 1pNw0�x�,characterised by the teacher weight vector w0. The student is of the same form as the teacher,namely a linear perceptron of dimension N with weight vector w, where both student andteacher weight vectors are of length pN (spherical constraint). The set of student perceptronsthat agree with the teacher on the training set (i.e., produce the same output as the teacherfor the inputs from the training set) and that obey the spherical constraint is a subset of theset of all weight vectors, termed the version space (VS)[WRB93]. The training error is givenby, Etr(wjP) = 12 PX�=1 1pNw�x� � y�!2 : (2.1)The spherical constraint is imposed by adding to Etr(wjP) an extra term, equivalent toa Lagrange multiplier. The resulting equilibrium distribution of students as t!1 is a Gibbsdistribution,P (wjP) = � (w�w �N) 1Z e�Etr(wjP)=T ; 8



CHAPTER 2: SPHERICAL LINEAR PERCEPTRON 9where Z is a normalising factor. The VS is then found as the set of weight vectors w of non-zeroprobability P (wjP) in the limit of zero temperature Gibbs learning. Students from the VS aretested against the teacher on a test set of M elementsM = f�x�; N� 12w0 �x� = y�� ; � = 1::Mg1, where the x� are taken from the same normal distribution that was used to generate thetraining set inputs x�. The training set and test set together form the data set of L elements,L = P [M, with L = P +M . The average error that a student from the version space willmake on a random example is given by the generalisation function,�f (wjw0) = 12N ���w �w0��x�2�x ;where h::ix denotes an average over test example inputs. In a practical situation, this quantityis approximated by the test error,�test(wjM;w0) = 12M MX�=1 1pNw�x� � y�!2 = 12MN MX�=1 ��w �w0��x��2 ; (2.2)which is an M sample estimator of the generalisation function. The generalisation functionaveraged over the version space of students and the possible training sets2 that de�ne theversion space is the generalisation error,�g = D�f (wjw0)EW;P : (2.3)Each of the M error contributions that sum to form the test error is independently and identi-cally distributed and, applying the central limit theorem3, one expects that the generalisationfunction will be �test(wjM;w0) +O �1=pM�.The variance due to the random training and test sets, and also the di�erent possible choicesof students from the version space is given by,var (�test :M) = ���test(wjM;w0)� �f(wjw0)�2�E :In section(2.2) we show how to calculate this variance, employing these results in section(2.3)to �nd the \optimal" test set size and in section(2.4) to gain insight into con�dence in thetesting/training procedure. In section(2.5) we examine the variance of the cross-validationerror, and conclude with a summary in section(2.6).2.2 Calculating the Averages - Geometrical approachThe P training examples constrain a student w to lie on the hyperplane,H = fwjw�x� = w0�x�; � = 1::Pg. The version space is given by VS= H \ S, where S isthe spherical constraint, w �w = N . The space of vectors that satisfy the intersection ofa hyperplane and a hypersphere is a hypersphere of the dimension of the hyperplane (see1Note that the indices � and � refer to training and test set inputs respectively.2Isotropy of the problem in weight space ensures that �f (wjw0) is the same for all teachers w0. We will,however, later include an average over w0 alongside the training set average for calculational simpli�cations.3The central limit theorem holds for any input distribution.



10 CHAPTER 2: SPHERICAL LINEAR PERCEPTRONw0~Rc HSFigure 2.1. In three dimensions each training example is associated with a plane forming,for P examples, the subspace H (drawn here for only one example). The version space is theintersection of H with the spherical constraint, S. In the above example, this results in acircular version space. In general, the resulting version space is a hypersphere of dimensionN � P , centred at c = w0 � Pw0, where P is the projection onto the subspace H, and theradius of the version space is ~R = jPw0j.�gure(2.1)). After training on P examples, therefore, the VS is a hypersphere of dimensionN � P . For � = P=N > 1, provided that at least N of the training examples are linearlyindependent, which is the generic case, the VS collapses to a single point, i.e., the teacherweight vector, and the test errors become zero. We therefore limit the analysis to the case� < 1.2.2.1 Version Space AveragesWe illustrate the techniques used in the calculation of the test error variance by demonstrat-ing how to perform the averages over the test error, which itself is needed for the variancecalculation. Equation (2.2) can be written as,�test(wjM;w0) = 12MN MX�=1 (x�)T �w �w0� �w �w0�Tx�;where (x�)T denotes the transpose of the vector x�. When written in component form, averagesover the VS, h::iW , are concerned only with the quantityD�wi �w0i � �wj � w0j�EW : (2.4)In order to understand the geometrical picture, it may be helpful to consider a speci�c examplewhich we draw schematically in �gure(2.1). For the perceptron of dimension three, the students(and teacher) are constrained to lie on a sphere of radius p3. One training example pair (x; y)forms a plane with normal in the direction of x, a perpendicular distance y=jxj from the origin.This plane intersects the sphere to form a circular VS whose centre is along the direction of x, adistance y=jxj from the origin. As the endpoint of the vectorw0 lies on the VS, the centre of theVS can be found by subtracting from w0 its projection onto the plane. For the N dimensionalcase, the centre of the version space is given by c = w0 � Pw0, where P projects onto the



CHAPTER 2: SPHERICAL LINEAR PERCEPTRON 11subspace H.4 Decomposing the vectors w and w0 into the centre of the VS and remainingcontributions,wi = ci + ri; w0i = ci + r0i ;and exploiting the symmetry of the hypersphere, equation(2.4) becomes simply,hrirjiW + r0i r0j : (2.5)Details for the calculation of the �rst term of the above equation are given in appendix(2.7.1)at the end of the chapter, which lead to the result,D�test(wjM;w0)EW = 12MN MX�=1 w0Pw0N � P (x�)TPx� + �(x�)TPw0�2! : (2.6)2.2.2 Teacher and Data Set AveragesDue to the isotropy of the teacher and student spaces, an average over teacher vectors is notstrictly required; calculational simpli�cations are achieved, however, by including one. Wethus average equation(2.6) over all teachers w0 satisfying the spherical constraint, (w0)Tw0 =N . Evaluating the averages D(w0)TPw0EW0 and ��(x�)TPw0�2�W0, by using the resultDw0iw0jEW0 = �ij, we obtain,D�test(wjM;w0)EW;W0 = 12MN MX�=1 (x�)TPx�  TrPN � P + 1! :TrP is the trace of the projection matrix P, which is simply the dimension of the space ontowhich it projects, in this case that of the version space, TrP = N � P . We now perform theaverage over the possible test set input examples x�. Since the inputs are normally distributed,D(x�)TPx�EM = TrP, and one obtains the well known result [SST92],�g � D�test(wjM;w0)EW;W0;M = 1 � �where � = P=N . Learning can be pictured in the following way: the root mean square distanceof the centre of the hypersphere from the origin increases as pN�; the radius decreases asqN(1 � �), the VS `shrinking' around the teacher weight vector.2.2.3 Test Error Variance ResultsThe calculation of the test error variances follows on from the arguments presented in theprevious two sections. Details are given in appendix(2.7.2) at the end of the chapter, and oneobtains, for P < N :var (�test :M) = 2 (2 +N � P ) (1 +N � P )MN(N + 2) : (2.7)4The projection matrix P can be found explicitly by orthonormalising the training set of input vectors fx�gto form an orthonormal set fx̂�g, from which Pij = �ij �PP�=1 x̂�i x̂�j :
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2.0var (�test :M) �Figure 2.2. The variance, var (�test :M), in the test error induced by the random test sets,the version space, and the training sets. The triangles represent a perceptron of dimensionN = 10, and the dots N = 100. The test set size is equal to the training set size.var (�test : E) = (2 +N � P ) (1 +N � P ) (2 +M)MN (N + 2) � �1� PN �2 : (2.8)Where var (�test :M) is the (average) test error variance over test sets (cf. section(1.2.1)), andvar (�test : E) is the test error variance over all sources of randomness (i.e., the weight spaceand dataset). For M;P / N >> 1, one can readily verify that the variances are O (N�1),and thus zero in the thermodynamic limit (N !1), which is the underlying assumption ofself-averaging in statistical mechanics calculations. For P = N , there is zero variance in thetest errors since the VS collapses to a single point. We shall primarily be interested in thedeviation of the test error from the average test error over a �xed training set, and concentratetherefore on var (�test :M). We note, parenthetically, that var (�test :M) � var (�test : E), whichis generically true. A more detailed discussion of the relationship between these two types ofvariances is given (also for more general networks) in appendix(2.9) In �gure(2.2), we plotvar (�test :M) as a function of � for perceptrons of dimension N=10 and N=100, with thenumber of test examples set to the number of training examples (M = P ). For small values of�, there is a correspondingly large test error variation, decreasing monotonically with increasing�. The variance of the test error for � close to 1 is small, indicating that students in theversion spaces generated by random training sets have almost equal test errors. For large N ,var (�test :M) decays as 2(1 � �)2=(�N) which, for �xed �, scales with 1=N .2.3 Optimal test set sizeWe now turn our attention to the partitioning of a data set of examples into a training set anda test set. That is, given a data set of L elements, how many elements should be assigned tothe training set, and the rest to the test set, given that we wish to produce a student with alow generalisation function.A student that has a low test error will not necessarily have a low generalisation function,unless we can show that the test error will (at least on average) be close to the generalisationfunction. (Using nearly all the dataset examples for training may result in a student with a



CHAPTER 2: SPHERICAL LINEAR PERCEPTRON 13low test error when tested on the remaining few examples, but our con�dence that the testerror is representative of the generalisation function is low because so few examples were usedin the testing procedure). By applying the central limit theorem, the di�erence between thegeneralisation function and the test error will be distributed in a gaussian manner with meanzero[Fel70], where the standard deviation of this distribution is over the realisations of the testset. This means, for example, that with probability 0:84, the generalisation function will notlie more than one standard deviation above the test error. This bound, however, is dependenton the actual test error value, whereas we will here be interested in the typical upper boundwhen one takes into account the version space and di�erent possible training sets. We thereforerepresent the test error by its average (the generalisation error) and the standard deviationover test sets alone by that over test sets, students, and training sets. Thus doing, we de�nethe average probabilistic upper bound on the generalisation function as,�ub(M jL) = �g + �qvar (�test :M): (2.9)Setting � = 1, we will be 84% con�dent that the generalisation function will, on average, notbe more than one standard deviation above the test error. Similarly, for � = 2, we will be 98%con�dent that �f(wjw0) will, on average, be less than two standard deviations above the testerror5. If we �x the size of the data set, L, we can consider the variance and generalisationerror as a function of the test set size, M , the training set size being given by P = L �M .In �gure(2.3) the generalisation error and standard deviation are plotted for a perceptron ofdimension N = 400 and data set size L = 200. For small M , the standard deviation is largeand the generalisation error is small, the perceptron having been trained on a relatively largenumber of examples. This situation reverses as M is increased, which gives rise to a minimumin the upper bound, �ub(M jL) for M = M�. We note from �gure(2.3) that this is at M�=24for � = 1. The dependence of M� on N and L is rather complicated; however, in the limit oflarge N and setting L = �totN , an asymptotic expansion in N reveals the following scaling lawfor the optimal test set size,M� � 12 (2� (1� �tot)N) 23 : (2.10)Or, writing this as the optimal fraction of the data set to be used for testing,M�L � (� (1� �tot)) 23�tot 1(2N) 13 :For �xed �; �tot, the optimal test fraction tends to zero as N increases to in�nity. Even thoughthe fraction of test examples tends to zero, there is still a very large number of test examples,enough that the test error will be close to the generalisation function. For �xed N; � , theoptimal test fraction tends to zero as �tot approaches 1 as the perceptron then has increasinglymore data at its disposal to learn the teacher, which results increasingly in a restriction onthe possible student weights, and therefore a restriction on the variance of the test errors. For� tending to zero, we recover the normal case in which we utilise all the data set as trainingexamples, regardless of test error uctuations.5Here we have employed standard results about the percentage of the normal curve less than a certain numberof standard deviations from the mean.



14 CHAPTER 2: SPHERICAL LINEAR PERCEPTRON
0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

 

 

 M �g + ��g�Figure 2.3. The standard deviation � = var (�test :M)1=2, generalisation error �g and upperbound (� = 1) plotted against the test set sizeM . The dimension of the perceptron is N = 400,with data set size L = 200, and test set size P = L �M . As M increases, the deviation oferrors decreases, whereas the generalisation error increases (as the number of training examplesdecreases). The value, M� for which the upper bound is minimised represents the optimal testset size; in this case, M� = 24.2.4 Con�dence in the training/testing procedureOne way to quantify con�dence in the training/testing procedure for a learning machine is tocompare the result of training and testing the machine on di�erent sets, and seeing whether ornot the test errors are close. We have in mind the following scenario.We divide a 2P -dimensional data set into two disjoint sets of equal cardinality - a `left'and a `right' half. Perceptron w1 is trained on the right set and then tested on the left, andw2 is trained on the left set and tested on the right. This generates two test errors, �(1)test and�(2)test for perceptrons w1 and w2 respectively. If the di�erence between �(1)test and �(2)test is large,our con�dence in the training/testing procedure would be small. A quantity that measures themean square di�erence between the test errors of the perceptrons is�2 = ���(1)test � �(2)test�2�W1;W2;L = 2 �var ��(1)test : E� � cov(�(1)test; �(2)test)� ;where we have de�ned the covariance,cov(�(1)test; �(2)test) = D��(1)test � �g� ��(2)test � �g�EW1;W2 ;L :In �gure(2.5), we present numerical simulations performed to calculate cov(�(1)test; �(2)test) for N =64, justifying the theoretical prediction detailed later in section(2.5.1). These covariances werefound to be an order of magnitude smaller than the variances calculated from the results ofsection(2.2.3). The results in �gure(2.4) demonstrate how the root mean square di�erencebetween �(1)test and �(2)test decreases as the data set size increases. For small �, there is minimalinformation supplied to both perceptrons about the teacher and the two students vary greatlyin their errors. As � increases, the version spaces become more constrained around the teacher
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2.0� �Figure 2.4. The crosses are the simulated values of �, the root mean square deviation betweenthe two test error values generated by training perceptron (1) on the right half of the data setand testing it on the left, and vice versa for perceptron (2). The perceptron is of dimensionN = 64. The dots are the approximation to � which neglects the covariance term cov(�(1)test; �(2)test).and the degree of belief in the training/testing procedure increases. As the dimension, N , ofthe perceptron is increased, �2 scales with 1=N .Training and testing more than one student on the dataset is used extensively in practice inorder to gather information about the performance of students trained with a certain algorithm,and this leads naturally onto the topic of cross-validation, discussed in the following section.2.5 Cross-ValidationCross-validation (CV) is a widely used statistical technique that can be employed to estimatethe generalisation ability of a set of models, each model being trained and tested on the same�nite data set [Sha93, Sto74, BFOS84]. From the set of possible models, the model which hasthe lowest CV error is then chosen as the \best" model, and a single student from this modeltrained on the whole dataset, and used as the single best estimator. In chapter(3), we discussthe problem of model selection; for the moment, however, we assume that a particular modelhas been selected, and concentrate on how to use the dataset in order to predict the error thata student from the selected model will make.Leave out M cross-validation: CV(M)Consider a set L containing L data points. This dataset is then partitioned into two disjointsubsets - a test set,M of dimension M , and a training set P of dimension L�M . In general,there are � LM� possible partitions, which we label by i and the size of each test set is given byM = L=V for some chosen number of divisions of the data set, V . For example, for the caseV = 4, we divide the dataset into four equal parts, which form 4 test sets of equal cardinality,M(1)::M(4), which we depict schematically,
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0.0cov(�(1)test; �(2)test) �Figure 2.5. The covariance of two test errors under the scheme described in section(2.4)(Non-overlapping test sets of equal cardinality). The perceptron is of dimension N = 64. Thedots are the simulation values plotted with one standard deviation error bars. The solid line isthe theoretical value, (�2 � 1) (1 � �)2 =64. Note that error bars are largest for small � as inthis region, the version space is largest, resulting in relatively poor statistics.L = M(1) M(2) M(3) M(4)The complement of each test setM(i) forms the training set P(i) = L�M(i). A student s(i)of the model under consideration (e.g., the spherical linear perceptron) is then trained on P(i)and tested on M(i), forming the test error � (i). This is repeated for S students, from whichthe CV error is then found,�CV � 1S SXi=1 � (i) : (2.11)The rationale behind this procedure is that the resulting CV error is an unbiased estimator ofthe generalisation function, with a variance less than that from only a single student.The increase in computational expense incurred from (re)training S students is not necessarilya major factor if data is scarce. However, training students on all the possible � LM � partitionsis typically prohibitive, and S � � LM� partitions are chosen either randomly, or selectedto minimise their mutual overlap. We shall investigate di�erent schemes for choosing the Spartitions. Previous studies along these lines have been made by Burman[Bur89] who looks atthe e�ect on the generalisation error and the variance of the test error for di�erent numbers ofdivisions.The variance of the CV error �CV that we shall ultimately calculate is the variance of thisestimate over all sources of randomness (which is an upper bound on all the other possiblevariances).By training S students on independently, identically distributed (iid) examples, and from



CHAPTER 2: SPHERICAL LINEAR PERCEPTRON 17the de�nition (2.11), one obtains the decomposition6,var ��CV : E� = 1S var (� (1) : E) + �1 � 1S� cov(� (1) ; � (2) : E): (2.12)(We typically shall drop the notational dependence on E for the remainder of our analysis ofcross-validation errors). Note that, as the examples are iid, this variance is not dependent onthe student number i, and we choose, without loss of generality, student i = 1 (and similarly,we choose students (1) and (2) for the covariance). Using the general result cov(� (1) ; � (2) :E) � var (� (1) : E) in (2.12) we obtain immediately,var ��CV : E� � var (�(1) : E) : (2.13)This result motivates the use of CV to improve the accuracy of prediction of errors over usingsingle estimates. We shall primarily be aiming to quantify the improvement that one canexpect from using the CV procedure over using a single student, and also to quantify theabilities of di�erent CV schemes to minimize their variance. Other methods for estimatingdata dependencies such as the Akaike information criterion[Aka74], the jackknife, and bootstrap[Efr83, Efr86] are asymptotically equivalent to leave-one-out cross-validation, CV(1).Using CV to estimate errorsIdeally, we would like to estimate the generalisation function �f(i) of a particular student -that is, the expected error that a perceptron trained on a set P(i) will make on a random testexample. In order to estimate the proximity of the CV estimate, we de�ne,	2 = ���CV � �f(1)�2�L ; (2.14)where the average is taken over all data sets, L. By simply adding and subtracting �g in (2.14),we obtain,	2 = ���CV � �g�2�L + D�f (1)2EL + �2g � 2 DD�CV EM �f(1)EP : (2.15)At this point, however, there is a problem: Even if we choose the size of the CV trainingsets to be equal to the training set size of the single perceptron, there is little that can besaid about the quantity DD�CV EM �f(1)EP = PSi=1 h�f(i)�f(1)iP =S without knowledge of thecorrelation between the generalisation functions of perceptrons trained on di�erent subsets ofL. Theoretically, one may be able to calculate this for the speci�c model under consideration.Alternatively, the approach we take here is to assume that learning has reached the stage suchthat there is little di�erence between the generalisation functions of perceptrons trained ondi�erent subsets i.e., that they are almost fully correlated. Under this assumption, we write,	2 � ���CV � �g�2�L : (2.16)Hence, in order to minimise the average square di�erence between the CV error and the gener-alisation function/error, we seek to minimise the variance of the CV error alone (with respectto the di�erent types of CV schemes).6Correlations between the examples used to train/test the di�erent students a�ect only the covariance termcov(� (1) ; � (2) : E). Such correlations do not a�ect the variance term as we average over all possible datasets.When we later address using di�erent ways of generating (correlated) training/test sets for the di�erent studentsfrom a dataset, these di�erences will manifest themselves in the covariance between two test errors.



18 CHAPTER 2: SPHERICAL LINEAR PERCEPTRONComputational costAs all the CV schemes we shall consider are unbiased, we shall be interested in comparingsimply the variance of the di�erent schemes under a given amount of computational resource.We de�ne the computational cost C of a CV algorithm to be proportional to the total numberof examples that are used in the training of the S students,C � SPL = S �1� 1V � ; (2.17)where P=L is the fraction of examples in the dataset used to train each student, and S isthe number of students trained. This de�nition is motivated from the experience that testingstudents is computationally inexpensive compared to training them. When C = 1, a total of Lexamples have been used in training all the students.2.5.1 Non-overlapping test sets S � V (NOCV)In each of the following four sections, we shall calculate the variance of di�erent cross-validationschemes, relegating details to appendices at the end of the chapter.For S � V , we are able to partition the dataset L into S disjoint sections, forming S testsets, M(1); :::;M(S). S perceptrons are then trained in the following way: Perceptron (i) istrained on L �M(i), and tested on M(i), forming the test error, � (i). This procedure isrepeated for all the S students, i = 1::S and the resulting cross-validation error is de�ned7�NOCV = 1S SXi=1 � (i) : (2.18)As the examples in the dataset are iid distributed, h� (i) � (j)i = h� (1) � (2)i for i 6= j and usingthis, we express the variance of the CV error as,var(�NOCV) = 1S var(� (1)) + �1� 1S� cov(� (1) ; � (2) jNOCV) (2.19)Here, var (� (1)) is the test error variance of a single perceptron having been trained on a set ofsize L(1� 1=V ), and tested on a set of size L=V . Looking back at equation(2.8), we note thatthis is a quantity that we have already calculated. The covariance can be calculated by usingthe replica formalism, as outlined in appendix(2.8.1).For the case of two divisions, V = 2, and two students, S = 2, the covariance is given by(see �gure(2.5) and �gure(2.6)),cov(� (1) ; � (2) jNOCV) = 1N ��2 � 1� (�� 1)2 ; (2.20)which is negative throughout the range of possible � values from 0 to 1. As a partial explanationof this e�ect, without loss of generality, we consider one of the halves of the dataset, sayM(1), to have examples which cover the input space more thoroughly than the other half ofexamples,M(2). This means that perceptron (1) will have a higher test error than perceptron(2). Generically, one of the test errors will be higher than average, and the other lower thanaverage, thus giving rise to a negative covariance.7This is sometimes termed \v-fold cross-validation" in the statistics literature[Bur89].



