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Chapter 1

Introduction

1.1 Background

Artificial neural networks constitute biologically inspired techniques to perform data modelling,
widely used in such diverse areas as pattern classification, control, and financial forecasting. One
of the features that make neural networks so attractive is their perceived ability to assimilate
or ‘learn’ the underlying rule producing the data. The framework within which this thesis is
cast is that of supervised learning: we imagine that there is a unique rule producing the data,
which we identify with a teacher.

As a demonstration of some of the central ideas involved in the theory of neural networks,
let us consider the following scenario. A teacher sits in a room, and upon being given an input
x generates outputs y(x) according to the rule y(x) = y°(x) + 7, where 5 is some noise process
corrupting the clean teacher output y°(x) - some fixed deterministic function. A set of P inputs

(P)

{:1;(1)....:1; } is drawn independently and identically from an input distribution, and to each

input, x, the teacher associates an output, y, so that we have a set of noisy training examples
P = {(x(l),y(l)), v (x(P),y(P))}. These are given to the student who is asked to infer the

(uncorrupted) teacher rule, y°. Without some clue as to what kind of function the teacher
is using, the student’s task is hopeless. The possible rules that the student could conceive
that fit the training data are endless - she could fit a P dimensional polynomial, or a P + 1
dimensional polynomial, or a P dimensional polynomial with a large amplitude oscillation that
interpolates the training points, and so on... Hence, the task of fitting the data is relatively
easy, but when the student tests the model against previously unseen training examples, without
some a priort knowledge about the teacher, the student’s predictions would be no better than
random guesses|Wol95, WL92|(see figure(1.1)). What we are really interested in is the student’s
generalisation ability- how will the student perform on unseen inputs? If the student is told
beforehand that the uncorrupted teacher rule comes from the class of polynomials with degree
less than 10, we might hope that eventually the student would infer the rule with some accuracy,
and have a low expected test error, (termed the generalisation error). Even restricting the set
of possible functions to polynomials with degree less than 10 may lead to over-fitting of the
noisy data points. Some degree of regularisation is therefore often required in the presence of
noisy training examples, which typically takes the form of a penalty for the student complexity
- e.¢., low degree polynomials should be favoured over high degree polynomials.
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Figure 1.1. Curve fitting. The dots represent noisy training points generated by the un-
corrupted teacher output given by the solid line. Fitting the training points may lead to the
problem of over-over-fitting in which the student fits the noise. There are infinitely many pos-
sible functions that we could fit through the training points, but fitting the points does not
guarantee good generalisation.

Having ascertained that, in order to frame the question of generalisation in a sensible man-
ner, we need to restrict the space of possible teachers, we will naturally want to quantify the
generalisation performance of the student, given a certain amount of data. In order to do this,
we assume that the space of possible teacher functions and the space of students (the class
of models) are defined. Often, the assumption is made that these two spaces are the same.
It may be, however, that we choose a student much less sophisticated than the teacher for
reasons of computational complexity, in which case the problem is unrealisable, and the task is
to quantify the performance of the best student available. Throughout this thesis, however, we
shall generally examine learnable problems and set the student and teacher function spaces to
be the same.

One approach to evaluating generalisation performance is to bound the error that a student
will make, given that it has been trained on P examples, and that we know the complexity of
the class of possible functions. This approach is called the probably approxzimately correct, or
PAC approach, and is typically practised within the computational learning theory school[VCT1,
Hau94, Val84]. More formally, an algorithm is PAC if there exists a number of training examples
such that for more examples than this, with some specified confidence the model will make an
error no greater than some specified accuracy.