CHAPTER 2: SPHERICAL LINEAR PERCEPTRON 19
-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1�Figure 2.6. Scaled covariance Ncov(� (1) ; � (2)) of two test errors for the various CV schemes,for two divisions (V = 2). The lower curve is the case for a total of only two students (S=2)in the CV scheme, for which the optimal scheme OCV and non-overlapping scheme NOCV arethe same. The middle curve is for four students, S = 4, plotted for the optimal scheme. Theupper curve is for the Monte-Carlo scheme, which is independent of the number of students.The upper and lower curves represent limiting cases for the covariance - in the lower curve,there is no overlap between the test sets of the students, whereas for the upper curve, there isan overlap that would occur for randomly selected test sets. For the case in which the overlapbetween the test sets is maximal, then the covariance tends towards the variance as then thetest and training sets of the two students are the same. Hence, as the test set overlap �12increases, we expect an increase in the value of the covariance.2.5.2 Random Partitioning, or Monte Carlo CV (MCCV)For a set of L examples, and V divisions, there are � LL=V � di�erent partitions of the datasetthat could be constructed. As this is typically exponentially large, a computational compromiseis given by randomly selecting a subset of the set of all the possible partitions8. (Note that themaximal number of partitions limits the reduction in the CV variance that can be obtained.)However, randomly selecting training/test sets for the student perceptrons may not be theoptimal strategy as, with some probability, the same examples will be assigned to di�erentstudents. We write the probability that an example lies in the test set of two student perceptronsas �12, which for the random partitioning case gives �12 = V �2.In �gure(2.6) we plot the covariances of two students trained under di�erent CV schemesand for di�erent numbers of students. We see that the random scheme MCCV (upper curve)yields positive covariances, in contrast to the NOCV case (lower curve), where the covarianceis negative. These results are di�cult to interpret; however, some intuition may be gained fromconsidering the extrapolation of the small test set overlap given by MCCV to that of maximaltest set overlap, for which the covariance tends to the variance - a positive value. The middlecurve of �gure(2.6) is explained later in section(2.5.4).8This scheme is termed \repeated v-fold cross-validation" by Burman[Bur89].



20 CHAPTER 2: SPHERICAL LINEAR PERCEPTRON2.5.3 Block CV scheme (BCV)The non-overlapping partition scheme NOCV is ideal for S � V as the students will then betested on disjoint sets, which will cover the input space better than overlapping sets.The maximal number of students, however, for NOCV is L � 1. As there is no restriction onthe number of students for the random partition case, random partitioning will eventually yielda lower variance than the non-overlapping scheme for some S > V . This immediately bringsus to consider another CV scheme, similar to the non-overlapping case, but which allows thesame number of students as for the random case. We have in mind the following scenario: Werandomly permute the members of the dataset, and then apply non-overlapping partitioningcross-validation (NOCV), training S = V students. This procedure is repeated, each timerandomly permute the dataset, and then applying non-overlapping CV. We call this schemeBlock cross-validation (BCV) as the students are trained in blocks of V , such that the totalnumber of students trained is S = BV .We de�ne the Block CV error to be the average of the NOCV errors over B blocks, namely,�BCV = 1B BXi=1 �NOCV (i) (2.21)where �NOCV (i), for each block i of V students, is de�ned in equation(2.18). The variance ofthe BCV error is then given (for a number of blocks, B) by,var ��BCV � = 1B var ��NOCV �+ �1� 1B� cov(� (1) ; � (2) jMCCV) (2.22)Writing this out more fully we get,var ��BCV � = 1B � 1V var (� (1)) + �1 � 1V � cov(� (1) ; � (2) jNOCV)�+ �1 � 1B� cov(� (1) ; � (2) jMCCV) (2.23)For the case of two divisions, V = 2 and two blocks, B = 2, we getvar ��BCV � = 14var (� (1)) + 14cov(� (1) ; � (2) jNOCV) + 12cov(� (1) ; � (2) jMCCV) (2.24)whereas for the random case it is,var ��MCCV � = 14var (� (1)) + 34cov(� (1) ; � (2) jMCCV): (2.25)Recalling the results from section(2.5.1) that the covariance under the NOCV(V = 2) is neg-ative, and that they were positive for the random case, we see that the variance of the BCVscheme will be lower than that for the random scheme. Indeed, using cov(� (1) ; � (2) jNOCV) �cov(� (1) ; � (2) jMCCV), it follows that var ��BCV � � var ��MCCV �. Hence for any Monte-CarloCV scheme, we can �nd a block CV scheme that has a lower variance for the same computationalcost9.9Provided the number of students in the random scheme is non-prime.



CHAPTER 2: SPHERICAL LINEAR PERCEPTRON 212.5.4 Optimal Partitioning (OCV)The BCV scheme is an improvement over the random case because the overlap between thetestsets is smaller, but can we do better - is there a way to assign the test sets to the variousstudents that minimises their mutual overlap? The formulation of such a question leads to astraightforward linear optimisation problem. Solving this, one �nds that the minimal overlapachievable is (P.Sollich, personal communication),�12� = 1V �1 � SS � 1� (1� 1V ) + �(1 ��)S(S � 1) ; (2.26)where � = x � bxc, and x = S=V . To construct such a partitioning we de�ne �(i) to be thefraction of examples on which exactly i students are tested and set,� (bxc) = 1��; � (dxe) = �; (2.27)where bxc is the nearest integer � x, and dxe is the nearest integer � x. All other �(i) are setto zero.An example V = 4 and S = 6.Suppose that we are going to partition the dataset into four equal parts (V = 4) and train 6cross-validation students (S = 6). Hence x = 1:5 and � = 0:5, giving �(1) = 0:5 and �(2) = 0:5,so that half of the examples are tested on only one student, and half on two students. In orderto construct such a partitioning, lets say we had 12 data points, x(1); ::; x(12). This means thateach test set will consist of 3 examples, and we assign the test sets for the 6 students as:M(1) = fx(1); x(2); x(3)g, M(2) = fx(4); x(5); x(6)g,M(3) =M(4) = fx(7); x(8); x(9)g,M(5) =M(6) = fx(10); x(11); x(12)g.The training sets for each student are simply the complement of the test sets. In �gure(2.6) weplot the covariances of individual students with V = 2. The graph can be interpreted as resultsfor the optimal scheme OCV(2) with di�erent numbers of students. The lower curve is for twostudents, the middle for four, and the upper curve is for an in�nite number of students. Thecovariance essentially becomes more positive as the number of students is increased, reectingthe convergence of the OCV scheme to the random scheme as the number of students increases.In �gure(2.7) we plot the (scaled by N) variance for a number of students S = BV againstB and V . These graphs serve as baseline values against which we shall compare other CVschemes.Comparison of various CV schemesIn �gure(2.8) we plot the errors that the Monte-Carlo CV and Block CV schemes make relativeto optimal CV for two di�erent values of �tot. As the number of blocks is increased (rememberthat the number of students is given by S = BV ), the performance of the optimal schemebecomes increasingly similar to both the random and block schemes. Although the relativeperformance for some schemes can degrade for larger datasets, the absolute values of the CVvariances converge towards zero in the limit of a large amount of data. In the limit of anin�nite amount of data, the three compared CV schemes will have zero variance and thus thesame performance. For the same amount of computational cost, C = B(V � 1), BCV performs
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B VFigure 2.7. The (scaled) variance of the optimal partitioning scheme,Nvar (OCV ), versus thenumber of divisions V and number of blocks B, such that the number of students is given byS = BV . (a) �tot = 0:1, (b) �tot = 0:8. Actual variances are given by dividing by N . Generallyincreasing the number of partitions and/or students lowers the variance, as does increasing thetotal amount of data available, �tot.better than MCCV, with a relative di�erence between the variance of the BCV compared toOCV of typically less than 5%. Although the MCCV scheme also performs well, it does worsethan BCV, with a relative di�erence between the variance of the MCCV compared to OCV oftypically less than 25%. From this we conclude that BCV is a very good approximation to theoptimal scheme.2.5.5 Optimising the upper boundHaving analyzed di�erent CV schemes, we address the following question: Given that we wishto both minimise the generalisation error, and to maximise our con�dence in the estimate ofthe error, how should we best use a CV scheme with a given amount of data and computinge�ort? This is essentially the same question that we asked in section(2.3) except that therewe did not assume fully correlated generalisation functions, and thus restricted ourselves totraining only a single perceptron10. Again, we form an upper bound function (cf. (2.9)),�CVub = �g + �qvar (�CV ); (2.28)which we minimize with respect to the CV parameters S and V for a given cost, C = S(1�1=V ).For convenience, we set � = 1 throughout.As there is generally only a small di�erence between the performance of the various CV schemes,we concentrate on the MCCV scheme as this is the most convenient to analyze. (In the large10The resulting optimal test set size asymptotic scaling law, however, can be shown to be the same forestimation of the generalisation function and the generalisation error. The reason for this is that there is animplicit assumption that there is a large amount of data (N is large), as �tot (the ratio of dataset size to thesize of the perceptron) always takes a �nite value. This means that the generalisation function will be close tothe generalisation error, and that the scaling laws for the best approximation of the generalisation function andgeneralisation error will be the same.



CHAPTER 2: SPHERICAL LINEAR PERCEPTRON 23
2

4
6

8
10 2

4
6

8
10

0

0.001

0.002

0.003

0.004

0.005

0.006

(a)
V B 2

4
6

8
10 2

4
6

8
10

0

0.01

0.02

0.03

0.04

0.05

(b)
V B

2
4

6
8

10 2
4

6
8

10

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(c)
V B 2

4
6

8
10

2 4 6 8 10

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(d)
B VFigure 2.8. Relative performance of block CV and Monte-Carlo CV compared to optimal CV,versus the number of divisions V and blocks, B. (a),(b): (var (BCV )�var (OCV ))=var (OCV )(a) �tot = 0:1, (b) �tot = 0:8. Figs. (c),(d): (var (MCCV ) � var (OCV ))=var (OCV ) (c)�tot = 0:1, (d) �tot = 0:8. Note that in Fig.(d) the axes have been rotated. Although thedependence on the number of divisions is not straightforward, as the number of blocks isincreased, the relative performance improves because optimal CV becomes more like Monte-Carlo CV.



24 CHAPTER 2: SPHERICAL LINEAR PERCEPTRONN limit, there will essentially be no di�erence between the CV schemes.)As in section(2.3), we empirically �nd that there is a 2/3 power law scaling for the optimaltest set size scaling. Upon making such a scaling Ansatz, we �nd the prefactor for the optimalnumber of divisions:V� = (2C) 13 �tot(1 � �tot) 23 N 13 : (2.29)Alternatively, we can write this as an optimal test set size,M� =  (�tot � 1)N4C2 ! 23 (2.30)Comparing this with the optimal test set size we found for the single student (equation(2.10)),we see that,M�(CV ) = 1C 13 M�(OTSS); (2.31)where M�(OTSS) is the optimal test set size calculated for a single student. We can also write,V�(CV ) = C 13V�(OTSS): (2.32)This could be viewed in a rather pessimistic light - namely that, for using say twice the amountof computing resource (C = 2) in the CV procedure, we have reduced the amount of examplesrequired for testing by a factor of only 1=21=3 = 0:79. Given that we know that the relationshipbetween the error and test set size is linear, it appears that a great deal more e�ort yields littlein the way of improved performance.There are interesting comparisons to be made between this work and that of Burman[Bur89],who (numerically) researches the best number of partitions to use for a linear student learninga quadratic teacher rule, although Burman does not explicitly optimise a measure of the bias-variance tradeo� by introducing a quantity such as the probabilistic upper bound. Althoughthere is no general prescription given for the best number of partitions, Burman advises anumber greater than V = 2. We �nd, from equation(2.29) that the number of divisions shouldscale with the 1/3 power of the computational cost (normalised number of examples used intraining).2.6 SummaryWe have explicitly calculated the variance in the test error of a linear N -dimensional spheri-cal perceptron and found that it decays with the system size N as 1=N for a number of testexamples and training examples proportional to N . Furthermore, the variance decreases mono-tonically to zero as the number of training examples approaches the system size. Using thesevariance results, we found the optimal test set sizeM�, de�ned by minimising the average upperbound on the generalisation function given the test error. That is, for a data set of dimensionL, an upper bound on the expected error that a student perceptron will make on a randomtest example by training on L �M and testing on M examples, is minimised for M = M�.For large N , M� scales with N2=3. A simple measure of the con�dence in the training/testing



CHAPTER 2: SPHERICAL LINEAR PERCEPTRON 25procedure was given, being the di�erence between the test error values for two identical per-ceptrons trained and tested on the same data set. This di�erence necessarily decays to zero asthe number of training examples increases.We have examined the performance of various cross-validation schemes for estimating the gen-eralisation error. We found that there was little di�erence between the optimal scheme and theblock cross-validation scheme (less than 5% di�erence), the Monte-Carlo scheme performingworst (less than 25% di�erence). Extensions to this work for the case of noise and weight decayare presented in chapter(3), and to non-linear systems in chapter(4).2.7 Appendix: Geometrical approachThe �rst two appendices deal with the geometrical approach to calculating the variance of thetest error.2.7.1 Appendix: Version Space averagesFor a single test example, the average of the test error �test(wjM;w0) over the VS can bewritten,1112MN xixj �hrirjiW + r0i r0j� ;where r = w � c, c is the centre of the VS, and r0 = Pw0.In order to perform the VS average, we transform the coordinate system, under a rotationmatrixR, to express the hyperspherical VS in canonical coordinates,gVS : ~r21 + � � �+ ~r2N�P = ~R2where ~R2 = w0Pw0. Thenxixj hrirjiV S = ~xc~xdRicRjdRiaRjb h~ra~rbifV S :In the canonical system,h~ra~rbifV S = ~R2N � P ~�ab;where,~�ab = ( �ab a; b � N � P0 otherwise:For a rotation matrix, RicRia = �ac, hence,xixj hrirjiV S = ~R2N � P ~xa~�ab~xb = ~R2N � P xTPx: (2.33)Using the de�nition r0 = Pw0, we havexixjr0i r0j = �xTPw0�2 :Generalising the above argument to the case of M test inputs gives equation (2.6).11The summation convention will be adhered throughout.



26 CHAPTER 2: SPHERICAL LINEAR PERCEPTRON2.7.2 Appendix: Averaging the square generalisation functionThe test error variance (2.1) can be written,var (�test :M) = D�test(wjM;w0)2EM;W;P � D�f(wjw0)2EW;P ;and we demonstrate how to calculate the second term h�f(wjw0)2iW;P . The �rst term can becalculated by employing similar techniques. A straightforward gaussian integration gives thegeneralisation function as 1 � �wTw0� =N and squaring this and averaging over the versionspace gives,D�f(wjw0)2EW = �1 + 2 1N �w0�TPw0 + 1N2 ���rTw0�2�W + �cTw0�2� ;where, as before, r = w � c, and c = w0 � Pw0. The term in the above equation that stillneeds to be explicitly averaged over the version space can be calculated by employing equation(2.33), replacing x with w0. Further performing a teacher average leads to the equation12,D�f(wjw0)2EW;W0 = N � P + 1N2 (N � P ) *��w0�TPw0�2+W0Writing the average in the above equation in component form, we need to �nd,Dw0jw0kw0pw0qEW0 PjkPpq:We show below that for a spherical constraint,Dw0jw0kw0pw0qEW0 = NN + 2 (�jk�pq + �jp�kq + �jq�kp) ; (2.34)which gives,D�f(wjw0)2EW;W0 = N � P + 1N (N � P ) (N + 2) h(TrP)2 + 2 Tr �P2�i :The �nal expression for h�f(wjw0)2iW;W0;P is obtained by using TrP = N � P in the aboveexpression.An elementary derivation of equation (2.34) is given by noting that the second factor followsfrom symmetry arguments, as only even power combinations of the teacher weight vector com-ponents contribute. The prefactor can be obtained by considering13,N2 = hw4iW0 = Nhw41iW0 +N(N � 1)hw21w22iW0;for which one can then explicitly calculate,hw41iW0 = N2 R �0 d� cos4 � sinN�2 �R �0 d� sinN�2 � = 3NN + 2 ;where, w1 and w2 are simply two independent directions. We note that for the case of aunit variance, zero mean gaussian measure, hw21w22iW0 = 1, such that the di�erence between aspherical and a gaussian measure is O (N�1), disappearing in the large N .12The teacher space average is over the constraint that the w0 vectors are of length pN .13We drop the teacher `0' index on teacher components raised to some power.



CHAPTER 2: SPHERICAL LINEAR PERCEPTRON 272.8 Appendix: Statistical Mechanics FormalismThe following appendices relate to the calculation of the covariance of two cross validationerrors. The general formalism relating to these calculations is presented in appendix(A).2.8.1 Non-overlapping test sets CVIn appendix(A), we construct a double replica formalism that allows general (co)variancesto be calculated. In order to �nd the CV covariance, we consider the dataset as the unionof the V disjoint test sets, M(1); :::;M(V ). This means that we can write, explicitly, forperceptron (1), that P(1) = M(1) [M(2)::: [M(V � 1). Similarly, for perceptron (2), wehave, P(2) =M(1) [M(3) [ ::: [M(V ). Using these explicit test/training sets, we �nd thatthe required double replica free energy is,F 12 = G012 + �totV nG12 (1;�) +G12 (�; 2) + (V � 2)G12 (�;�)o (2.35)where G012 and G12r are given by equations (A.32) and (A.35) respectively. Extremising thisfree energy gives the values of various order parameters which describe the state of the system.These take the form of overlap parameters, q = w��w�=N , R = w0�w�=N , and q12 = w�1�w�2 =N .The parameter q measures the overlap between student solutions in di�erent replicated weightspaces, W�, and W�. Similarly, R measures the overlap of the student weight vector withthe teacher, and q12 measures the overlap between weights from the two di�erent students. Inprinciple, there is no di�culty in calculating results for the CV variance for any temperature,T . We concentrate our analysis, however, on the zero T limit as in this case analytic results arereadily obtained. This also leads to the simpli�cation q = R. The covariance is then found fromF 12 by di�erentiating with respect to the auxiliary �elds 1 and 2 in the limit of vanishinglysmall �elds and setting the order parameters to their saddle point values.Zero temperatureAt zero temperature, we have that q = R = (1� 1=V )�tot. That is, the overlap of the studentswithin the version space is equal to the overlap of a student from the version space with theteacher weight; the value of these overlaps increases linearly with the training set size. Thevalue of the inter-replica overlap is given by,q12 = q (q � 1)V � 3q + 2(q � 1)V + 1� 2q (2.36)For the case V = 2, we have q12 = q2 = R2. In the limit V!1, we have q12 = q. Astraightforward explanation of these results is found by considering the decomposition, w�i =Rw0+ŵ�i for i=1,2 where ŵ�i is a zero mean, random vector perpendicular to the teacher, withvariance D(ŵ�i )2E = N(1 � R2), and covariance hŵ�i �ŵ�i i = N(q � R2). (This decompositionguarantees hw�i �w0iW = R; the spherical constraint; and the intra-replica constraint.) Usingthis decomposition, we write the inter-replica overlap, q12 = R2 + hŵ�1 �ŵ�2i. For the case ofV = 2, the training sets of the two perceptrons are independent, and therefore the average ofŵ�1 �ŵ�2 is simply zero, leaving q12 = R2. As V tends to in�nity, the training sets become fullycorrelated, and ŵ�1 = ŵ�2, giving q12 = R2 + q �R2.



28 CHAPTER 2: SPHERICAL LINEAR PERCEPTRON2.8.2 Appendix: Monte Carlo CVFollowing similar logic to that of appendix(2.8.1), by explicitly constructing partitions that willsatisfy that the probability of overlap of two test sets is given by �12 = V �2, we �nd that thedouble replica free energy is given by,F 12 = G012 + �totV 2 n(V � 1)G12 (1;�) + (V � 1)G12 (�; 2)+ (V � 1)2G12 (�;�) +G12 (1; 2)o (2.37)This leads to a rather complicated q12 value, which reduces for MCCV (2) to q12 = q=(2 � q).Again, we have that q12 must approach q as V grows.General test set overlapParenthetically, we note that speci�cation of the test set overlap �12 is su�cient to determineall other relevant probabilities, such that we can write the double replica free energy as.F 12 = G012 + �tot �� 1V � �12�G12 (1;�) + � 1V � �12�G12 (�; 2)+ �1� 2V + �12�G12 (�;�) + �12G12 (1; 2)� (2.38)2.9 Appendix: More general NetworksUp to now we have been looking at the relatively simple case of the linear perceptron. In thisappendix we study (for a broader class of activation functions than the linear one studied sofar) the relationship between the variance due to all sources of randomness, var (�test : E) andthe average variance due to the test set var (�test :M).Writing,var (�test :M) = 1M DD�2testEM � h�testi2MEW;P (2.39)we remark that since the input distribution over which the test error is averaged is isotropic,the absolute directions of the student and teacher weight vectors are irrelevant - it is only theirrelative separation that is important. This means that �f = h�testiM can only be a function of theoverlap between the student and teacher vector. Let us now consider calculating var (�test :M)when there have been no training examples yet presented.2.9.1 Overlap distribution at � = 0If we can �nd the overlap distribution at � = 0, we shall be able to calculate the variance ofthe generalisation function at � = 0. The motivation for doing this is that it will lead us to anapproximation for var (�test :M). As mentioned above, the term h�testiM = �f (R) is a functionof the overlap,R = 1Nw�w0 (2.40)



CHAPTER 2: SPHERICAL LINEAR PERCEPTRON 29Hence, in order to perform the average over the student weight space, h::iW , we need to �nd thedistribution of R at � = 0 which, fortunately, has a particularly simple form. Due to isotropy,without loss of generality, we may take the teacher weight vector to be,(w0)T = (pN; 0; 0; 0; :::0): (2.41)Remember that both student and teacher weights satisfy the spherical constraint, w �w = N ,w0 �w0 = N . This means that the overlap is simply, R = w1=pN and the overlap distributionis given by,P (R) / Z dw�  R� w1pN ! � (w�w �N ) : (2.42)By expressing the delta functions in integral representation form and performing a subsequentsaddle point calculation, one �nds that the overlap distribution becomes,P (R) / �1 �R2�N2 ; (2.43)which is highly peaked around R = 0. In the limit N!1, this distribution approachesP (R) = sN2� exp�NR2=2; (2.44)a gaussian of variance 1=N , mean zero. Hence, at � = 0, the average over the student weightspace of the square of the test error becomes simply,D�2f(R)EW = Z 1�1Dx �2f  xpN ! (2.45)where Dx is a unit variance, zero mean gaussian measure. By straightforward Taylor expansion,one readily �nds that the variance over the overlap distribution of �test(R) is,D�2f(R)ER � h�f(R)i2R = 1N  d�fdR (R = 0)!2 +O� 1N2� (2.46)As patterns begin to be presented, the overlap distribution becomes more peaked around itsmean value. This means that the variance of �f(R) is maximal at � = 0, decreasing mono-tonically with �. For bounded �f (R), equation(2.46) shows that one can bound the di�erencebetween the average of the square of �f and the square of the average of �f by order 1=N . Thisbeing the case, we can write var (�test :M) as,Mvar (�test :M) = var (�test : E) (M = 1) +O �N�1� : (2.47)Hence, the only extra work involved in calculating var (�test :M) is in �nding the average of thesquared test error. The variance on the right side of equation(2.47) is simply the full variancecalculated for one example. In appendix(A), we show how one can apply replica methods to�nd this variance, with the result in the form,var (�test : E) = 1N f(�); (2.48)where the test set size is given by M = �N . The full variance var (�test : E) (M = 1) for oneexample can then be obtained from equation(2.48) by taking the limit,var (�test : E) (M = 1) = lim�!0�f(�) (2.49)Hence, by applying replica methods, we can �nd the variance var (�test : E), and then by theabove procedure, the variance var (�test :M) can be derived up to order N�1.



Chapter 3The Linear Perceptron II: WeightDecay AbstractBy �nding the variance of the test error due to randomness present in both thedata set and algorithm for a noisy linear perceptron of dimension N , we are able toaddress such questions as the optimal test set size. We �nd that the optimal testset size possesses a phase transition between linear and 2/3 power law scaling in thesystem size N , dependent on the level of noise and the available amount of data.Cross-validation is assessed in terms of its variance, and results concerning modelselection are presented.3.1 Learning from noisy examplesIn chapter(2) we built up a general framework for calculating variances, and used a varietyof techniques from geometrical methods to statistical mechanics. Introducing noise into theformalism is a step towards a more realistic learning scenario, which we briey review.We consider the scenario in which the inputs are represented by N dimensional real vectors,x 2 <N , and the output is a real variable, y 2 <. A data set L is a set of L input-output pairs,L = f(x�; y�) ; � = 1::Lg. The inputs x� are assumed drawn independently and identicallyfrom a zero mean, unit covariance matrix Gaussian distribution. The (corrupted) outputs arey� = y0(x�) + �� for some teacher function y0(�), where �� is additive noise. For the purpose oflearning from examples, L is split into two disjoint sets, the training set, P = f(x�; y�) ; � =1::Pg and the test set,M = f(x�; y�) ; � = 1::Mg, where L = P +M1. The aim is to �nd, usingthe information in P, a student function y(x) that matches as closely as possible the output of arandomly chosen input-output pair. That is, we search for student functions that generalise well.Clearly, the optimal student is identical to the teacher, and we shall assume that this functionis accessible to the student, i.e., that the learning problem is realisable[WRB93, BS95b]. Inthis chapter, we shall again deal with one of the simplest input-output mappings considered in1A � index will refer to a training input, and � to a test input.30



CHAPTER 3: NOISY LINEAR PERCPETRON 31the learning from examples literature, namely the noisy linear perceptron[HP91], for which theoutput y is related to the input x byy(x) = 1pNw�x;where the weight vector, w 2 <N . The data set outputs are generated by a `noisy' teacher,y� = w0� x�=pN + ��, where w0 is the teacher vector, and the noise is drawn from a gaussiandistribution of mean zero, variance �2, such that h����i = �2��;� . In addition, the sphericalconstraint is assumed on the teacher, namely that it lies on the hypersphere w0 �w0 = N .Student perceptrons that match the outputs of the training set well are found by minimisingthe training energy2,Etr = pX�=1 �y(x�)� y0(x�)�2 = pX�=1 (~w�x� � ��)2 ;where, for convenience, we have de�ned ~w = (w �w0) =pN . However, to prevent the studentlearning the noise in the training set we add a regularising term, �w2, to the training energyto form an energy function, E = Etr + �w2 [KH92, DW93]. This extra weight decay termpenalises large weights and prevents over�tting, improving generalisation performance. AsEtr(wjP) / P , as the amount of data increases, the relative importance of the weight decaydecreases. The equilibrium (t!1) distribution of students that this Gibbs algorithm producesis a Gibbs distribution,P (wjP) = 1Z exp(�E=T );where Z is a normalisation constant. The test error, de�ned by�test(wjM;w0) = 1M MX�=1 (y� � y(x�))2 = 1M MX�=1 (~w�x� � ��)2 ; (3.1)measures how well a student performs on (corrupted) examples from the test set. Ideally, onewould like to know the test or generalisation function, i.e., the expected error �f (wjw0) =h�test(wjM;w0)iM that a student drawn from P (wjP) will make on a random test example3.The generalisation function averaged over P (wjP) and all possible training sets P is termedthe generalisation error, �g.The test error forms an M sample estimate of the generalisation function and, according tothe central limit theorem, the generalisation function will be distributed in a gaussian manneraround the test function[Fel70]. It is the central aim in this chapter to calculate the varianceof this distribution. The uctuations due to random training sets for a particular studentgenerated from the training set P are quanti�ed by h(�test(wjM;w0) � �f (wjw0))2iM; the2In comparison to the spherical linear perceptron, there is no 1/2 factor in the de�nition of the trainingerror, or test error. This is to ensure that the generalisation error in the absence of any examples is 1.3Although �f (wjw0) is a function of the teacher, due to isotropy of the teacher space, the results of thischapter depend only on the length of the teacher vector, which is �xed. To simplify the calculation, however, weinclude later a teacher average which is implicit in the average over the data set. For convenience, we denote thegeneralisation function as an average over all possible test sets M of size M , although this average is naturallyindependent of the number of test examples.



32 CHAPTER 3: NOISY LINEAR PERCPETRONaverage uctuation of students generated by the training set can be found by averaging thisover P (w;P) = P (wjP)P (P). We then write the average uctuation for a P dimensionaltraining set as4,var (�test :M) = D(�test(wjM;w0)� �f (wjw0))2EM;W;P = 1M �12; (3.2)where h::iM;W;P denotes an average over test sets, post-training student, and training set dis-tributions respectively. �12 is the variance of the test error calculated for a single test example.If the vast majority of the data examples are assigned to the training set and very few tothe test set, the con�dence in how well the test error matches the generalisation function willgenerally be small. Indeed, the test error in this case would typically uctuate wildly overdi�erent test sets, i.e., the variance, var (�test :M) would be relatively large. We really wantto use the data in a dual manner: to minimise the test error, yet remain con�dent that it willbe representative of the generalisation function. That is, given a data set of size L, we aim toknow how many examples, M , should constitute the test set, assigning the other P = L�Mexamples to the training set. In order to address this, we form the generalisation function upperbound �ub(M jL) = �g(M) + �qvar (�test :M), where � is a con�dence parameter to be chosen.We view �ub(M jL) as an average probabilistic upper bound on the generalisation function ofstudents trained on P examples and tested on M examples. In order to calculate the optimalscheme to satisfy the above dual requirement, we minimise �ub(M jL) with respect to M to �ndthe optimal test set size, M�. This requires the calculation of the variance, var (�test :M).In the following section(3.2), we calculate the variance exactly for a restricted region of thespace of parameters �; T; �2, and give results that hold for all parameter values, but are validonly for the large N regime in section(3.3). Using these results, we present the optimal testset calculations in section(3.4), and in section(3.6) we extend our analysis of cross-validationto look at model selection, concluding with a summary and discussion in section(3.7).3.2 Exact variancesIn the following two sections, we present briey results of calculations that are exact in thesense that they hold for all N . These results represent the continuation of work presented inchapter(2), in which the variance of the noise-free spherical linear perceptron was calculatedunder exhaustive learning5.The exact calculations, however, were performed without a weight decay term in the trainingenergy E. We defer presentation of results including weight decay until section(3.3) as theseresults rely on a large N approximation.3.2.1 Gibbs learning without weight decay (� = 0)Recently, the generalisation error for the �nite N Gibbs learning algorithm, without weightdecay, was given[Han93] and as the calculation of the variance employs these results, we brieypresent the line of argument.4An average over the noise is implicit in the average over the test and training sets.5In the exhaustive learning scenario considered in [BS95c], P (wjP) is given by the distribution that is uniformover those student weights that reproduce the training set exactly and that satisfy the constraint w�w = N .



CHAPTER 3: NOISY LINEAR PERCPETRON 33The average of the test error, given by equation(3.1), over the noise distribution, test sets,and student distribution becomes, after straightforward gaussian integrations,D�test(wjM;w0)EM;W = D~w2EW + �2: (3.3)By explicitly evaluating the �rst term of equation(3.3), we �nd,D�test(wjM;w0)EM;W = �T2 + �2� tr0(A�1) + �2; (3.4)where the covariance matrix A is de�ned,A = 1N PX�=1 x�(x�)T; (3.5)and tr0(�) = Tr(�)=N, where Tr(�) is the trace. The generalisation error is found by taking anaverage of tr0(A�1) over the gaussian inputs of the training set, which we denote by h::ix, andusing the fact that A�1 is distributed according to an inverse Wishart distribution, W�1(I; P )[Eat83, Han93] where I is the identity matrix. In order that the average of the inverse is �nite6,we require P >N + 1, and have the result, htr0(A�1)ix = N=(P �N � 1), which gives,�g = �T2 + �2� NP �N � 1 + �2: (3.6)For the variance, we rewrite equation(3.2) as,var (�test :M) = D�test(wjM;w0)2EM;W;P � D�f(wjw0)2EW;P ; (3.7)where, as before, �f(wjw0) = h�test(wjM;w0)iM. After carrying out the average over M,equation (3.7) gives�12 = 2 D~w4 + 2�2~w2 + �4EW;P : (3.8)A straightforward gaussian average over P (w;P) gives�12 = 2* 12N tr0(A�2) �T + 2�2�2 + �tr0(A�1)�T2 + �2�+ �2�2+x : (3.9)This can be explicitly evaluated for P >N + 3 by employing [Eat83],D(tr0A�1)2Ex = (PN + 2�N2 � 2N)N(P �N)(P �N � 1)(P �N � 3) ; (3.10)and Dtr0(A�2)Ex = N2(P � 1)(P �N)(P �N � 1)(P �N � 3) : (3.11)The full expression for �12 is somewhat cumbersome, and we present here only the large Nlimit,�12 = 12  2�2�+ T�� 1 !2 +O �N�1� ; (3.12)where � = P=N > 1. Thus both the generalisation error and variance diverge for �!1. As �increases beyond 1, �12 decreases to its asymptotic value 2�4.6For P < N , there are unconstrained directions for the student, which lead to a divergent integral in theaverage.



34 CHAPTER 3: NOISY LINEAR PERCPETRON3.2.2 Pseudo InverseThe pseudo inverse algorithm is a limiting case of the general Gibbs algorithm in which thetemperature and weight decay both tend to zero such that T=� � 1 [KH92, DW93]. Thebene�t from the point of view of the analysis here is that we are able to calculate exactly thevariance for both P <N and P >N , rather than being restricted to P >N as in section(3.2.1)The generalisation error for the pseudo inverse algorithm for P >N+1 is given by employingthe T = 0 limit of equation(3.6)[Han93]. Similarly, the results for the variance for P >N + 3can be readily obtained from equation (3.9) by setting T = 0. For P <N , the pseudo inversealgorithm is given by w = Pw0, where P is the projection onto the subspace spanned by thetraining inputs[HP91]. Thus P (wjP) is zero except for the single point, w = XT (XXT )�1Y,where YT = (y1; ::; yP ) and XT = (x1; ::;xP ). This gives,�g = 1� PN + �2 �1 + Dtr0(B�1)Ex� ;where B = XXT=N . Comparing B with the N � N correlation matrix for P patterns,A = XTX=N , (cf. equation (3.5)), we remark that B is also a correlation matrix, distributedidentically to A, but with the roles of P and N reversed. The results from section(3.2.1) con-cerning the averages of the correlation matrix can then be employed directly by interchangingP and N . For P <N � 1, we obtain,�g = 1� PN + �2 N � 1N � P � 1 ;in agreement with known results for N!1, � = P=N=const [KH92]7.A straightforward calculation of the variance for P <N � 3 leads toN22 �12 = �4 h2 Dtr0(B�2)Ex + Dtr0(B�1)2Ex + 2 Dtr0(B�1)Ex + 1i+ (N � P ) �2�2 �Dtr0(B�1)Ex + 1�+ NN + 2 (2 +N � P )� : (3.13)The results in equations (3.10) and (3.11) can then be employed to �nd the variance explicitly.In �gure(3.1), we plot the generalisation error and �1=p2 against � for a system of size N = 20.We remark that the two curves are very similar, a result which we show in the next section isnot coincidental. Note that both curves possess the characteristic divergence as the trainingset size P approaches the system size N .3.3 Weight DecayIn this section we present results for the general Gibbs learning algorithm for arbitrary tem-perature, weight decay, and noise.After carrying out the gaussian integrations over the noise and test set inputs, the resultinggeneralisation error and variance are necessarily of the same form as equations (3.3) and (3.8)respectively, the only di�erence being in the distribution P (wjP) which now includes a weight7Note that in [KH92] the generalisation error is calculated for uncorrupted test sets.
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P �1p2�gFigure 3.1. Pseudo inverse rule, T = 0, � = 0. Dashed curve generalisation error. Solid curve,scaled standard deviation. The noise is �2 = 0:2, N = 20.decay term. By continuing the gaussian integrations required for the average over P (wjP), weobtain,�g = �2 + �T2 + �2�Dtr0(M�1)Ex + � ��� �2� Dtr0(M�2)Ex ; (3.14)whereM = A + �I:Here A is the correlation matrix de�ned earlier in equation (3.5)8. The di�culty arises inthe calculation of the averages of inverse powers of the matrix M. tr0(M�1) is termed theresponse function, G, which can be shown to be self averaging in the thermodynamic limit,with h(G �G)2ix = O (N�2), where G = hGix [Sol94a]. Moreover, Sollich [Sol94a] obtained the�rst order corrections to the average of the �nite N response function in the form,G = G0 +G1=N +O �1=N2� ;where G0 is the averaged response function in the thermodynamic limit, and has the value,G0 = 12� �1� � � � +q(1 � �� �)2 + 4�� :G1 is related to G0 by the equation, G1 = G20 (1� �G0) = (1 + �G20)2. Using these results,the �rst order approximation to the average htr0(M�1)ix can readily be found. Similarly,htr0(M�2)ix can be found by using htr0(M�2)ix = � (@=@�) htr0(M�1)ix.8Note that the pseudo inverse rule is best explained as the limiting case of using the matrixM for no weightdecay.



36 CHAPTER 3: NOISY LINEAR PERCPETRONAt this point, however, we note that for the linear perceptron under consideration, we canrewrite the equation for the variance as12�12 = �2g + var(~w2)W;P; (3.15)where ~w = (w�w0)=pN and var(~w2)W;P is the variance of ~w�~w over the distribution P (w;P).By straightforward gaussian integration, one �nds that this variance is a function of the averageof terms involving tr0M�i, i = 1::4. Furthermore, the resulting expression is O (N�1), such thatany �nite size corrections to tr0M�i will be O (N�2) corrections to �21. Whilst these correctionsare straightforward to obtain, the resulting lengthy expressions do not merit inclusion here.Hence, up to order O � 1N �, the standard deviation of the test error scales linearly with thegeneralisation error. Indeed, looking back at equations 3.12,3.6, we note that the large Nexpansion of the variance satis�es�12 = 2�2g +O �N�1� : (3.16)Evaluating (3.14) and expanding for small � gives�g = 12 2�2�+ T�� 1 � ��2 T + 4�2(�� 1)3 +O �N�1� ; (3.17)where � � 1 + N�1=4, � � 1. (A similar expansion holds for �< 1). A weight decay term istherefore advantageous in reducing the generalisation error and the variance.Up till now, we have considered an isotropic input distribution. More general input distribu-tions can be considered in which the inputs are `spatially' correlated, P (x) / exp(�xT��1x=2)(see e.g., [Sol94a], [TL93]). For this correlated input distribution, equation (3.15) remains trueon replacing ~w with �1=2~w. The variance of a single test example can then be well approxi-mated as before by twice the square of the generalisation error under the spatially correlatedinput distribution.3.4 Optimal test set sizeNow that the variance has been calculated, we can proceed to establish the optimal test setsize.A data set L, consisting of L elements, is split into the two disjoint subsets, P and M. Asbefore, P is the training set consisting of P examples, and M is the test set of M examples,such that L = P [M, and L = P + M . Given a data set of L elements, we can then setP = L�M in the equations for the variance and generalisation error, and let M vary between1 and L� 1.For smallM , the standard deviation is relatively large and the generalisation error is small,as the perceptron has been trained on a relatively large number of examples and tested ononly a few. This situation reverses as M is increased. The resulting competition between thegeneralisation error and standard deviation leads to the following de�nition:The probabilistic upper bound on the generalisation function is de�ned by �ub(M jL) =�g + �qvar (�test :M), where � is a con�dence parameter.From the central limit theorem, the generalisation function will be distributed in a gaus-sian manner around the test error [Fel70] and, on average, the generalisation function will
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M=NFigure 3.2. Solid curves, upperbounds for � = 0:01 (upper curve), and 0:05. Dashed curvegeneralisation error. The noise is �2 = 0:2, N = 100, L = 200, T = 0. The global minimum ineach upperbound represents the optimal test set size.be distributed similarly around the generalisation error. Setting � = 1, we will be 84%con�dent that the generalisation function will lie below �ub(M jL). Similarly, for � = 2, wewill be 98% con�dent9. For convenience, we set � = 1 throughout. In �gure(3.2), we plotthe generalisation error and upper bound function for two values of the weight decay forN = 100; L = 200; �2 = 0:2, and T = 0. We note that the two graphs are qualitativelysimilar, di�ering maximally for smallM . This can be explained by using the approximation tothe variance, and writing the upper bound as10,�ub(M jL) = 0@1 +s 2M1A �g +O 1pMN ! : (3.18)We see from �gure(3.2) that the optimal test set size, M�, for both weight decays is M� � 24.Empirically increasing the system size, N , we �nd thatM� scales likeN2=3. Further experimentleads to the conclusion that, in general, there exist two scaling laws for M�. One is theaforementioned 2/3 scaling, and the other is linear. These di�erent scaling phases occur due tothe existence of two competing local minima in the upper bound function. 2/3 scaling impliesa relatively small test set compared with linear scaling. We would expect that, for small noiselevels, or large weight decay, the optimal test set size, M�, would be minimal, and that as weincrease the noise, M� grows. This conjecture is borne out in �gure(3.3), where we plot theprefactors of the linear and 2/3 scaling laws for L = 0:6N; �2 = 0:8; T = 0. For �<0:15, thescaling is linear (M� large), and the prefactor reduces quickly as � tends to 0.15. There is thena transition to 2/3 scaling (M� small) as � increases beyond this transition point. Initially, theprefactor for the 2/3 scaling is large, reducing as � increases.9Here we have quoted the percentage of the normal curve less than a certain number of standard deviationsfrom the mean[Fel70].10Equation (3.18) also holds for (spatially) correlated inputs on replacing �g with the generalisation errorcalculated for correlated inputs, from which the modi�ed optimal test set size can be calculated accordingly.
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Figure 3.3. Scaling law prefactors for the optimal test set size for a data set of size L =0:6N; �2 = 0:8; T = 0.In general, isolating the phase boundaries involves the solution of a rather complicatedexpression and, as such, the boundary needs to be found numerically. For the pseudo inversealgorithm, however, analytical expressions for the the large N limit are readily found. In�gure(3.4) we plot the phase diagram for the pseudo inverse rule (N � 1). The values of theprefactors in the regions (a), (b), and (c) are respectively:121=3 "�(�tot � 1)(�2 + (�tot � 1)2)�2 � (�tot � 1)2 #2=3 ; � + �tot � 1; 121=3 [�tot(�tot � 1)]2=3 ;where �tot = L=N .For large N , the variance is essentially zero, and the transition regions are simply givenby consideration of the generalisation error. If this is a monotonically decreasing function of�, such phase transitions will not exist as the `optimal' scheme in this sense is to simply takethe smallest test set. For a large enough value of �, the generalisation error will necessarily bemonotonic, and we will have 2/3 scaling. Thus, small test sets are reasonable for a large weightdecay or small noise levels, in that the test error will be a good estimate of the generalisationfunction. The existence of a phase transition in the scaling law of the optimal test set sizeis an e�ect of the non-monotonicity of the generalisation error in the presence of noise. Theover�tting phenomenon around � = 1 is therefore the origin of the linear phase transitionwedge drawn in �gure(3.4) - due to over�tting, it is better to use less examples in the trainingprocedure, and more for testing.General scaling argumentUsing the approximation in equation(3.16) that we found for the variance of the linear percep-tron, we can di�erentiate the upper bound equation(3.18) explicitly as a function of �, and �nd
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Figure 3.4. Phase diagram for the pseudo inverse rule. In each region, the optimal test setsize scales either linearly with N , or like N2=3.the optimal test set size prefactor for 2=3 scaling is given by,N� 23M� = 0@ ��gp2�0g1A 23 ; (3.19)and the asymptotic (�� 1) generalisation error is given by11,�g = 12 2�2�+ T�� 1 : (3.20)For the noiseless case, the asymptotic generalisation error is given by,�g = T2�; (3.21)and using equation(3.19), we note that the linear dependence on T cancels, and does not a�ectthe optimal test set size. This gives the optimal test set size prefactor as,N� 23M� = 2� 13� 23 ; (3.22)and for the case of noise we �nd,N� 23M� =  p2�22�2 + T ! 23 � 43 : (3.23)11The pseudo inverse rule prefactor is found by setting T = 0 in (3.20). Note that this means that the noiseenters only as a prefactor in the error. From (3.19) we see therefore that the optimal test set size will beindependent of the noise.



40 CHAPTER 3: NOISY LINEAR PERCPETRONWith noise therefore, more test examples are needed than in the noiseless case. We note thatthe prefactor is bounded for large noise, which is a reection of the fact that the noise a�ectsboth the training and test examples. Examining equation(3.23) we see that as we increase thetemperature, the prefactor reduces - increasing the temperature means that there is increaseduncertainty in the training procedure, and more examples should be devoted to training.3.5 Cross-validationAn examination of cross-validation for the noisy linear perceptron is complicated by the param-eters of noise and weight decay, extra to those of the spherical linear perceptron in chapter(2).Perhaps the more interesting situation that we shall now be able to address is that of modelselection in terms of cross-validation in a region where asymptotic theories of statistics are notvalid. We leave a brief discussion of these results until section(3.6).3.5.1 Student Error CovarianceAs mentioned in chapter(2), a comparison of the e�ectiveness of di�erent CV schemes boils downto an analysis of the covariance of two cross-validation student errors. The calculation of thesecovariances follows the method outlined in appendix(2.8) with, however, a slight modi�cationas explained in appendix(3.8.1). For simplicity, we examine here the case of leave-out-halfCV, comparing the results for the covariance with those for the spherical linear perceptron insection(2.5). The most striking qualitative di�erence between the spherical and weight decayconstraints is for the case in which there is no overlap between the test sets, �12 = 0. Comparing�gure(2.6) and �gure(3.5)(a), we see that the covariance for the weight decay constraint beginsat zero, whereas it begins at negative 1 for the spherical case.As a partial explanation of the results for the covariances for small �, let us consider thesimple case of a dataset consisting of only two examples, and V = 2, such that each student istrained and tested on only one example. At zero temperature, the resulting one dimensionalconstraint from the requirement of zero training error gives (after minimising the Gibbs errorwith respect to w),� ~w(1)x(1) � �(1)�x(1) = �w(1); (3.24)and similarly for the second perceptron, w(2), where ~w = (w � w0) =pN . Setting w0 = pN ,� = 1, and the noise variance equal to 1, we can explicitly calculate the covariance of the errorsformed by the weight vectors which are solutions to (3.24), assuming the two examples x(1) andx(2) are independent.12 Expanding these results for large N , the covariance of the two errors isgiven by,cov(�(1); �(2)) = 16N +O �N�2� : (3.25)12Parenthetically, we note that the student solutions to (3.24) are w = O �N� 12�. For the spherical linearperceptron, we have w = O �N 12�.
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Figure 3.7. The generalisation error vs �, for two partitions, V = 2, and a noise level �2 = 0:2,with a dataset of size �tot = 2.is easily implementable, and has an intuitive feel. Shao's main result is that leave-one-out CVis inconsistent and that in order to have a consistent procedure, one needs to use leave-out-MCV with M=L!1 as L!1. That is, we need to make the cross-validation set size as large asthe the whole data set as the amount of data increases. On reection, however, this is not assurprising as it might at �rst sound. Let us consider the weight decay case. For consistency,we need the variance of the cross-validation estimate of the optimal weight decay parameterto tend to zero as the amount of data increases without bound. However, as we increase theamount of data, the prior (i.e., weight decay) becomes increasingly less important, and theerror surface increasingly insensitive to the choice of weight decay - no matter what weightdecay we use, the errors will tend to the same thing. Indeed Marion[MS96] has shown that thevariance of the optimal weight decay diverges as the amount of data increases. This highlights,therefore, the di�culty of judging di�erent CV schemes on the basis of the consistency. Weprefer to concentrate on how they perform - i.e., what error they have. For this reason, weshall judge the various CV schemes on the basis of the variance of their errors, and not on thevariance of their parameter estimates.3.6.2 Discriminating between two modelsThe issue we are here concerned with is the following: given two models (two linear percep-trons with di�erent weight decay parameters), how can we use cross-validation to best decidewhich is the better model? We denote the cross-validation errors of the models �1, �2, where themodels have been trained with weight decays �1 and �2 respectively. One way to discriminatebetween the two models is to look at the di�erence between their CV errors, �1 � �2. If thishas large modulus, it should be clear which model is the better. However, the cross-validationerrors are random variables (due to the random dataset), and we therefore need to considerthe joint distribution of CV errors. If the expectation of [�1 � �2]2 is large, and the varianceof [�1 � �2]2 is small we can be sure that one model will be consistently better than the other.
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x = (�1 � �2)=p2�1 �2

Figure 3.8. Two models are evaluated by their cross-validation errors, �1 and �2. The jointprobability distribution P (�1; �2) is represented by the ellipse, and the projection onto the x-axis (�1 � �2)=21=2 is drawn. In order to discriminate between the two models, we desire alarge modulus of �1 � �2, and essentially a small variance. These criteria are embodied in theminimisation of the separation ratio, 	.This is equivalent to prefering a minimal value of the similarity ratio,	(�1; �2) = N var (�1) + var (�2) � 2cov(�1; �2)(h�1i � h�2i)2 (3.27)As the variance and covariance typically are order O (N�1), the similarity ratio will typically beorder O (1). We shall consider here only the case of MCCV (random partitioning) which meansthat the covariance in equation(3.27) is equal to simply the covariance of two cross-validationstudents - i.e., independent of the number of students S.13 As we know how to work out the(co)variance of cross-validation errors we can, in principle, determine the best CV scheme touse - i.e., how many divisions/students to use for a given computational cost.In �gure(3.9), we plot the similarity ratio 	(�1; �2) against the number of divisions for acomputational cost of C = 10. (Remember that the number of students is related to the cost byS = V C=(V � 1)). Three cases are considered: (a) both models are under-regularised (b) bothmodels are over-regularised, (c),(d) one model is under-regularised, the other over-regularised.In (a),(b), and (d) there is little di�erence between the sizes of the optimal divisions, all ofwhich are of the order of V = 2. For (c), however, there is a greatly increased optimal divisionsize, with a much larger value of the similarity ratio. Looking at �gure(3.7) we see that for thetwo values �1 = 0:1 and �2 = 0:4, the average CV errors are almost the same. In this case, itis extremely di�cult to di�erentiate between the two models, giving rise to a large value of thesimilarity ratio. The best that can be done in this circumstance is to train the students on alarge fraction of the dataset in order to distinguish between their average errors. The situation13This covariance is easy to work out: we have already found the covariance of two CV students for the casein which they are both trained using the same value for the weight decay. It is straightforward to show thatfor the case in which the students have di�erent weight decays, the resulting expression for the covariance isequivalent to the case in which they are both equal, however with their single replica values calculated withdi�erent values of the weight decay.
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Figure 3.11. The optimal division size V versus the size of the data set �tot, plotted for a noiselevel �2 = 0:2 The upper curve (circle) is for both models over-regularised, �1 = 0:6, �2 = 0:4The lower curve (cross) is for one model over-regularised, and the other under-regularised�1 = 0:05, �2 = 0:4. Asymptotically, the optimal partition decays as 1 +O ���1tot�.is based on asymptotically selecting the correct parameters of the model), namely the similarityratio (based on di�erentiating between the errors of two models), a similar conclusion is reached- the test set size should be increased as the amount of data is increased in order to optimise thecross-validation procedure. Note that this apparant paradox, that as more data is available, itbecomes increasingly di�cult to choose the `right' model, is not necessarily apparant in othermethods of model selection. The optimal setting of the weight decay, as we have consideredabove, is to set the weight decay equal to the noise level. Clearly, there are measures of noisethat will become more sharply de�ned as the amount of data increases, and hence with thosemeasures, one can say which would be the better prior/noise model - however, what we haveshown above is that the performance of models with di�erent weight decays (priors) becomesincreasingly similar as the amount of data increases.3.7 Summary and OutlookWe have calculated the variance in the test error of the linear perceptron due to randomnesspresent in both the data set and algorithm. Where an exact calculation was not tractable, weshowed that the variance can be very well approximated by a simple scaling of the square of thegeneralisation error. We applied these results to address the question of the best assignment ofa data set into a test and training set. We found that there exist two di�erent regions for thescaling of the optimal test set size with the system dimension, one linear, which operates forexample for relatively large noise, and one 2/3 scaling. We demonstrated how one can applythe techniques of statistical mechanics in order to analyse cross-validation in a model selectionproblem, and how to optimise the test set size of cross-validation students in order to helpdiscriminate between two models.



48 CHAPTER 3: NOISY LINEAR PERCPETRON3.8 Appendix3.8.1 Replica methodsThe replica calculation for the weight decay linear perceptron di�ers only slightly from thatfor the spherical linear perceptron. In terms of the free energy contributions G0 and Gr,only the entropic term, G0, which expresses the form of prior student constraints is a�ected.Rather than introducing a gaussian average over a delta function representation of the sphericalconstraint, we now have simply a gaussian weight decay measure. In carrying out the replicamethod, we will then need to make a slightly more general replica symmetry ansatz, as thelength of students trained on the same data is no longer �xed (as was the case for the sphericalconstraint). Speci�cally, the replica symmetry ansatz now takes the form (cf. (A.13)),q�;� 0 = q0��;� 0 + (1 � ��;� 0) qq̂�;� 0 = q̂0��;� 0 + (1 � ��;� 0) q̂The resulting entropic term is given by,G0 = �RR̂ + 12qq̂ � q0q̂0 � 12 ln ���+ q̂ � 2q̂0�+ 12 q̂ � R̂2��+ q̂ � 2q̂0 (3.28)and Gr = 12 ln �1 + � �q0 � q��+ �2 q � 2R + 1 + �21 + � (q0 � q) : (3.29)The saddle point equations resulting from extremising the free energy G0 � �Gr are,q0 = q + 1��+ R̂q = �R̂ + q̂� �q0 � q�2q̂0 = 12 �q̂ � R̂�q̂ = �� 1 + �2 + q � 2R1 + � (q0 � q) 2R = R̂ �q0 � q�R̂ = ��1 + � (q0 � q)The solution of these equations is given by [DW93],q0 = q +Qq = �1 + �2 + ��2 � �



CHAPTER 3: NOISY LINEAR PERCPETRON 49R = ��whereQ = 12�� (1 � � � �) +q(1� �� �)2 + 4� (3.30)� = �+ ��Q+ � (3.31)3.8.2 Double replicaBecause there is also noise present in the weight decay calculation, the double replicated Hamil-tonian changes form slightly to accommodate this (cf. (A.35)):G12r (�1; �2) = �12 �11 + �1 (q01 � q1) �21 + �2 (q02 � q2)�n(q12 �R1R2 +R1 � 1) (q12 �R1R2 +R2 � 1) + 2�2 (q12 �R1 �R2 + 1) + �4o (3.32)where subscripts 1,2 denote the replica system. The entropic term is given byG120 = �12 q12 �R1R2(q01 � q1) (q02 � q2) ; (3.33)where the single replica solutions are given in appendix(3.8.1).



Chapter 4The Binary PerceptronAbstractThe binary perceptron is fundamentally di�erent from the linear perceptron inthat the output is discontinuous. Cross-validation schemes performing random, oroptimised partitioning are found to perform to a greater degree of similarly thanfor the linear perceptron. By calculating the variance of the generalisation functionover the version space, we make a tentative connection with the PAC worst caseanalysis by approximating the distribution of errors. Even for small system sizes,the probability of an error close to the worst case bound is extremely small.4.1 IntroductionHaving studied in some detail the linear perceptron in the previous two chapters, we turnour attention to a simple non-linear system, the binary perceptron. The motivation in sodoing is to check some of the conclusions inferred for the linear perceptron against a non-linearsystem and we shall again be working within the framework of batch learning with the teacherof the same form as the student. As for the linear perceptron, a considerable body of workalready exists for the binary perceptron, for which many calculations have been carried out withrecourse to the thermodynamic limit [GT90, WRB93]. We aim, therefore, both to calculatevariances for the binary perceptron, and also to check the performance of cross-validation forwhich much of the work carried out on cross-validation has been on linear and/or continuousmodels[Sha93, Bur89].4.2 The Binary PerceptronThe binary perceptron has the same structure as the simple perceptron introduced in chapter(1),now with a binary valued activation function, such that the output for real valued inputs x isgiven by:y = sgn 1pNw�x! ; (4.1)50



CHAPTER 4: BINARY PERCEPTRON 51ww0�? ?Figure 4.1. Geometrical interpretation of the generalisation error between a binary perceptronstudent and teacher with weight vectors w and w0, respectively. Shown is the projection ofthe input space onto the plane spanned by w and w0; the input regions for which the outputsof student and teacher disagree are marked by asterisks. The generalisation error �g is equalto the probability with which a random input vector will `land' in one of these regions. Forisotropically distributed inputs, this probability is simply 2�=� where �, the angle between w0and w, is given by � = arccos(w0 �w=N) due to the normalisation (w0)2 = w2 = N .where sgn(h) = +1 for h � 0, and �1 otherwise. The spherical constraint, (w0)2 = w2 =N is again imposed as a convenient normalisation. Geometrically, the output of the binaryperceptron depends on which side of the hyperplane, speci�ed by the weight vector w, theinput example x lies; the output is positive for a positive projection of the example onto thehyperplane, and negative for a negative projection. As we do not consider a threshold (whichsimply adds a constant to the activation h), the hyperplane passes through the origin.As before, we shall be interested in the generalisation performance of a binary studentperceptron, speci�ed by weight vector, w, learning a binary teacher perceptron speci�ed byw0. Students are generated by minimising the training error on a set P of P examples, givenby Etr = 2 pXk=1 � (�tksk) ; (4.2)where �(x) = 0 for x � 0 and +1 otherwise, and tk , sk are the outputs of the teacherand student on input example xk respectively. The inputs are selected randomly with eachcomponent drawn from a zero mean, unit variance normal distribution. Note that the trainingerror equation(4.2) counts the number of errors that the student makes on the training set.We again take an extensive number of training examples P = �N such that the training erroritself will be extensive. The Gibbs algorithm selects (spherical) student weight vectors fromthe distribution / exp��Etr(w)1.1One way to achieve this for example is to simply randomly sample candidate spherical student weight vectors(with uniform probability over student weight space), which are then selected with the Gibbs probability.



52 CHAPTER 4: BINARY PERCEPTRONThe generalisation errorIn order to test the performance of trained binary perceptron students, we again form the testerror,2�test = 2M MXm=1 � (�tmsm) ; (4.3)where the test set is composed of theM input-output pairs, M = n(x1; t(x1)) ; ::; �xM ; t(xM)�oand the generalisation error is de�ned as the test error averaged over the test set distribution.In �gure(4.1), we show geometrically how the generalisation function is related to the averageoverlap between the student and teacher vectors,�f = 2� arccos(R); (4.4)where we de�ne the overlap parameter, R = 1Nw0 �w. In order to calculate the generalisa-tion error, we need to average equation(4.4) over the weight space and training/test sets. Thenon-linearity of the activation function increases the complexity of the calculation of the gen-eralisation error, compared to that for the linear perceptron, although these di�culties can beovercome using the replica formalism of statistical mechanics, following the procedure outlinedin appendix(A). The generalisation error calculation was initially carried out by Gyorgyi andTishby[GT90], and we briey restate some of their results3. Details of the replica method asapplied to the binary perceptron are found in appendix(4.7.1).Zero-mean additive gaussian noise on the weight vectors (of variance �2weights) and inputcomponents (of variance �2inputs) noise have similar e�ects, and manifest themselves in the noiseparameter, = ��1 + �2inputs� �1 + �2weights���1=2 ; (4.5)so that a noise free system is modelled by the selection  = 1, and the generalisation functionin the presence of noise is given by,�f = 2� arccos(R): (4.6)The resulting generalisation error is plotted in �gure(4.2) for di�erent values of the noise pa-rameter, . For zero noise and large �, the generalisation error decays algebraically,�g = 1:25� +O ���2� : (4.7)In the presence of noise, the residual generalisation error as �!1 is given by,�r = 2� arccos () ; (4.8)2The test error is scaled so that e:g :;(� = 0) = 1, as for the linear perceptron.3Whereas in [GT90] the generalisation error is de�ned such that the zero � value is a half, we de�ne the zero� value to be 1, as we did for the linear perceptron.
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�Figure 4.2. The generalisation error plotted for di�erent settings of the noise parameter against the training set size, � = P=N . The standard deviation of the test error for a studenttrained at zero temperature on noiseless examples is also plotted.and the asymptotic decay of the generalisation error is given by,�g � �r / �� 12 : (4.9)In contrast to the noise free, zero temperature linear perceptron, there is no critical value of� for which the generalisation error becomes zero. For the binary perceptron, the student andteacher outputs identify only whether a given input lies between the planes de�ned by thestudent and teacher. As more examples are presented, the student rotates toward the teacher,but there will always be a chance that an example arises that lies between the student andteacher planes, thus giving an error for �nite �.4.3 The VarianceOnce the generalisation error has been calculated, the desired variance is straightforward toobtain. Referring back to the discussion in section(2.9) we remark that, up to order O (N�1),the variance var (�test :M) obeys,Mvar (�test :M) = var (�test : E) (M = 1) +O �N�1� (4.10)As the output of the binary perceptron is the sign function, we arrive immediately at the result,var (�test : E) (M = 1) = 2�g � �2g +O� 1N � ; (4.11)and hence thatvar (�test :M) = 1M n2�g � �2go+O � 1MN � (4.12)This shows that the asymptotic decay of the variance for the binary perceptron is much slowerthan that for the linear perceptron: for the binary perceptron, the variance decays only withthe generalisation error, whereas it decays as the square of the generalisation error for the linearperceptron.



54 CHAPTER 4: BINARY PERCEPTRON4.3.1 Optimal test set sizeAnalogous to the optimal test set size analysis that we carried out for the linear perceptron(see sections(2.3,3.4)), we again look for the best partitioning of a data set into a test andtraining set in order to �nd a low test error, yet remain con�dent that the test error is close tothe generalisation function. Rephrasing this, we wish to (con�dence) bound the generalisationfunction from above: this can be achieved by adding on to the average error say one standarddeviation of the generalisation function distribution, forming the upper bound �ub(M jL); withprobability 0.84, the generalisation function will be lower than �ub(M jL), and we seek to min-imise this upperbound with respect to the freedom we have in choosing the fraction of examplesassigned to the test/training procedure. Using the approximation to var (�test :M), given in(4.12), we have for a one standard deviation con�dence,�ub(M jL) = �g +  2�g � �2gM ! 12 +O � 1N � (4.13)Optimising this upper bound with respect to �, we make again the scaling ansatz, M = cN 23 .This ansatz is motivated by numerical optimisation of the upper bound or, alternatively, byconsistency arguments. For large N , we �nd,c = 0@q2�g � �2g2�0g 1A 23 ; (4.14)where �g is the value of the generalisation error at the optimal value of �. Unlike the linearperceptron, the binary perceptron generalisation error is a monotonically decreasing function of�, regardless of the (�xed) noise level. This means that there will not be a phase transition toa di�erent (linear) scaling law as the noise level rises, as was the case for the linear perceptron.For large N , �� = �tot +O �N� 13�, and we therefore approximate �g(��) by �g(�tot). Similarly,�0g is the value of the derivative of the generalisation error at the optimal value of �, whichwe approximate by �0g(�tot). For the case of no noise, using equation(4.7) gives the asymptoticvalue of the prefactor for large �,c = 2:5� 13� = 0:733�; (4.15)which corresponds well with the gradient of the curves in �gure(4.3) for large �. For the caseof noise present we use equation(4.8), and again �nd, asymptotically, a linear scaling of theprefactor c with �, which may at �rst seem surprising. On deeper reection, however, we realisethat noise enters the process only through the variable  which is bounded between 0 and 1(an artifact of the binary nature of the problem) so that the residual generalisation error isbounded, even for in�nite levels of weight and input example noise. We see from �gure(4.3)that the asymptotic values of the prefactors are indeed linear, and have bounded gradient. Thisis to be contrasted with the noisy linear perceptron, described in section(2.3), where noise givesrise to a di�erent prefactor scaling in �, namely a 4/3 power law.As the temperature is increased, the optimal test set size tends to decrease, which is asimilar e�ect to that found for the linear perceptron. The explanation is that as T is increased,there is less con�dence in the training procedure, and more examples are required to reducethe training error.
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T=5.0, gamma=0.1�totFigure 4.3. Prefactor c for the optimal test set size M� = cN 23 for various values of the noiseand temperature. All curves tend to a linear prefactor in the limit of large �tot. Note thatthere is little change in the curves for di�erent temperature. The e�ect of noise is to increasethe required size of the test set in order to compensate for the higher implicit variance of noisyexamples.4.4 Cross-validationSimilar to the analysis carried out on cross-validation in the previous two chapters, we brieyexamine here the relative performance of di�erent cross-validation schemes in the context of ahighly non-linear rule. We refer the reader to chapter(2) for the general aims of our analysishere.We again perform a replica analysis as we did previously for the linear perceptron, andan overview of the requisite results for the method is given in appendix(4.7.1). Although theprocedure is essentially the same as for the linear perceptron, the resulting saddle point problemnecessitates the application of more sophisticated numerical techniques. Also, for the case ofnoise, the replica method breaks down if the learning temperature is too low, and we try toavoid such regions. As pointed out in chapter(2), an analysis of the relative performance ofdi�erent cross-validation schemes boils down to a comparison of the covariance of two individualcross-validation students.In �gure(4.4) we plot covariances for the case of 2 divisions, V = 2, under the di�erent CVschemes described in chapter(2). We see from �gure(4.4) that the covariance is most negativefor the scheme where there is the smallest test set overlap. This �gure is to be compared to�gure(2.6) in section(2.5) where we plotted for the spherical linear perceptron the behaviourof cross-validation under the same conditions. Noteworthy is the similarity of the curves forthe binary scheme relative to the curves for the linear model, under the di�erent types of CVschemes. We therefore expect very little di�erence between the performance (i.e., CV errorvariance) of CV schemes for the binary perceptron, relative to the di�erences in the linearperceptron. Learning with a small temperature has little e�ect on the covariance. (The graphsof zero noise and T = 0:25 are indistinguishable from �gure(4.4)(a)). The e�ect of noise is toincrease slightly the the tail of the covariance curve as it tends towards the zero asymptoticvalue. Furthermore, the optimal CV scheme is seen to be very close to the random (Monte
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�tot=2Figure 4.4. The (scaled) covariance of two test errors for di�erent CV schemes, all for twopartitions, V = 2. The lower curve is for the non-overlapping scheme for S=2, equivalent tothe OCV scheme for S � V . The middle curve is the OCV scheme for S = 4. The upper curveis the MCCV scheme, which is independent of the number of students. (a) The noise is set tozero, and so is the temperature. (b)  = 0:6, T = 0:25.Carlo) CV scheme cf. �gure(4.4)(b), and we conclude that the e�ect of noise does not bringabout signi�cant advantages of using one CV scheme in favour of another. In conclusiontherefore, the CV procedure for the binary perceptron is more robust to noise and temperaturechanges than is the linear perceptron.4.5 Connection with PAC learningThe standard PAC analysis deals with binary output systems[Ant95], and we are now in aposition to make some connections between the average case and the PAC analysis. The workin this section is linked to that by Engel and Fink [EvdB93] who use techniques of statisticalmechanics to calculate a worst case analysis for the performance of the binary perceptron.Let us review briey the picture that we have of zero temperature learning: A set of trainingexamples P is used by the (zero temperature) Gibbs learning algorithm to generate a set ofcandidate students - the version space - and a student is picked at random from the versionspace. Although all students in the version space have zero training error, they will in generalhave di�erent generalisation functions, and a measure of the scale of this di�erence is givenby the variance of the generalisation function over the version space. A worst case analysis isconcerned with bounding the performance of the worst student from the version space. Engeland Fink are concerned with checking how tight the bounds from the distribution free PACtheory are in the case of a speci�c input distribution. However, it may still be the case thatthese bounds are not tight in the sense that, for all but pathological input distributions, theoverwhelming proportion of the error mass lies far from the worst case boundary. Equally,while Engel and Fink can calculate the worst case error for a speci�c input distribution, we can



CHAPTER 4: BINARY PERCEPTRON 57calculate how likely it is that we come close to saturating that bound for the same input distri-bution. Given our understanding of the gaussian nature (for large N) of the error distributionaround its mean value, with a variance of the order of O (N�1), it is intuitively clear that foriid distributed inputs, the probability that an error occurs close to the worst case error will beexponentially small. However, what is not immediately clear is whether the prefactor of thisvariance is so large that for \moderate" system sizes, there is still an appreciable chance thatan error occurs close to the worst case.We restate briey the theory of PAC learning as explained by Engel and Fink. Initially,Engel and Fink are interested in bounding the di�erence between the training error (which willbe set to zero later), and the generalisation function. For a �xed student, the probability thatthe training error Etr and the generalisation function �f di�er more than a quantity � is givenby the Hoe�ding inequality,Prob fjEtr � �f j > �g � 2 exp ��2�2P � ; (4.16)which, for a constant bound gives � � 1=pP , corresponding to the central limit theorem picturethat we have been using throughout. In a worst case analysis, the maximal di�erence betweenthe training error and generalisation function over a class of possible students is given by theVapnik and Chervonenkis bound,Prob fmaxwjEtr � �f j > �g � c�(2P ) exp ��2�2P� ; (4.17)where for P > N , the growth function � (m) is given by � (m) = 2PN�1i=0 �m� 1i �. UsingStirling's formula, and approximating the summation by a saddle point integration gives, for� � 1, N � 1,� (2�N ) = 2N�1Xi=0 �m� 1i � � exp (N [2� log (2�)� (2� � 1) log 2�� 1]) : (4.18)Using this in the VC bound (4.17) we obtain,Prob fmaxwjEtr � �f j > �g � c exp �N h2� log (2�)� (2� � 1) log 2� � 1� ��2i� (4.19)Hence, in the limit of an in�nitely large perceptron, N!1, the maximal di�erence �vcf betweenthe training error and generalisation function is bounded from above by,�vcf (�) = q2 log 2�� (2 � 1=�) log (2� � 1) (4.20)with probability 1. For large �, this means that the maximal di�erence between the trainingerror and generalisation function scales like, �vcf � qlog�=�.4.5.1 Restriction to the version spaceFor the case in which the set of possible student vectors is restricted to the version space (zerotraining error), the bounds tighten, such that the maximal generalisation function of studentsfrom the version space is given for large � by,�vcf � 2 log �� log 2 : (4.21)
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Figure 4.5. Bounds on the generalisation performance. The generalisation error is plottedas the solid curve. The dotted curve is the asymptotic curve for the performance of the worststudent from the version space, �wcf � 3=�. The dot-dash curve is the asymptote to the normalVC theory limiting value of the error, �vcf � 2 log �=(� log 2). The dashed curve is the (scaled)variance over the version space of the generalisation function. Note that we plot only from� = 2 as below this, the asymptotes are wildly incorrect.Engel and Fink provide a replica symmetric calculation for the performance of the worst studentfrom the version space (given by the student in the version space with the smallest overlap withthe teacher), which gives the large � result (see �gure(4.5)),�wcf � 3�: (4.22)Although replica symmetry is found not to hold for � > 2, a replica symmetry breakingcalculation gives the same asymptotic scaling with �. Hence the VC bound over-estimates thegeneralisation function of the worst student by a factor 2 log �=(3 log 2). According to Engel andFink, however, the VC bounds can be tightened by using information theory to give (for anyinput distribution), a bound 2=� for large �, which is very close to the (distribution speci�c)worst case bound given by Engel and Fink.Given that it is possible to calculate the generalisation performance of the worst studentfrom the version space, one might ask, how likely is it that a student sampled from the versionspace will have an error close to this worst case? Since we have been calculating variances(including those of errors over the version space), and given our usual assumption of a normaldistribution, we see that we are in a position to say how likely, for a given value of �, ageneralisation function so far from the average case is likely to occur. For the iid distributedinput examples, the variance of the distribution of errors is order O (N�1) and hence, for any�nite di�erence between the worst case generalisation performance and the typical performance,the probability of a randomly selected student with error close to the worst case will becomeexponentially unlikely as the size of the perceptron increases.The variance that we require in order to calculate the probability of picking a studentwith a generalisation function worse than the average worst case student is the variance of the



CHAPTER 4: BINARY PERCEPTRON 59generalisation function over the version space, var (�f :W). Explicitly, this is not a quantitythat we have previously calculated although, in principle, it is straightforward to calculatethis variance4. However, as the number of test examples grows, the test error approaches thegeneralisation function, and we have �f = �test+O �M� 12 �. We therefore simply approximate thevariance of the generalisation function by that of a large sample test error. There are, however,some subtleties hidden here. Engel and Fink calculate the worst case generalisation function byassuming a binary valued input distribution, namely, P (x) = Qi=1::N h12� (xi � 1) + 12� (xi + 1)i,for which the �rst two moments are the same as for a zero mean unit variance distribution.The calculation of the free energy, from which all statistical properties, including the thermalvariance, are derived depends only on the �rst two moments of the input distribution. Thismeans that we can take the results for the (auxiliary �eld) free energy of our replica calculationfor gaussian inputs and the results for the thermal variance will hold for the binary inputdistribution.We take several representative points from the learning curves for the worst case analysis (ascomputed by Engel and Fink), and calculate the probability that such a student will be chosenby the Gibbs learning algorithm. Technically, we should also take into consideration the varianceinduced by the uctuations of the �nite N corrections to the average worst performing student.This would give rise to two order O (N�1) variance bumps around the thermodynamic meangeneralisation function and the worst generalisation function. Leaving aside such concerns, letus calculate the probability that a student would have an error larger than the average worstcase analysis for a �nite dimensional system. Using the assumed normal distribution for thegeneralisation function, the probability of an error worse than ��wcf (for some chosen � � 1) is,Prob n�f > ��wcf o = 12erfc0@ �N 12q2var (�f :W) ���wcf � �g�1A ; (4.23)where var (�f :W) is the variance (not divided by N) of the generalisation function over theversion space. We calculate the variance of the generalisation function by taking the thermal(weight space) variance of a large-sample test error (M=N = 100), checking that this is agood approximation for the case of zero � in the fashion outlined in section(2.9). The thermalvariance of the generalisation function in terms of the overlap R isvar (�f :W) = 1�2 D[arccos(R)]2EE � 1�2 h[arccos(R)]i2E : (4.24)As we know the distribution of the overlap at zero �, a straightforward calculation yields,var (�f :W) (� = 0) = 1�2  �24 + 1N !� 14 +O �N�2� = 0:405N +O �N�2� : (4.25)Using the large-sample test error (M=N = 100) predicts this value to the third decimal place. Asa rather crude analysis, we take two values of � and read o� the worst case analysis results fromthe paper by Engel and Fink[EvdB93], (� = 10; �wcf = 0:29; �g = 0:1225; var (�f :W) = 0:011),(� = 20; �wcf = 0:14; �g = 0:06; var (�f :W) = 0:003). In �gure(4.6) we plot, using (4.23), theprobability that a student from the version space will be chosen that has an error greater than4One introduces the generalisation function as an auxiliary �eld in the Gibbs training energy. The secondderivative of the resulting free energy gives the thermal variance of the generalisation function.
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4 6 8 10 12 14 16 18 20NFigure 4.6. The probability of picking a student with a generalisation function worse than 0.8of the error of the worst case student, versus the system size N . The upper curve is computedfor � = 10, and the lower for � = 20.the average worst case student, as calculated by Engel and Fink. It should be stressed that forsuch small system sizes as plotted, corrections to our �nite size analysis will be relatively large.Nevertheless, we see that even for such small system sizes, the chance of picking a student thathas an error close to that of the worst student is very small.We are therefore lead to the conclusion that, although the PAC theory can yield \tight"bounds on the generalisation performance for the distribution independent case, with the as-sumption of a speci�c input distribution (here a gaussian), the overwhelming fraction of studentsin the version space perform similarly to the average case analysis, and not to the worst case,even for `small' system sizes.4.6 SummaryWe have extended our analysis of �nite size e�ects to a highly non-linear system, primarilyby employing techniques from statistical mechanics. However, we have found a very simplerelationship between the test error variance and the generalisation error. This simple relation-ship shows that the variance of the test error decays only with the generalisation error andnot with the square of the generalisation error as for the linear perceptron. A (double) replicaanalysis showed that the performance of cross-validation is much less sensitive to the schemeused (random CV or block CV or optimal CV) than is the linear perceptron. For the optimaltest set size, we again �nd a 2/3, power law scaling with the system size, where the prefactor islinear for both noisy and clean examples. As the worst case PAC analysis is generally concernedwith binary output systems, we were able to calculate how likely a student is chosen with errorclose to the worst generalisation performance as predicted by the PAC theory. We found thatthis probability decreases exponentially with the system size, and that even for relatively smallsystems, errors close to the worst case generalisation performance are exceedingly unlikely.



CHAPTER 4: BINARY PERCEPTRON 614.7 Appendix4.7.1 Replica MethodAs explained in appendix(A.1.3), the thermal variance can be obtained by a straightforwardextension of the single replica method. What is required is the average of the partition function,which was calculated in [GT90]. We refer the reader therefore to [GT90] and state here the�nal expression for the free energy which is composed of two contributions,F = G0 + �Gr (�) (4.26)where the entropic term is given by,�G0 = 12  q �R21� q + ln (1� q)! (4.27)and the replicated Hamiltonian is given by,Gr (�) = 2 Z 10 Dy Z 1�1 ln(e�� + �1 � e���H  tpq � 2R2 � yRp1� q !) ; (4.28)where denote a gaussian measure, Dy = (2�)�1=2 exp (�y2=2) dy, andH(u) = Z 1u Dx = 12erfc up2! : (4.29)One must however bear in mind that the above formulae hold only in the region where replicasymmetry is valid. This region is found by examining the stability of the replica solutions fromthe Hessian evaluated at the saddle point. As given in [GT90], the condition for stability is,� = 1 � 2� Z 10 Dy Z 1�1Dt @2@z2 ln [u� +H(z)]!2 > 0; (4.30)where u� = (exp (�)� 1)�1. However, for T = 0, replica symmetry is stable and believed to beexact.4.7.2 Double replica free energyAs the weight vector constraints for the binary perceptron are the same as those for the lin-ear perceptron, the double replica entropic term is unchanged, as given by equation(A.32).The calculation of the Hamiltonian term follows the usual line of argument as presented insection(A.3), with the expression being of exactly the form given in equation(A.23). However,there does not exist any straightforward simpli�cation of the general expression and as such, anumerical integration needs to be performed.



Chapter 5On-line learning of multi-layer neuralnetworks AbstractWe complement the recent progress in thermodynamic limit analyses of mean on-line gradient descent learning dynamics in multi-layer networks by calculating theuctuations that real, �nite dimensional systems necessarily possess. Fluctuationsfrom the mean dynamics are largest at the onset of specialisation as student hiddenunit weight vectors begin to imitate speci�c teacher vectors, and increase with thedegree of symmetry of the initial conditions. In light of this, we include a symmetrybreaking term to stimulate asymmetry in the learning process, which typically alsoleads to a signi�cant decrease in training time.5.1 IntroductionThe framework of the previous chapters has been that of batch learning in which the studentis found from minimisation of the training error of many training examples. In the largeinput dimension limit, the training error approaches the average training error, and the errorsurface becomes `smooth'. That is, the thermodynamic limit of the batch learning process isdeterministic (in the limit of zero temperature). On-line learning can be thought of as a limitingcase of batch learning in which the training error consists of only a single example. This leadsto a simpli�ed dynamics of learning, often more amenable to analysis, and recent advances inthe theory of on-line learning have yielded insights into the training dynamics of multi-layerneural networks. In this chapter, we shall adopt the conventional notation adhered to in on-line learning, so that the weights parametrising the student network are successively updatedaccording to the error incurred on a single example from a stream of input/output examples,f��; � (��)g, generated by a teacher network � (�)[HP91, Ama67, HK94, BS92, BS95d, BSS95b].The analysis of the resulting weight dynamics has previously been treated by assuming thatthe input dimension is in�nite (the thermodynamic limit) such that a mean dynamics analysisis exact[SA95]. Here we present a more realistic treatment by calculating the corrections to themean dynamics, induced by �nite dimensional inputs[Sol94a, Hes94, BSS95a, BSS96].62
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Figure 5.2. The soft committee machine. Each hidden unit computes the transfer of its acti-vation. The �nal output value is given by the sum of the hidden unit outputs, y = PKm=1 g(Jm��).The Soft Committee Machine (SCM)We assume that the teacher network the student attempts to learn is a soft committee machine[BS95d]of N inputs, and M hidden units, this being a one hidden layer network with weights connect-ing each hidden to output unit set to +1, and with each hidden unit n connected to all inputunits by Bn(n = 1::M). Explicitly, for the N dimensional training input vector ��, the outputof the teacher is given by,�� = MXn=1 g(Bn ���); (5.1)where g(x) is the activation function of the hidden units, and we take g(x) = erf(x=p2), whichis an analytically convenient sigmoidal function (�gure(5.1)) . The teacher generates a streamof training examples (��; ��), with input components drawn from a normal distribution of zeromean, unit variance. The student network that attempts to learn the teacher, by �tting thetraining examples, is also a soft committee machine, but with K hidden units. For input ��,the student output is (see �gure(5.1)),



64 CHAPTER 5: ON-LINE LEARNING�(J; ��) = KXi=1 g(Ji ���); (5.2)where the student weights J = fJig(i = 1::K) are sequentially modi�ed to reduce the errorthat the student makes on an input ��,�(J; ��) = 12 (�(J; ��)� ��)2 = 12  KXi=1 g(x�i )� MXn=1 g(y�n)!2 ; (5.3)where the activations are de�ned x�i = Ji ���, and y�n = Bn ���. Gradient descent on the errorequation(5.3) results in an update of the student weight vectors,J�+1i = J�i � �N ��i ��; (5.4)where,��i = g0(x�i )24 MXn=1 g(y�n)� KXj=1 g(x�j )35 ; (5.5)and g0 is the derivative of the activation function g. The learning rate � is typically chosen to besmall, so that convergence to a minimum is guaranteed (we shall later consider only very small�). Equation (5.4) is demonstrative of the general class of on-line learning rules in which a`weight' parameter is updated according to a Markov process. As learning is a Markov process,the probability of the system being in a particular state depends on the state at the previoustime step, and on the transition matrix between states. This leads to a master equation (anintegro-di�erential equation) for the time evolution of the probability of being in a particularstate, given initial conditions. A general solution of the master equation does not exist, andgenerally, one needs to make approximations such as a small learning rate. Fortunately, for thecase we study here, the form of the update equation is simple enough for the average dynamicsto be calculated exactly, without recourse to a small learning rate. Nevertheless, in the analysisof �nite size e�ects, a small learning rate shall be assumed. Ultimately, the quantity of interestis the typical performance of the student on a randomly selected input example, given by thegeneralisation error,�g = h�(J; �)i ; (5.6)where h::i represents an average over the gaussian input distribution. As the dependenceof the error on the input enters only through the student and teacher activations � and yn,one can rewrite the probability of an input � in terms of the joint probability P (x;y) =R d��i� (xi � � �Ji)�n� (yn � ��Bn) exp (�� ��=2), which gives,P (x;y) = 1q(2�)M+KjCj exp�12(x;y)TC�1(x;y); (5.7)where C is the (M +K)� (M +K), correlation matrix,C = " Q RRT T # ; (5.8)



CHAPTER 5: ON-LINE LEARNING 65and the elements of the submatrices are the overlap parameters, Rin = Ji�Bn, Qij = Ji�Jj , andTnm = Bn�Bm(i; j = 1::K;n;m = 1::M):Using this distribution one �nds that the generalisationerror in terms of the order parameters is given by[SA95],�g(J) = 1� (Xik arcsin Qikp1 +Qiip1 +Qkk +Xnm arcsin Tnmp1 + Tnnp1 + Tmm� 2Xin arcsin Rinp1 +Qiip1 + Tnn) ; (5.9)where 1 � i; k � K sum over the student hidden units, and 1 � n;m � M . Using (5.4), wederive (stochastic) update equations,R�+1in �R�in = �N ��i y�n; (5.10)Q�+1ik �Q�ik = �N ���i x�j + ��kx�i �+ �2N2 ��i ��k�� ���: (5.11)We have therefore reduced the N dimensional weight space update equation(5.4) to a set ofK (K + 1) =2+KM coupled di�erence equations. One could iterate these stochastic di�erenceequations to �nd the order parameters at each discrete time step. However, the approach usedin [SA95, BS92, BS95d, CC95] is to take the limit of an in�nite input dimension, and formdi�erential equations for the average overlaps from these stochastic di�erence equations.1 Wetherefore average over the input distribution to obtain deterministic equations for the meanvalues of the overlap parameters, which are self-averaging in the thermodynamic limit. Inthis limit we treat �=N = � as a continuous variable and form di�erential equations for thethermodynamic overlaps, R0in; Q0ik,dR0ind� = � h�iyni ; (5.12)dQ0ikd� = � h�ixk + �kxii + �2 h�i�ki ; (5.13)where, as before, h::i represents an average over the input distribution. The expressions resultingfrom these gaussian averages are given in appendix(5.5.1). For given initial overlap conditions,the di�erential overlap equations can be integrated to �nd the mean dynamical behaviour ofa student learning a teacher with an arbitrary numbers of hidden units [SA95] �gure(5.2).Typically, �g decays rapidly to a symmetric phase in which there is near perfect symmetrybetween the hidden units. Such phases exist in learnable scenarios until su�cient exampleshave been presented to determine which student hidden unit will mimic which teacher hiddenunit. For perfectly symmetric initial conditions, such specialisation is impossible in a meandynamics analysis. The more symmetric the initial conditions are, the longer the trapping inthe symmetric phase (see �gure(5.3)).1Whilst the transformation of these di�erence equations to di�erential equations is intuitively clear for in�niteN , such that the di�erential equations and di�erential equations are equivalent, we mention that by choosingthe discrete time updates to be Poisson distributed, the resulting di�erential equation is an exact model of thediscrete dynamics[Hes94].
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haia0 4apNFigure 5.3. Schematic depiction of the small uctuations ansatz for a learning rate set to� = 1. The thermodynamic distribution of the order parameter a is given by the delta peakcentred at a0. A �nite dimensional system is characterised by a gaussian peak of variance(4a)2=N , centred at hai = a0 + a1=N:5.2 Finite size e�ectsLarge deviations from the mean dynamics can exist in the symmetric phase as a small per-turbation from symmetry can determine which student hidden unit will specialise on whichteacher hidden unit [BS95d].We can rewrite (5.10,5.11) in the forma�+1 � a� = �N (Fa + �Ga) ; (5.14)where Fa + �Ga is the update rule for a general overlap parameter a. In order to investigate�nite size e�ects, we make the following `small uctuations' ansaetze[Hes94] for the deviationsof the update rules Fa (the same form is made for Ga) and overlap parameters a from theirthermodynamic values,2Fa = F 0a +4Fa+ 1N F 1a ; a = a0 +r �N4a+ �N a1; (5.15)where h4Fai = h4ai = 0. The update rule ansatz is motivated by observing that the activa-tions have variance O (1) which, iterated through (5.14), yield overlap variances of O (N�1).Terms of the form, 4a represent dynamic corrections that arise due to the random examples.Terms like a1 represent static corrections such that the mean of the overlap parameter a isgiven by a0 + �a1=N - the thermodynamic average plus a correction. In order to simplify theanalysis, we assume a small learning rate, �, so that the thermodynamic overlaps are governedby, da0d~� = F 0a ; (5.16)where F 0a is the update rule Fa averaged over the input distribution, and the rescaled learningrate is given by~� = ��: (5.17)2If the order parameter represented by c is Q11, then c0 = Q011, and 4c =4Q11.



CHAPTER 5: ON-LINE LEARNING 67Substituting (5.15) in (5.14) and averaging over the input distribution, we derive a set of coupleddi�erential equations for the (scaled) covariances h4a4bi, and static corrections a1,dh4a4bid~� =Xc h4a4ci @F 0b@c0 +Xc h4b4ci @F 0a@c0 + h4Fa4Fbi (5.18)12 d2a0d~�2 + da1d~� =Xb b1@F 0a@b0 + 12Xbc h4b4ci @2F 0a@b0@c0 +G1a: (5.19)Summations are over all overlap parameters, fQij; Rinji; j = 1::K; n = 1::Mg. The static cor-rections G1a to the update rules are calculated analytically in the appendix(5.5.2). The elementsh4Fa4Fbi are found explicitly by calculating the covariance of the update rules Fa, and Fb(see section(5.5.3)). 3 From this di�erential equation for the density, we obtain (5.18).Initially, the uctuations h4Fa4Fbi are set to zero, and equations (5.16,5.18) are thenintegrated to �nd the evolution of the covariances, cov(a; b) = (�=N) h4a4bi, and the correc-tions to the thermodynamic average values, (�=N)a1. The average �nite size correction to thegeneralisation error is given by�g = �0g + �N �1g; (5.20)where,�1g =Xa a1@e0g@a + 12Xab h4a4bi @2�0g@a0@b0 : (5.21)These results enable the calculation of �nite size e�ects for an arbitrary teacher/student learningscenario. For demonstration, we calculate the �nite size e�ects for a student with two hiddenunits learning a teacher with one hidden unit. In this over-realisable case, one of the studenthidden units eventually specialises on the single teacher hidden unit, while the other studenthidden unit decays to zero. In �gure(5.2), we plot the thermodynamic limit generalisation erroralongside the O (N�1) correction. In �gure(5.2a) there is no signi�cant symmetric phase, andthe �nite size corrections (�gure(5.2b)) are small. For a �nite size correction of less than 10%, wewould require an input dimension of around N>25�. For the more symmetric initial conditions(�gure(5.3a)) there is a very de�nite symmetric phase, for which a �nite size correction of lessthan 10% (�gure(5.3b)) would require an input dimension of around N>50; 000�. As the initialconditions approach perfect symmetry, the �nite size e�ects diverge, and the mean dynamicaltheory becomes inexact. Using the covariances, we can analyse the way in which the studentbreaks out of the symmetric phase by specialising its hidden units. For the isotropic teacherscenario Tnm = �nm, and M = K = 2, learning proceeds such that one can approximate,Q22 = Q11; R22 = R11. By analysing the eigenvalues of the covariance matrix h4a4bi, wefound that there is a sharply de�ned principal direction, the components of which we show in�gure(5.4). Initially, all components of the principal direction are similarly correlated, whichcorresponds to the symmetric region. Then, around ~� = 20, as the symmetry breaks, R11 and3The derivation of the above equations for the uctuations is consistent with the Van Kampen expansionapproach, whereby the Kramers-Moyal representation of the master equation is expanded under the `smalluctuation' ansatz, yielding a partial di�erential equation for the uctuation probability density [Hes94].
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�1g�0gFigure 5.2. Figure 5.3.Figure 5.2. Two student hidden units, one teacher hidden unit. Non zero initial parameters:Q11 = 0:2; Q22 = R11 = 0:1. (a) Thermodynamic generalisation error, �0g. (b) O (N�1) correc-tion to the generalisation error , �1g. Simulation results for N = 10; � = 0:1 and (half standarddeviation) error bars are drawn.Figure 5.3. Two student hidden units, one teacher hidden unit. Initially, Q11 = 0:1, withall other parameters set to zero. (a) Thermodynamic generalisation error �0g. (b) O (N�1)correction to the generalisation error, �1g.R21 become maximally anti-correlated, whilst there is minimal correlation between the Q11 andQ12 components. This corresponds well with predictions from perturbation analysis [SA95].Essentially, the symmetry breaking is characterised by a specialisation process in which eachstudent vector increases its overlap with one particular teacher weight, whilst decreasing itsoverlap with other teacher weights. After the specialisation has occurred, there is a growthin the anti-correlation between the student length and its overlap with other students. Theasymptotic values of these correlations are in agreement with the convergence �xed point,R2 = Q = 1.5.3 Breaking the symmetryIn light of possible prolonged symmetric phases, we explicitly break the symmetry of the studenthidden units by imposing an ordering on the student lengths, Q11 � Q22 � ::: � QKK. Thisconstraint is enforced in a `soft' manner by including an extra term to (5.3),�y = 12 K�1Xj=1 h (Qj+1j+1 �Qjj) ; (5.22)where h(x) approximates the step function,h(x) = 12  1 + erf  �p2x!! : (5.23)This leads to an easily implementable modi�cation involving the addition of a gaussian termin the student weight lengths to the weight update rule (cf. (5.4)). In �gure(5.5), we show
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Figure 5.4. Figure 5.5.Figure 5.4. (a) The normalised components of the principal eigenvector for the isotropicteacher. M = K = 2, (Q22 = Q11; R22 = R11). Non zero initial parameters Q11 = 0:2,Q22 = 0:1, R11 = 0:001, R22 = 0:001.Figure 5.5. Two student hidden units, one teacher hidden unit. The initial conditions areas in �gure(5.3). (a) Thermodynamic generalisation error, �0g . (b) O (N�1) correction to thegeneralisation error, �1g.the overlap parameters and their uctuations for �=10, K = 2;M = 1. This graph is to becompared to �gure(5.3) for which the initial conditions are the same. There is now no collapseto an initial symmetric phase from which the student will eventually specialise. Also, the initialconvergence to the optimal values is much faster. As there is essentially no symmetric phase,the �nite size corrections are much reduced. They are now largest around the initial value of~� where the overlap parameters are very symmetric, becoming rapidly smaller due to the largedriving force away from this near-symmetric region. For the case in which the teacher weightsare equal, the constraint (5.22) will prevent the student from converging optimally. In lightof this, we need to adapt the constraint as learning proceeds. A naive scheme is to adapt thesteepness, �, such that it is inversely proportional to the average of the gradients Qii, whichdecreases as the dynamics converge asymptotically.5.4 SummaryIn this work we have complemented the recent signi�cant advances in the theory of multi-layernetworks by �nding the conditions under which thermodynamic limit calculations in on-linelearning can be expected to be representative of real learning scenarios. We provided, also,more detailed insights into the specialisation process out of the symmetric phase. In addition,we found that by breaking the internal symmetries of the network, we were able to reduce both�nite size e�ects and training time. We conjecture that such symmetry breaking is potentiallyof great bene�t in the practical �eld of neural network training.



70 CHAPTER 5: ON-LINE LEARNING5.5 Appendix: On-line learningIn the following appendices, we outline the derivation of the update equations in the thermo-dynamic limit, and demonstrate how �nite size corrections to these equations, both static anddynamic, can be obtained.5.5.1 Appendix: Thermodynamic equationsFrom (5.13) and (5.12), we require the averages of two types of multivariate gaussian integralsover the distribution P (x;y) given in (5.7). The terms which are proportional to � involve thethree dimensional integral,I3 � hg0(u)vg(w)i ; (5.24)where u is one of the components of x while u and w can be components of either x or y.Similarly, for the terms proportional to �2, we need to evaluate integrals of the form,I4 � hg0(u)g0(v)g(w)g(z)i ; (5.25)where u and v are components of x while w and z can be components of either x or y. Alsorequired are the integrals of the above form given for I3 and I4 when two of the argumentsare equal. However, this simply means that those two arguments are fully correlated, and theresulting integral is found by modifying the correlation matrix accordingly. The full equationsfor the dynamics of the thermodynamic overlaps is given by,dRind~� = �8<:Xm I3(i; n;m)�Xj I3(i; n; j)9=; ; (5.26)dQikd~� = �8<:Xm I3(i; k;m)�Xj I3(i; k; j)9=;+ �8<:Xm I3(k; i;m)�Xj I3(k; i; j)9=;+ �28<:Xn;m I4(i; k; n;m)� 2Xj;n I4(i; k; j; n) +Xj;l I4(i; k; j; l)9=; ; (5.27)The function I3(i; n; j) is de�ned as the three dimensional gaussian average, I3(i; n; j) �hg0(xi)yng(xj)i, where the covariance matrix is given by the projection of the full covariancematrix (5.8) onto the subspace spanned by xi; yn, and xj:C3 = 0B@ Qii Rin QijRin Tnn RjnQij Rjn Qjj 1CA (5.28)The value of I3 is then given by evaluating,I3 = 2� 1p�3 C23 (1 + C11)� C12C131 + C11 ; (5.29)where, in terms of the projection onto the four dimensional covariance matrix we have de�ned,�3 = (1 + C11)(1 + C33)� C213 (5.30)



CHAPTER 5: ON-LINE LEARNING 71The integral I4 is found similarly by projecting the full covariance matrix onto the subspacespanned by its four arguments, for which,I4 = 4�2 1p�4 arcsin �0p�1�2! ; (5.31)where�4 = (1 + C11)(1 + C22)� C212�0 = �4C34 � C23C24(1 + C11) �C13C14(1 + C22) + C12C13C24 + C12C14C23�1 = �4(1 + C33)� C223(1 + C11)�C213(1 + C22) + 2C12C13C23�2 = �4(1 + C44)� C224(1 + C11)�C214(1 + C22) + 2C12C14C24 (5.32)The resulting dynamical equations enable the average case dynamics of soft-committee machinelearning to be found for arbitrary student and teacher architectures.5.5.2 Appendix: The static correction to the update ruleWe turn our attention to the term in (5.11),1N h�i�k� ��i = h�i�ki+O �N�1� ; (5.33)where we are interested in calculating the order N�1 contribution. The thermodynamic termh�i�ki has already been found, and is given as the factor of the �2 term in (5.27). Each studentweight vector gives the constraint xi = Ji ��, and similarly, each teacher weight vector givesthe constraint, yn = Bn ��. As the contribution of the student and teacher weight vectors onlyoccur through these K +M scalar products with the input vector, we can consider the weightvectors to be K + M dimensional, setting the remaining N � K � M components to zero.This means that we need also only consider the �rst K +M components of the input vector,�̂ = (�1; ::; �K+M). We write the constraints in the matrix form,0BBBBBBBB@ x1:xKy1:yM 1CCCCCCCCA = 0BBBBBBBB@ J1T:JKTB1T:BMT 1CCCCCCCCA � �̂ (5.34)Inverting the above equation, we can write�̂2 = xT �WWT��1 x; (5.35)where W is the matrix of student/teacher weight vector components given in (5.34). Theprefactor of the order N�1 correction to the thermodynamic value of (5.33) is then given by,��i�kxT �WWT��1 x� � (K +M ) h�i�ki : (5.36)



72 CHAPTER 5: ON-LINE LEARNINGAs WWT is just the covariance matrix (5.8), after some algebra, we can write the staticcorrection as,�2 @@� D�i�k(��1C)E�=1; (5.37)where h�i�k(��1C)i is the value of the expression h�i�ki calculated using the modi�ed covariancematrix ��1C.5.5.3 Appendix: Covariance of the update rulesIn section(5.2) we mentioned that one needs to �nd the covariance of the update rules explicitlyby calculation. Ignoring terms higher than �2 we note that in order to calculate the covarianceof two update rules, we need only �nd the average of the general quantity h�i�kx�x�i where x�and x� stand for arbitrary activations. The method of calculating these is straightforward: weknow how to �nd h�i�ki (this is just I4), and the gaussian measure P (x;y) is the exponentialof a quadratic form containing all the possible x�x�. Therefore, by adding to the each elementof the inverse of the full covariance matrix (5.8) the parameter �, and by di�erentiating theaverage h�i�ki with this modi�ed covariance matrix, we `pull down' the factor x�x�:h�i�kx�x�i = � @@� Z dxdy(2�)M+KjCj12 exp��12(x;y)T �C�1 + �� (x;y)� �i�k�=0 (5.38)where the matrix � has zero elements, except where those elements contribute to the termx�x�, which then contain � (the diagonal elements contain 2�). After a few lines of algebra,we �nd,h�i�kx�x�i = � @@� D�i�k �Ĉ(4)�E�=0 + [C]�;� h�i�ki ; (5.39)where Ĉ(4) is the projection onto the four dimensional subspace of the modi�ed full covariancematrix (C�1 + �)�1.



Chapter 6Does extra knowledge necessarilyimprove generalisation?AbstractThe generalisation error is a widely used performance measure employed in theanalysis of adaptive learning systems. This measure is generally critically dependenton the knowledge that the system is given about the problem it is trying to learn. Weexamine to what extent it is necessarily the case that an increase in the knowledgethat the system has about the problem will reduce the generalisation error. Usingthe standard de�nition of the generalisation error, we present simple cases for whichthe intuitive idea of `reducivity' - that more knowledge will improve generalisation -does not hold. Under a simple approximation, however, we �nd conditions to satisfy`reducivity'. Finally, we calculate the e�ect on the generalisation error for weightsconstrained to a particular sign. This particular restriction results in a signi�cantimprovement in generalisation performance.6.1 IntroductionThe employment of a priori knowledge in designing a learning machine is crucial to the success ofthe machines ability to generalise well. Given that knowledge a�ects the generalisation ability,our aim here is to address the following question: does more knowledge necessarily improvegeneralisation? Intuitively, the answer to this question would seem to be `yes', depending, ofcourse, on the de�nitions of knowledge and generalisation. Nevertheless, this question phrases apossible desiderata, which itself can a�ect the design of learning machines. Again, we formulatethe problem in the language of learning from examples[Bar96, BS95a]A training set of input/output pairs is generated by some teacher function, and the task is to�nd a student function whose outputs match closely the outputs of the teacher function on thetraining set. Constraints on the set of possible teacher functions that generate the training setare critical in narrowing down the search for a good student. Indeed, without any constraints itis an impossible task to �nd a student that generalises to unseen examples (see the discussionin chapter(1)). A priori assumptions are therefore made as to the form of the teacher, that is,73



74 CHAPTER 6: EXTRA KNOWLEDGE AND GENERALISATIONrestrictions are imposed on the space of teacher functions. Throughout this chapter we assumethat the spaces of the teacher and student functions are the same. The learning problem isthen realisable in the sense that amongst the student space, there is a student that will matchperfectly the output of the teacher on all possible inputs. We denote the teacher/student spaceof functions by F (	), and a particular mapping as y = f(x; �) for f 2 F (	) and � 2 	, wherethe output is denoted by y, and the input by x. A particular mapping that a function performsis represented by the point � in the parameter space 	. We assume that a single teacher �0generates the noise free set of training data L = fx�; f(x�; �0)g, where � indexes each elementof the training set L. In the learning problem, one attempts to �nd a student f(x; �) thatmatches the teacher f(x; �0) on the training set.1 To measure the extent to which the studenthas learnt the teacher, an error measure �g(�; �0; x) is de�ned. The set of admissible students,represented by the parameter space � 2 	, is determined by the requirement of minimisingthe error measure on all examples in the training set, and satisfying a priori constraints onthe student. Hence � expresses all the information that the student has about the teacher.2In section(6.2) we review briey the de�nition of the generalisation error, before formulatingthe original question more rigourously. We subsequently consider speci�c cases, beginning withthe simplest possible - a one dimensional version space. In section(6.3), we analyse higherdimensions, using the linear perceptron as the function space F (	) and present results for signconstrained weights. In section(6.4) we conclude with a summary of the main results.6.2 General Theory6.2.1 The Generalisation ErrorTo measure how well the student performs on the training set, the training energy is formed,Etr(wjP) / Pp�=1 �(�; �0; x�). The student is found by minimising the training error with re-spect to the parameter �, whilst also adhering to additional a priori constraints. This is typicallyachieved by stochastic gradient descent, resulting in a post training distribution of students,P (�jL) / P pri(w) exp(�Etr(wjP)=T ) where the temperature, T , controls the randomness ofthe stochastic algorithm (see e.g., [WRB93]). P pri(w) is the a priori constraint on the student.In the limit of zero T , the distribution of students becomes uniform over those that have zerotraining error and satisfy the a priori constraints; this space of student functions is known asthe version space, which we denote by �.3 In section(6.3.3), we present results for non-zero T ,but for the rest of this chapter, zero T is implied. To �nd the expected error that a studentmakes on a random example input, termed the generalisation function, we average the errorover the input distribution, P (x), giving �f(�; �0) = R dxP (x)�g(�; �0; x).4 Hence, given theteacher, �f(�; �0) measures the expected error that a student � makes, given that the teacheris �0 and that the student is �. As the student does not know the teacher, we assume that �1Extra regularisation conditions on the student, such as weight decay, will not be considered here.2We briey note that the assumption that the set of admissible functions is all that is known about theteacher function is found also in the PAC approach (see e.g., [Hau94] ); we addresses, however, somewhatdi�erent issues.3The student distribution we consider is known also as exhaustive learning (see e.g., [SSS90]).4An extension to this framework is to consider the o�-training-set error (see e.g., [Wol92]) in which theexpected error of the student is calculated for test examples not included in the training set.



CHAPTER 6: EXTRA KNOWLEDGE AND GENERALISATION 75expresses all the information that the student has about the teacher. The generalisation error isthen de�ned as the expected performance of a random student from �, given a random teacherfrom �,�g(�) = D�f(�; �0)E�2�;�02� ; (6.1)where h::i�02� and h::i�2� represent averages over the version space �.5 We write �g(�) toemphasize that the generalisation error is a function of the version space.Intuitively, one expects that any further restrictions or a priori assumptions, resulting in asmaller version space, must necessarily reduce the generalisation error. Furthermore, an un-derstanding of the relation between the geometry of the version space and the generalisationerror is desirable in light of possible algorithms that are based upon the geometry of the versionspace (e.g., some forms of query learning which perform version space bisection). To formulatethis more precisely, we make the following de�nition.De�nitionF (�0) is an `error reduced' function space of F (�) if �g(�0) < �g(�) for �0 � �, and we saythat `reducivity' holds.In this chapter we examine which subsets �0 of � are error reducing, according to thepreceding de�nition. We mention briey that one can also consider the generalisation errorfor a �xed teacher, �g(�0;�) = h�f(�; �0)i�2�, and check reducivity with the teacher assumedknown. We show in a later section, however, that the main results also hold for �g(�0;�), andconcentrate accordingly on �g(�).6.2.2 One Dimensional Version SpaceWe begin with the simplest possible case of a one dimensional version space, assuming thatit can be paramaterized by a connected interval on the real line, which we write, withoutloss of generality, as [0,a]. Furthermore, we assume that the generalisation function can bewritten as, �f (�; �0) = dist(j � � �0j), for some function dist(�).6 �g(�) is then simply �g(a) =R a0 d�P (�) R a0 d�0P (�0)dist(j � � �0 j), where P (�) is the parameter space distribution. For auniform distribution, P (�) = P (�0) = 1=a, and we can write,�g(a) = 2a2 Z a0 dy Z y0 dxdist(x);for which the requirement of reducivity i.e., d�g(a)da > 0 becomesZ a0 dxdist(x) > 2a Z a0 dy Z y0 dxdist(x);5In this joint average of �f (�; �0) over the version space, we assume independence of the student and theteacher: As the training set is �xed, we write P (�0; �jL) = P (�j�0;L)P (�0jL). With the assumptionP (�j�0;L) =P (�jL), we have that � and �0 are independently distributed over �.6In this assumption as to the form of the generalisation function we have in mind a larger class of er-ror measures than the square error measure, �(�; �0; x) = 1=2 �f(x; �) � f(x; �0)�2, for which the assumption�f (�; �0) = dist(j � � �0j) would hold only for the linear function f(x; �) = x� and g(s) = s2.
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Figure 6.1. A sphere of radius p3. The shaded region represents the version space, � =f� 2 [0:4; 0:6]; � 2 [0; 2�]g. Making � smaller by pushing the inner boundary towards the outerboundary does not result in a reduction in generalisation error.This is equivalent toahdistia � 2a Z a0 dxxhdistix > 0;where hdistix is the average value of dist(�) over the interval [0; x]. For a monotonically increas-ing function, hdistia > hdistix (a > x), and thus reducivity holds for all monotonic increasingfunctions de�ned on the real line.Unfortunately, for higher dimensional cases, it is not generally possible to separate thedependence of the generalisation function into a summation over the individual componentsof the parameter vector, i.e., �f (�; �0) 6= Pni dist(j �i � �0i j), where n is the dimension ofthe parameterisation, and more complicated e�ects can appear. In the following sections weconcentrate on the linear perceptron, beginning with an explicit example of a two dimensionalversion space which violates the error reduction property.6.3 The Linear PerceptronFor the noise free linear perceptron, the inputs are represented byN dimensional real vectors,x 2 <N , and the output is a single valued real variable, y 2 < (see e.g., [HP91]). The inputsx are assumed drawn independently and identically from a zero mean, unit covariance matrixGaussian distribution. The teacher outputs are given by f(x;w0) = w0 �x=pN . Similarly,the student outputs are f(x;w) = w�x=pN . We also impose the additional a priori sphericalconstraint on both the student and teacher, w �w = w0 �w0 = N . The error measure istaken to be proportional to the squared di�erence between the teacher and student outputs,�(w;w0;x) = (w�x�w0�x)2=2N . We proceed to analyse this model for a speci�c version space.6.3.1 A Two Dimensional Version SpaceWe look now at the three dimensional linear perceptron. A point on the surface of a threedimensional sphere of radius r = p3 is given by the ordered pair (�; �), which represents theusual spherical polar coordinate parameterisation.77w1 = r cos(�) sin(�); w2 = r sin(�) sin(�); w3 = r cos(�) where, r = p3 for the spherical normalisationcondition.



CHAPTER 6: EXTRA KNOWLEDGE AND GENERALISATION 77Assuming a zero mean, unit covariance matrix gaussian input distribution, the generalisationfunction is �f(w;w0) = 1�w�w0=N . We write the scalar product in this expression in sphericalcoordinates and average over the version space given by � = f(�; �); � 2 [a; b]; � 2 [c; d]g. Astraightforward calculation gives�g(�) = 1� 1(d� c)2 �� (cos(d)� cos(c))2 + (sin(d)� sin(c))2� ;where � = 2 (1� cos(b� a)) =(b � a)2. To violate reducivity we look for regions such thatwhen we reduce the width of, for example, the interval [c; d], the generalisation error increases.Without loss of generality, then, we search for regions for which @�g(�)=@c > 0, and we plotone such region in �gure(6.1). To �nd such a region explicitly, we look for the boundary atwhich @�g(�)=@c = 0, and de�ne �(c; d) = �(@�g(�)=@c = 0), which is given by the equation,� = sin c � sin dcos d � cos c ( sin c� sin d+ (d � c) cos ccos d� cos c+ (d � c) sin c) :In �gure(6.2)(a), we show how this relates to the reducivity. In region (1), � varies between0 and 1, and @�g(�)=@c can be of either sign, depending on the value of �; thus in region(1), reducivity depends critically on � = b � a. For � > �, @�g(�)=@c < 0, and for � < �,@�g(�)=@c > 0. In both regions (2) and (3) � 62 [0; 1] and, as � 2 [0; 1] (�gure(6.2)(b)), thesign of @�g(�)=@c is �xed, independent of [a; b]. In fact, in regions (2) and (3), reducivity isguaranteed. In region (2), as � decreases (i.e., [a,b] shrinks), @�g(�)=@c becomes increasinglynegative, whereas in region (3), for decreasing �, @�g(�)=@c becomes less negative. The bound-ary between regions (2) and (3) is given by the solution of cos d � cos c + (d � c) sin c = 0.Despite the simplicity of the example, the behaviour of reducivity on the sphere is non trivial.At this point, the reader may well conjecture that reducivity would be guaranteed for convexregions � and �0 � �. (In general, a region is convex if the geodesic connecting any two pointslies wholly within the region itself). Perhaps somewhat surprisingly, we demonstrate in thenext section that convexity is not a su�cient condition for reducivity.6.3.2 Euclidean Approximation To The Version SpaceFor simplicity, we concentrate on version spaces small enough such that the region can beconsidered Euclidean. For the linear perceptron described above, this corresponds to a regionsmall enough such that the curved surface of the hypersphere appears `at'. By writing w =c+w, and w0 = c+w0, where c lies in the space �, we write the generalisation error as�g( ~�) = 12N ��w �w0�2�w;w02~� ;where ~� is the approximately at region on the sphere. As w and w0 are uncorrelated, thiscan be written in the form,�g( ~�) = 1N �Dw2E ~w2~� � hwi2~w2~�� :We now consider an in�nitesimal decrease in the space ~�0 = ~���. For a uniform distributionover the space, and ignoring terms in �2, we can write, with a slight abuse of notation,�g( ~�0)� �g( ~�) � �N ~� �Dw2E ~w2~� � hw2iw2�� ; (6.2)
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1.0 (b)��Figure 6.2. The version space is the region on the sphere given by � =f(�; �); � 2 [a; b]; � 2 [c; d]g.(a) in (1) reducivity depends on the region [a,b]. In (2) and (3)reducivity is guaranteed (@�g(�)=@c < 0). In (2), as [a; b] shrinks, @�g(�)=@c becomes morenegative, and vice versa in region (3). The region c > d is unphysical. (b) The function �versus � = b� a. hFigure 6.3. Counter example used to show that convexity is not a su�cient condition forreducivity. We take the hypotenuse to have length 2. The cross marks the position of theteacher for the example of reducivity violation for a given teacher.where � and ~� are the surface contents of � and ~� respectively. In equation(6.2), we haveassumed, without loss of generality, that hwi ~w2~� = 0, i.e., that the origin, c, is taken to be thecentroid of ~�. Reducivity holds then for the conditionhw2iw2� > Dw2E ~w2~� : (6.3)Note that this is a general condition, holding for any dimension. Using this, we can showthat convexity (for the linear perceptron at least) is not a su�cient condition for reducivity tohold. In order to do this, we observe that equation(6.3) will not be satis�ed for regions, �,su�ciently close to the centroid, since the left hand side of equation(6.3) will be small. Thisobservation leads to the following two dimensional counter example. Let the convex region ~�be the larger triangle as shown on �gure(6.3). By explicit calculation, one �nds �g(tri)=4/9for the marked angle  = �=2. We now take ~�0, a convex subset of ~�, to be the trapezium asshown, for which, in the limit h! 0, �g(trap)=2/3. Hence �g( ~�0) > �g( ~�), demonstrating theinsu�ciency of convexity as a condition for reducivity.At this point we refer back to section(6.2.1) and note that we can readily �nd an exampleof a �xed teacher for which an increase in the students knowledge results in an increase in



CHAPTER 6: EXTRA KNOWLEDGE AND GENERALISATION 79�g(�0;�). In the above trapezium/triangle example, consider a very at triangle, for which tends to �. We take the teacher to be positioned at the cross marked in �gure(6.3), for which,�g(�; tri) = 1=6. Taking again, ~�0 to be the in�nitely thin trapezium, we have �g(�; trap) =1=3, which is larger than �g(�; tri).The geometry of the above situation may appear somewhat pathological. Such non-reducivesituations can, however, be constructed for essentially any version space �. In passing, wemention another example to help clarify the situation.For a two dimensional ellipse with minor and major axes a and b respectively, one readily�nds hw2iellipse = (a2+b2)=4. We see then that for a circle (b = a), all in�nitesimal enlargementsof the circle are `expansions' in the sense that they satisfy equation(6.3). Without loss ofgenerality, let b > a such that for an ellipse, we can violate equation(6.3) by choosing the pointon the perimeter about which we wish to expand to be close to the centroid (hw2i� = a2) andb > p3a. We note that this violation of reducivity occurs for an eccentricity (b=a) that is notmuch larger than unity. In general, such non-expansive enlargements can occur for the followingreason: the centroid represents the best-guess student (within the euclidean approximation);adding space as close as possible to this student increases the weight on the distribution ofweight space close to this best-guess, decreasing �g.By examining equation(6.2), we note that the greatest decrease in generalisation error is tobe found for a region � furthest away from the centroid of the set. This is in line with theintuitive notion that we can improve generalisation most by increasing our knowledge aboutthe teacher in those regions that contribute most to the generalisation error. One way to obtainthis knowledge is to choose an input x such that the reply from the teacher yields informationabout the teacher in the desired region; this is the concept of query learning (see e.g., [Sol94b]).However, we have shown here that there is no general realtionship between the volume of theversion space (entropy) and the generalistion error, so that query algorithms that reduce thevolume of the version space cannot be guaranteed to reduce the generalisation error.The previous arguments have been aimed at in�nitesimal, local alterations to ~�, and weconsider briey an example of global enlargement. We envisage situations in which the bound-ary of ~� can be expressed in a spherical coordinate system, r = r(�; �; ::), which is the casefor convex regions. The enlarged version space ~�0 can then be de�ned by a new boundary,r0 = �(�; �; ::)r(�; �; ::), for some �(�; �; ::) > 1. Assuming we can bound � by some extremumvalues, �min < �(�; �; ::) < �max, it is then a simple matter to form an inequality such that thegeneralisation error of the larger version space is greater than the generalisation error of thesmaller. For an enlargement �(�; �; ::) which preserves the origin as the centroid of both � and~�0 a two dimensional case it is �2min > �max, a su�cient, but by no means necessary conditionfor reducivity.6.3.3 Sign Constrained WeightsIn this section, our motivation is twofold. Firstly, up till now we have considered, for speci�cexamples, low dimensional version spaces; here we calculate the generalisation error for anin�nitely large perceptron under a new weight constraint. Secondly, the performance of aperceptron with sign constrained weights is of some interest in itself. The constraint we examinecorresponds to predetermining the sign of each weight: sgn(wi) = �i, where each �i (i=1..N) ispre-set to �1. This constraint has been studied previously in the context of pattern storage forthe Hop�eld network, for which it was found that the sign-constrained capacity was half that
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T = 0T = 0:1T = 0T = 0:1Figure 6.4. Comparison of the generalisation error for the spherical constraint and the spher-ical sign-constraint. The curves beginning at 1 for � = 0 are the spherical constraint; thesign-constraint law curves begin at 1-p2=� for �=0.of the unconstrained case[AWC89].By writing the output of the perceptron as y = Pxisgn(wi)jwij, where j::j is the modulus,and transforming the inputs according to, x0i = �ixi, the output can be written y = Px0ijwij. Asthe input distribution is Gaussian and hence symmetric, the analysis of the sign-constraint isequivalent to that of constraining the weights to be positive. In addition, we retain the sphericalconstraint. The method of calculation is that of statistical mechanics, following closely theexposition given in appendix(A). This will enable us to obtain results for any temperature, andwithout recourse to the euclidean approximation employed is section(3.2). As is required instatistical mechanics calculations, we de�ne the limit of the dimension of the perceptron suchthat the number of training patterns is proportional to the dimension of the perceptron, i.e.,P = �N .A sketch of the calculation is given in appendix(6.5); as the calculation follows so closelythat given by [SST92], we refer the reader to that work, and point out only the major di�erencesbetween our and their analysis. We note however, that constraining the signs of the weightsbreaks the isotropy of weight space under the usual spherical constraint alone. This will leavethe generalisation error as a function of the speci�c teacher chosen, which we necessarily averageover the version space according to (6.1). In an isotropic weight space, such an average is notactually required as the generalisation error is independent of the speci�c teacher chosen.For the spherical constraint alone, the dimension of the version space (T = 0) reduceslinearly with �, resulting in a linear reduction of the generalisation error, �g = 1 � �, � � 1.For the sign-constraint, however, boundary e�ects result in a small deviation from linearity(�gure(6.4)). For T = 0 and � � 1, the subspace collapses to a single point for both thesign-constrained and spherical perceptron, and �g = 0. Non zero T results in an increase ingeneralisation errors, a�ecting both the sign-constrained and spherical perceptron similarly,such that for a given (�; T ); �signg < �sphg . For � = 0, the perceptron has no informationabout the teacher other than that imposed by the a priori constraint, and we have �sphg = 1,and �signg = 1 � p2=�. The Gibbs learning algorithm itself can thus be regarded to be error



CHAPTER 6: EXTRA KNOWLEDGE AND GENERALISATION 81reducing; the extra knowledge contained in the training examples as � increases leads, via theGibbs learning algorithm, to a reduction in generalisation error.6.4 SummaryWe have examined the e�ect of constraints on the generalisation error of simple learning sys-tems, concentrating in particular on the linear perceptron. Assuming that both the student andteacher lie in the version space of constraints, we studied what e�ect increasing the constraint,by decreasing the version space, has on the generalisation error. For a connected one dimen-sional case, in which we assumed that the error function is simply a monotonically increasingfunction of the separation between the student and teacher, we showed that decreasing theversion space necessarily decreases the generalisation error. This however, is not the case forhigher dimensional version spaces, and we presented an explicit example. Furthermore, con-vexity of the version spaces is not a su�cient condition for the smaller version space to havelower generalisation error. In general it is a non-trivial problem to predict whether reducingthe version space will reduce the generalisation error, and each case must be treated explicitly.For sign-constrained weights, we carried out a statistical mechanics calculation for the general-isation error, �nding that an increase in constraints over the normal spherical constraint doeslead to a reduction in generalisation error. The above analysis concentrated on the situationin which we are able to choose the version space at will. In the situation of learning fromexamples, after incorporation of a priori knowledge, the version space is subsequently modi�edby a learning algorithm, to which the concept of reducivity can be applied, opening an area offurther research.6.5 Appendix: Replica method for sign-constrained weightsThe calculation for the linear perceptron with sign-constrained weights follows closely thatpresented in appendix(A) and rather than entering into great detail, we sketch here the maindi�erences between the two calculations.The free energy is separated into two terms, F = G0 � �Gr, where only the term G0 isa�ected by the constraints upon the weights. Hence we need calculate only the term G0 forthe new weight distribution. As the new weight distribution arising from the sign constraintretains connectedness, we envisage no problems with the replica symmetry ansatz, and expectthe results to be exact. Note that throughout, we use the same notation for the order parametersas those in [SST92], namely that q is the normalised overlap between two replicas, R is theoverlap between the student and the teacher. q̂ and R̂ are conjugate order parameters arisingfrom the de�nition of the order parameters q and R. We write G0 as,G0 = �12(1 � q)q̂�RR̂ + 1N I(q̂; R̂;w0);whereI = Z 1�1Dz ln Z 1�1 d�(w) exp[w � (zqq̂ +w0R̂)]:



82 CHAPTER 6: EXTRA KNOWLEDGE AND GENERALISATIONDz is the N dimensional gaussian measure, (2�)�N=2 exp(�z�z=2)dz. The weight vector distri-bution for the sign-constraint is given byP (w) = 2NV �(w�w �N)�(w)d(w);and the corresponding measure is d�(w) = P (w)d(w), where V is the surface content of anN -sphere, and �(�) is the theta function. Introducing the integral representation for the deltafunction (which gives rise to the parameter �) and performing the saddle point approximation,we obtain,I = const:+N �� + 14� �q̂ + R̂2�+ 12 ln� �4���+ NXi=1 Z 1�1Dz ln erfc(�ui);whereui = zipq̂ + w0i R̂p4� :By comparison with the results for the spherical perceptron, we observe that we can writeGsign0 = Gsph0 + NXi=1 Ji ��; q̂; R̂;w0� ;whereJi = 12�s4�̂q Z 1�1 du exp � 12q̂ �4�u2 � 4p�R̂w0i u+ (w0i )2�! ln erfc(�u);and Gsph0 is the contribution to the free energy given by the normal spherical constraint, givenin [SST92].There remains an explicit dependence on the teacher weight w0 and we thus average G0over possible teachers, having the same measure as the students. This results �nally in theexpression for the contribution to the free energy,Gsign0 = Gsph0 +s�22� Z 1�1 du exp ���2u2� erfc u�R̂pq̂ ! ln erfc(u);where� = vuut � + q̂q̂ + R̂2 :For completeness, we state the further results necessary to �nd the free energy, namelyGsph0 = �� 12(1� q)q̂ �RR̂12qq̂ �RR̂ � 12 ln(4�) + R̂2 + q̂4� ;and Gr = 12 ln[1 + �(1� q)] + �(q� 2R + 1)2(1 + �(1� q)):Now that the free energy has been found, the order parameters are set to those values thatactually extremise the free energy. The generalisation error is then found from the relation,�g = 1 � R. Unfortunately, in all but the simplest of limiting cases, the solution to thisextremisation problem needs to be solved numerically.



Chapter 7ConclusionIn this thesis we have conducted an investigation of �nite size corrections to in�nite system sizecalculations generally employed by physicists in the analysis of neural networks.In chapters (2) and (3) we studied one of the simplest possible neural network models, thelinear perceptron. In chapter(2) we concentrated on exact analytical results for the variance ofthe test error for a spherically constrained student learning a spherically constrained teacherwhen there is no noise on the examples. Intuitively, we expect that the variance of the errorsscales like the inverse of the system size, which we found to be true. As an application of theseresults, we showed how one can address the issue of an optimal test set size, in which one isconcerned with minimising the test error, yet wishes that the resulting error remains close to theaverage test error. For a large system size N , we found that the optimal test set size scales withN2=3. We also conducted an in depth analysis of the performance of di�erent cross-validationschemes when they are used to estimate the generalisation error. This is one of few analysesthat are able to tackle cross-validation without recourse to the limit of a great deal of data.In particular, three di�erent schemes, corresponding to di�erent overlaps of the test sets fortwo cross-validation students were analysed. These correspond to choosing the cross-validationsets at random, to minimise their mutual overlap, and to minimise in a blockwise fashion theirmutual overlap. The optimal scheme, in the sense that the variance of the cross-validationestimate of the generalisation error is the lowest, is given by the scheme which minimises themutual test set overlaps. Comparing the performance of the other two schemes against theoptimal, we found that there is less than a 25% relative di�erence between the optimal schemeand the random scheme. This �gure drops to less than 5% when the block scheme is employed.Hence, in cases where the optimal scheme might seem too time consuming to apply, the easilyimplementable block scheme is a good compromise.In chapter(3) we extended our analysis of the linear perceptron to the inclusion of noise onthe examples. In order to suppress the learning of the noise, we included a weight decay in thelearning procedure and found that there are di�erent phases for the scaling of the optimal testset size with the system dimension. For small noise levels, or large weight decay, we found thatthe scaling is again of a 2/3 power type. However, for large levels of noise, the test set sizeneeds to be much larger, and we found a linear scaling behaviour. With the introduction of theweight decay parameter, we were able to address the issue of how to best use cross-validation inorder to discriminate between two di�erent models. We found that the optimal scheme in thissense is to choose a number of divisions that scales like 1 +O (��1), that is, that the test setsize should approach the size of the total amount of data in the data set as the data set grows.83



84 CHAPTER 7: CONCLUSIONThis is a similar conclusion to that reached by Shao who considered linear model selection usingcross-validation based on the statistical requirement of consistency, although Shao advocates aslightly di�erent scheme, namely that the test set size should scale like 1 +O ���1=4�.As a representative of a non-linear rule, we analysed the binary perceptron in chapter(4)in a similar manner to that for the linear perceptron. We found that the optimal test set sizescales like N2=3, with a linear prefactor for both noisy and clean examples. In terms of thecross-validation error performance, we found that there is a much greater similarity betweenthe performance of the di�erent CV schemes for the binary perceptron than for the linearperceptron. We were able to make some connections between our work and the PAC worst-caseapproach by calculating the probability that such worst-cases occur. Even for rather smallsystem sizes, we found that this probability is remarkably small.In chapter(5) we analysed a di�erent learning strategy, namely that of on-line learning, inwhich the student weights are updated after presentation of a single example from a stream ofinput examples. This work complements the recent signi�cant advances in the study of on-linelearning in cases involving multiple hidden units. This analysis con�rms that, provided theinitial conditions are not too symmetric, the thermodynamic learning curves calculated by theaverage case theory are representative. Finite size e�ects are largest around the symmetrybreaking point, when the students hidden units begin to specialise on those of the teacher.By stimulating asymmetry between the student's hidden units, we showed that a considerablereduction in both �nite size e�ects and generalisation error can be achieved. We conjecturedthat such symmetry breaking constraints can be employed to potentially great bene�t in thepractical �eld of training neural networks.With the motivation that extra constraints may reduce the generalisation error, we investi-gated in chapter(6) to what extent it is necessarily true that increasing the knowledge we haveabout the teacher reduces the generalisation error. Perhaps, counter-intuitively, we showed thatincreasing this knowledge can increase the generalisation error, even for such cases as a metricgeneralisation measure and convex constraints. For the linear perceptron, we showed how re-ducing the generalisation error is related to increasing the knowledge far from the centroid ofthe posterior student distribution. For the sign-constrained weight case, we found that there isa considerable reduction in the generalisation error.7.1 Outlook on future researchThere are many questions left unanswered by this thesis. The most glaring is that we haverestricted our batch learning analysis to realisable cases only. In principle, having found ageneral statistical mechanics framework in which �nite size variances can be calculated, it shouldbe straightforward to extend these cases to unrealisable rules. This is particularly interestingfor the cross-validation analysis as there has been relatively little work carried out on non-asymptotic data regimes. There is much work to be done on extending the preliminary resultson model selection, and there is potentially a great deal that can be said about how to selectcross-validation schemes from this type of analysis. Again, in principle, there is no di�culty inextending this analysis to multi-layer structures, and in particular, the tree committeemachine,for which a generalisation error calculation already exists[SH92]. An exciting prospect is alsoto extend the connection between the �nite size results for the binary perceptron to the PACanalysis. Indeed, if one were able to calculate the variance of the errors for a class of input



CHAPTER 7: CONCLUSION 85distributions, one would be able to make a con�dence bound connection to the worst caseresults as formulated by the VC theory. It may be that this is a realistic way to bridge the gapbetween the average and worst case analyses.In terms of on-line learning, there is more work being carried out on unrealisable rules andmore general architectures. This work is important as the on-line learning approach representsone way to avoid some of the di�culties inherent in the statistical mechanics analysis of batchlearning.We hope therefore that we have shown how powerful tools from statistical mechanics canbe employed to calculate e�ects also for �nite system sizes. These results, in addition to beingof interest in themselves, may lead to a much better understanding of the connection betweenaverage and worst case analyses.



Appendix AStatistical Mechanics FormalismA.1 IntroductionIn this appendix we explain in some detail calculational tools that can be employed in calcu-lating both average test errors and their variances. For the case of the linear perceptron, wehave seen that geometrical arguments can lead in a straightforward manner to the evaluationof the averages for the average test error and the variance of the test error (chapter(2)). Formore general network architectures, however, such calculational simpli�cations may not exist,and we therefore describe a more general method which has its roots in the theory of statisticalphysics. Statistical mechanics provides a mechanism for bridging the gap between a micro-scopic description of a process and a macroscopic picture. For example, from the microscopicdescription of a molecule as a hard sphere, and a description of the dynamical interaction ofsuch hard spheres, statistical mechanics is able to say something about macroscopic propertiesof the system, such as the pressure. In order to do so, however, the number of particles (sys-tem dimension) is taken to be arbitrarily large (the thermodynamic limit). Such a restrictionneed not necessarily result in unrepresentative results compared to those for �nite size systems[Sol94a]. In order to say something about the macroscopic picture, an average over the possiblecon�gurations is taken, each of which occurs with some probability which is physically relatedto the energy of the system. For many physical systems, the resulting average behaviour isequivalent to the typical behaviour of the system - this is called self-averaging[BY86]. Muchof the work in making the connection between statistical mechanics and neural networks waspioneered by Amit et al.[AGS85a, AGS85b] and Gardner [Gar87, Gar88, GGY89].A.1.1 The Partition Function, Z, and the Free EnergyThe starting point of the statistical mechanics treatment is the description of the probability ofa particular microstate. For the case of neural networks, stochastic gradient descent results in aLangevin process and the equilibrium distribution of students is given by the Gibbs distribution,P (wjP) = 1ZP pri(w) exp(��E);where E is the training error, and � = 1=T is the training temperature. The partition functionZ is a constant such that the probability distribution is correctly normalised. The student86



APPENDIX: STATISTICAL MECHANICS FORMALISM 87prior P pri(w) expresses additional a priori constraints on the student, such as the sphericalconstraint. The partition function is given by the integral,Z(�) = Z dwP pri(w) exp �� PX1 � (w;x)! ;where � (w;x) is the error that a student makes on an example x.Auxiliary Field MethodsAlthough it is often straightforward to express the generalisation error in terms of the averageoverlap of student and teacher vectors, we demonstrate an alternative method which involvesaugmenting the partition function with an auxiliary �eld (this approach which will turn outuseful later on), and we de�ne,Z(�; ) = Z dw exp �� PX1 � (w;x)�  MX1 � (w;x)! ; (A.1)so that we can write the thermal average of the test error,h�testiW = � 1M lim!0 @@ lnZ (�; ) (A.2)In order to calculate the generalisation error, we need to further average (A.2) over the datasetinputs. By interchanging the derivative and the average, we can write the generalisation erroras a function of the (dataset) averaged augmented log partition function,�g = � 1M lim!0* @@ lnZ (�; )+L = � 1M lim!0 @@ hlnZ (�; )iL : (A.3)Thus, by interchanging the order of averaging and di�erentiation, the statistical properties ofthe system can be found from the free energy, F (�; ) = hlnZ (�; )iL1. The free energy issimilar to a generating function in statistics, and we can generate higher (thermal) momentsfrom taking higher derivatives. Calculating the free energy by performing the dataset average(known as the \quenched" average in statistical mechanics) lies at the heart of the statisticalmechanics formalism, and there have been many attempts to facilitate the technical di�cultiesinherent in the average of the logarithm of a function[BY86]. Depending on the complexity ofthe student/teacher architectures, it may well be possible to carry out the averages over theGibbs distribution, and over the data sets (the quenched variables) by fairly direct methods.The method that we briey review in the following section, however, is a rather general methodthat can, in principle, be applied to a large class of di�cult calculations.1The standard de�nition of the free energy is given by �F=�



88 APPENDIX: STATISTICAL MECHANICS FORMALISMA.1.2 Replica Methods - a brief introductionThe essential feature of the replica method comes from rewriting the logarithm in a moreconvenient way. For small x we can expand the logarithm as,ln(1 + x) = x+O �x2� :For n� 1, we set Zn = 1 + x, givinglnZn = Zn � 1 +O �(1 � Zn)2�Using L'Hopital's rule, one then attains,hlnZi = limn!0 @hZni@n :This means that the di�culty of averaging the logarithm of the partition function has beentransferred to averaging powers of the partition function. We write Zn as the product of nreplicas of Z, and carry out the quenched average over this product, before performing ananalytic continuation of a vanishingly small number of replicas (n!0). The techniques forcarrying out such calculations are by now standard and we refer the reader to the works[WRB93,SST92] for more detailed discussions. The introduction of the di�erent replicas arti�ciallyintroduces extra degrees of freedom to the calculation which typically manifest themselves asorder parameters, being overlaps between weight vectors from di�erent replica solution spaces.In order to proceed with such calculations, one therefore needs to determine these extra degreesof freedom. The simplest possible assignment is that of replica symmetry, which assumes thatthe solutions represented by the di�erent replica systems are indistinguishable. Intuitively,this corresponds to the case in which the weight space of solutions remains connected suchthat the replicated weight space overlaps are identical. Such an assumption, however, is byno means guaranteed to yield correct results. The validity of the results is commonly checkedby calculating the entropy of the resulting calculation, which is simply related to the freeenergy. For the linear perceptron, however, the replica symmetry ansatz is exact. For discretesystems, the entropy must be positive, and any violation of this will necessitate a breakingof replica symmetry. In the case of the binary perceptron, we therefore restrict our analysisto the region of validity for the replica symmetry ansatz. The second essential ingredient tothe statistical mechanics type calculations is the assumption of an in�nite input dimension(thermodynamic limit), which enables averages to be carried with recourse to the saddle pointmethod[Arf85]. The assumption of self-averaging assures that the saddle point approximationto the integrals required becomes exact in the thermodynamic limit. The reason that thesaddle point approximation can be taken is that the training energy which appears in theGibbs distribution is extensive(scales with N).A.1.3 The Thermal VarianceWe have seen that statistical mechanics can be used to �nd the average of the test error (thegeneralisation error), which is an order O (1) quantity, but how can it be employed to �nd thevariance? The training error is extensive (scales with N), which means that the variance ofthe Gibbs distribution is order O (N�1), giving a generalisation error variance also of order



APPENDIX: STATISTICAL MECHANICS FORMALISM 89O (N�1). Thus, in the thermodynamic limit, the test error variance is zero! There is, however,a way around this di�culty.In the previous section we noted that in order for the saddle point method to work, weneed to introduce an extensive quantity in the exponent of the Gibbs distribution. Hence, inapplying the auxiliary �eld method, we use an extensive test error, rescaling the variance atthe end of the calculation. (In fact, we did exactly this in demonstrating how to calculate thegeneralisation error using the partition function, (A.1)). This will be only an approximationto the variance as the assumption that the test error variance scales exactly with 1/N meansthat higher order terms in 1/N will not be captured by this method. Using the single replicamethod only, one readily veri�es that, from the de�nition of the partition function (A.1), thesecond moment of the thermally averaged test error can be found from,1M2 lim!0 @2@2 hlnZ (�; )i = D(�test)2 � h�testi2WEE = var (�test :W) ; (A.4)which we term the thermal variance. It is the expected variance over the posterior distributionof students trained and tested on a random data set. For zero temperature, we could also termthis the version space variance. This variance, however, does not capture all the uctuationsin the test error caused by the stochastic algorithm and the random data sets. In order tocalculate the full variance, var (�test : E), we need to extend the replica formalism.A.2 Double Replica MethodIn this section, we extend the replica formalism to what we shall term the double replicaformalism in order to evaluate averages that depend upon two types of quenched averages. Themotivation for the double replica method comes from the wish to calculate averages such as,var (�test : E) = D(�test)2EW;L � �2g (A.5)The di�erence between this and the thermal variance (A.4) isDh�testi2WEL � �2g (A.6)By introducing two di�erent auxiliary �elds, we can write,h�testiW = � lim1!0 @@1 lnZ (�; 1)h�testiW = � lim2!0 @@2 lnZ (�; 2)Furthermore, using the identity,limm;n!0 @2ln hambni@m@n = hln a ln bi � hln ai hln bi (A.7)we can write,Dh�testi2WEL � �2g = 1M2 lim1;2;m;n!0 @2@1@2 @2@m@n ln hZm (�; 1)Zn (2; �)i (A.8)Hence the full variance var (�test : E) can be obtained simply adding equations (A.4) and (A.8).Thus, in theory, one can apply a combination of the single replica and double replica methodto obtain most of the kinds of (co)variances that one wishes.



90 APPENDIX: STATISTICAL MECHANICS FORMALISMA.3 Double Replica Method for general Perceptron ar-chitectureHaving demonstrated, in principle, how one can calculate variances and covariances by a com-bination of the double and single replica methods, we present in more detail how such a doublereplica calculation proceeds. We outline the derivation of the double replica method for a gen-eral perceptron architecture, which has the single replica method embedded within it.As we shall primarily be interested in using the double replica method to calculate cross-validation type covariances, in which the training data of one perceptron is used as the testdata of the other, we derive the double replica results from the wish to calculate,hZm (�1; 1)Zn (�2; 2)iL = Z P+MYk=1 �d�(xk)� Z mY�=1 (d�(w�1)) Z nY�=1 (d�(w�2 ))exp8<:��1 mX�=1 Xx2P1 � (w�1;x)� 1 mX�=1 Xx2M1 � (w�1;x)� �2 nX�=1 Xx2P2 � (w�1;x)� 2 nX�=1 Xx2M2 � (w�2 ;x)9=;For simplicity, let us assume that the size of the training set for the two systems are equal, andsimilarly, the size of the two test sets are equal. Then,hZm (�1; 1)Zn (�2; 2)iL = Z mY�=1 (d�(w�1)) Z nY�=1 (d�(w�2 ))8<:Z d�(x) exp8<:��1 mX�=1 � (w�1;x)� �2 nX�=1 � (w�1;x)9=;9=;P8<:Z d�(x) exp8<:�1 mX�=1 � (w�1;x)� 2 nX�=1 � (w�2 ;x)9=;9=;Mwhich we write ashZm (�1; 1)Zn (�2; 2)iL = Z mY�=1 (d�(w�1)) Z nY�=1 (d�(w�2 )) exp f(PG (�1;�2) +MG (1; 2))g (A.9)where,G (�1;�2) = � ln Z d�(x) exp8<:��1 mX�=1 � (w�1;x)� �2 nX�=1 � (w�2 ;x)9=;The evaluation of this replicated Hamiltonian follows directly the standard method presented in[SST92], and we refer the reader therefore to that work for further details. The input examplesx appear always through the activation for some student, x�w. This means that by substitutingfor the activations, we can write the integral over the inputs as an integral over activations.Using the gaussian measure shorthand,Dx = 1(2�)N=2 exp��12x�x� ; (A.10)



APPENDIX: STATISTICAL MECHANICS FORMALISM 91we haveexp fG (�1;�2)g = Z dx1dx2dy exp8<:��12 mX�=1 [g(x�1)� g(y)]2 � �22 nX�=1 hg(x�2 ) � g(y)i29=;Z Dx mY�=1(�  x�1 � 1pNw�1 �x!) nY�=1(�  x�2 � 1pNw�2 �x!) � y � 1pNw0 �x! (A.11)The integral over the input examples can be carried out by introducing the integral represen-tation of the delta function,�(x) = 12� Z 1�1 dx̂ exp ixx̂ (A.12)and integrating over the gaussian measure. We �nd that the weight vectors appear only in theform of their mutual overlaps, namelyQ�;� 0i = 1Nw�i �w� 0i i = 1; 2Q�;� 012 = 1Nw�1 �w� 02R�i = 1Nw�i �w0 i = 1; 2Q�;� 0i is the overlap between student weights from two replicas of the same perceptron. Q�;� 012 isthe overlap between student weights from two replicas of di�erent perceptrons. R�i is the overlapbetween the the replicated student weight and teacher weight. The integral over the weightspace to �nd the free energy can then be transformed to an integral over the overlap parameters.The great simpli�cation of the replica method then comes about through imposing speci�cforms for these overlap (order) parameters. The simplest possible assumption for the form ofoverlap parameters is called the Replica Symmetric (RS) ansatz. This is the assumption thatthe overlap between weight vectors from di�erent replica systems is independent of the replicasystem. Bearing in mind the spherical constraint, this means that the RS ansatz takes theform,Q�;� 0i = ��;� 0 + (1 � ��;� 0)qiR�i = RiQ�;� 012 = q12 (A.13)The calculation then proceeds by substituting in the RS ansatz to make the replicated Hamil-tonian a function of the order parameters. Note that by using the identity,Z 1�1 Dt exp �p2xt� = exp�x2� (A.14)



92 APPENDIX: STATISTICAL MECHANICS FORMALISMwhere Dt is a zero mean, unit variance gaussian measure, the quantities in exponentials that aresquared can be linearised by the introduction of an auxiliary variable, t. After some straight-forward algebra, one obtains,exp fG (�1;�2)g = Z DyDt1Dt2hm(�1)kn(�2) (A.15)whereh(�) = Z Dx exp ��2 �g �xq1 � q1 +R1y � t1qq1 �R21�� g(y)�2 (A.16)k(�) = Z Dx exp ��2 8<:g 0@xq1 � q2 +R2y � t1 (q12 �R1R2)qq1 �R21� t2vuutq2 �R22 � (q12 �R1R2)2q1 �R21 1CA� g(y)9>=>;2 (A.17)We mentioned earlier that the single replica method is embedded within the double replicamethod. To retrieve the single replica results, we set n = 0 throughout the derivation of thedouble replica method, essentially `turning o�' one of the replica systems. We see therefore, thatthe corresponding single replica result for the replicated Hamiltonian would simply contain anintegral over the function h(�1). A more intuitive way of expressing (A.15) comes from realisingthat the functions h and k are related to the single replica function Grexp fGrg = Z DyDt hn(�; t; q;R) (A.18)This means that one can write,exp fG (�1;�2)g = Z DyD(t1; t2)hm1 hn2 (A.19)whereh1 = h (�1; t1; q1; R1) ; h2 = h (�2; t2; q2; R2) (A.20)and the measure D(t1; t2) expresses the coupling between the two replica systems,D(t1; t2) = dt1dt2 12� 1det (A) exp��12tTA�1t� (A.21)where tT = (t1; t2), and the covariance matrix A is given by,A = 264 1 q12�R1R2pq1�R21pq2�R22q12�R1R2pq1�R21pq2�R22 1 375 (A.22)Taking the derivatives with respect to the replica numbers m;n, one obtains, in the limitm;n!0,G(�1; �2) = hlnh1 lnh2i � hlnh1i hlnh2i (A.23)



APPENDIX: STATISTICAL MECHANICS FORMALISM 93where h::i represents an average over the measure DyD(t1; t2). From (A.8), the variance isgiven by taking also the limit of the two auxiliary �eld terms going to zero, i.e., 1; 2!0. Inthis limit, q1; q2; q12!q, R1; R2!R, where q and R are the single replica order parameters inthe absence of an auxiliary �eld (i.e., they take their standard single replica values). Therefore,when we take the derivatives with respect to 1 and 2, we use the fact that@2@1@2 hlnh1i hlnh2i = ( @@1 hlnh1i)2 (A.24)This term is straightforward to calculate - it is simply the square of the derivative of the singlereplica Gr with respect to the auxiliary �eld, evaluated in the limit of a zero auxiliary �eld.A.3.1 Double Replica Entropic termWe have seen that the student and teacher vectors occur in the replica calculation only throughtheir respective overlap parameters. This being the case, we can transform the integral overthe weight vectors to an integral over the overlap parameters by introducing the de�nition ofthe overlap parameters through delta functions.The entropic term G0 represents the weight space constraints for the system, and is inde-pendent of the functional form of the transfer function. The method of calculation parallelsthat in [SST92], and we derive briey below the �nal form of G0. We write, symbolically, thedouble replicated free energy,hZm1 Zn2 i = Z 8<: Yi;j;�;� dQ�;�ij � �Q�;�ij � 1Nw�i �w�j �9=; exp f�N (�G(�1; �2) + �G(1; 2))g (A.25)where Q�;�ij stands for a general overlap parameter, and � �Q�;�ij � 1Nw�i �w�j � expresses the def-inition of the overlap parameter in terms of the overlap of two weight vectors. The integralis over all overlap parameters. As usual, one represents the delta functions in integral rep-resentations, which introduce conjugate variables Q̂�;�ij , each of which are integrated over theimaginary axis. Again, symbolically, we write,G0 = � Xi;j;�;� Q̂�;�ij Q�;�ij + 1N ln Z Y� fd�(w�1)gY� nd�(w�2 )o exp8<: Xi;j;�;� Q̂�;�ij w�i �w�j 9=; (A.26)Applying replica symmetry, and removing the squares of the weight vectors in the exponentialby introducing auxiliary variables, z, we �nd,G0 = �(m2 �m)q̂1q1 �mR̂1R1 � (n2 � n)q̂1q2 � nR̂2R2 �mnq̂12q12 + 1N ln hfm1 fn2 i (A.27)whereh::i = Z D(z1; z2):: (A.28)D(z1; z2) is the same as for (A.21), but with the matrix A replaced by NA. As before, f issimply the corresponding term from the single replica formalism,f(z) = Z d�(w) exp�(1 � q̂)w�w +w��R̂w0 +qq �R2z�� (A.29)



94 APPENDIX: STATISTICAL MECHANICS FORMALISMA.3.2 Determining the order parametersAt this stage a little care is needed. The double replica entropic term is given by the limit ofdi�erentiating G0 with respect to m and n in the limit m;n!0. If we do this, we see that theonly terms that will remain for the double replica entropic term will be,G0 = �q̂12q12 + 1N fhln f1 ln f2i � hln f1i hln f2ig (A.30)Thus, from the double replicated free energy alone, we can only determine the saddle point equa-tions for the order parameters which express the interaction between the two replica systems.The issue is then how to determine the saddle point equations for the other order parameters.Intuitively, these must reduce to the saddle point equations for the single replica system. Onecan demonstrate that this is indeed the case by examining (A.27) more carefully.Before we take the double replica limit, the terms in G0 of order m2; n2, and, more speci�callymn, are an order smaller than the terms in m and n alone. At this point, therefore, the doublereplica free energy is dominated by the single replica system contributions, meaning that thesingle replica order parameter saddle point equations can be obtained, before taking the doublereplica index derivative.The integrals in (A.30) above are straightforward to carry out, and one obtains,G0 = (1 � q1)(1� q2) �4R̂1R̂2q̂12 + 2q̂12�� q12q̂12 (A.31)As q̂12 appears only in G0, q̂12 can be eliminated by solving the saddle point equation resultingfrom di�erentiating the double replica free energy with respect to q̂12. From this one �nds,G0 = �12 q12 �R1R2(1 � q1) (1 � q2) (A.32)Again, we mention that this holds for any (single layer) perceptron, regardless of the activationfunction.A.4 Linear PerceptronSingle replicaFrom [SST92], we have the single replica results,G0 = q �R21� q + ln (1� q) (A.33)Gr = 12 ln [1 + � (1� q)] + 12 � (q � 2R + 1)1 + � (1� q) (A.34)The zero temperature minimum of the free energy G0��Gr is given simply by q = R = 1��,resulting in the generalisation error value �g = 1�R = 1 � �.



APPENDIX: STATISTICAL MECHANICS FORMALISM 95Double replicaFollowing the procedure mentioned in section(A.3), the double replicated Hamiltonian can befound from the variance of the single replica (see (A.23)). For the linear perceptron, this isparticularly straightforward to �nd, giving,G12r (�1; �2) = �12 �11 + �1 (1 � q1) �21 + �2 (1� q2)�n(R1 � 1)2 (R2 � 1)2 + (q12 �R1R2) (R1 � 1) (R2 � 1) + (q12 �R1R2)2o (A.35)Again, the entropic term is given by (A.32).
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