There are advantages and disadvantages of the PAC approach. An elegant feature of PAC
is that the results are distribution independent: It might be that the input distribution has a
low density in a certain region, and that the fit of the student in that region is correspondingly
bad, due to the poor sampling; however, when evaluating the generalisation performance of the
student, those regions of input space with low density will hardly ever occur, and the student’s
poor performance in such regions will have little weight. Furthermore, the generalisation error
bound in the PAC approach depends solely on a measure of the complexity of the function space,
called the VC-dimension!. Once the VC dimension has been calculated, the array of results

!For the case of binary outputs, the VC dimension is the maximum number P’ of training examples for
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relating to PAC learning can be read off. However, determining the VC dimension is often
difficult and to date the VC dimension has been determined for only a limited class of function
spaces[Ant95]. Another drawback of PAC learning is that it tends to give a rather conservative
estimate of the generalisation ability of the student - the typical generalisation performance of
the student is often much better than the accuracy specified in the PAC approach[EvdB93].
Some efforts have been made recently to make PAC results more comparable to the typical
performance of students by introducing specific classes of distributions for the model. For a
general review of PAC learning see [Ant95].

1.1.1 Average Case Formalism

It we assume that we know the input distribution, teacher space, and student generating algo-
rithm, we can attempt to calculate the generalisation error directly. However, if the variance
of the test error is large, then the expected error (the generalisation error), in itself, does not
shed much light on the test error distribution, and it is important to have an estimate of the
variance of the test error. In attempting to perform the requisite averages inherent within an
average case analysis, one invariably runs into technical difficulties and approximations need
to be introduced. Much of the work carried out within the physics community in calculating
the expected error has been through formal analogies drawn between data set averages and
“quenched” averages in statistical physics (for a review, see]lWRB93]). These calculations have
typically been carried out with recourse to the thermodynamic limit in which the dimension
of the inputs x is taken to be infinite. In the limit of an infinite input dimension, with the
number of training examples P o< IV, the test error becomes self-averaging - the variance of the
test error distribution is zero. As infinite networks are unrealistic, it is important to quantify
the variance of the test error distributions explicitly in order to justify the relevance of the
thermodynamic limit[Sol94a]. Other approaches have been made using statistical mechanics to
calculate the maximum deviation of the test error from the generalisation error, which is an
approach closely allied to the PAC worst case theory[EvdB93, EF93]. Another approach which
employs statistical mechanics is that used by Haussler et al.[HKST94] to relate the entropy of
the student space and the probability of minimising the test error on a random test set, al-
though at the moment this theory has only been fully developed for cases in which the teacher
space is a set of finite cardinality.

Within an average case Bayesian formalism, Amari[AF92] has examined the asymptotic
decay of the generalisation error using the annealed approximation, which can lead to qualita-
tively correct results. Interestingly, Amari found that there exist essentially only four kinds of
asymptotic decay with the number of examples P presented, classified according to whether or
not the student is stochastic, the teacher output is corrupted by noise, the set of parameters
specifying the teacher is unique, or has finite measure. However, some considerable care must
be taken in employing the annealed approximation as this can lead to wildly incorrect results,
as discussed in Seung et al.[SST92].

Throughout this thesis, we shall assume that the known input distribution is normal (gaus-
sian), and similarly for the noise process. As more random examples are presented, the in-
formation content of each new training example decreases. In order to improve the efficiency
of learning from examples, there has recently been much interest in active learning or query

which all possible 2P’ output configurations are achievable by appropriate settings of the student parameters.
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a1 TN

Figure 1.2. The simple perceptron. The input components are represented by the N
dimensional vector x. The activation is the weighted sum of these input components,
h=yN, N~ %w;z; = N 2w-x. The final output of the perceptron is the transfer of the
activation, y = g(h).

learning in which new training examples are selected by the student in order to maximise some
objective measure of their usefulness such as information (entropy) gain (for references, see
[Plu94, Sol95]), although this framework is beyond the scope of this thesis.

1.2 The Perceptron

Artificial neural networks are composed of simple neuron like units which perform a mapping
from RY to R, where the output y is some function of the weighted sum of the inputs into that
neuron(figure(1.2)),

y:g(§ﬁwx) (1.1)

and each component of the vector x represents a real valued input to the network and g¢(-) is
called the activation function (the factor N-% is for convenience). The vector of connection
strengths w is called the weight vector. More complicated networks can be constructed from
these simple devices by connecting the output of such a device to the input of another. In this
thesis, we shall be concerned with a particular class of network architectures, namely feedforward
networks, in which we assume that the outputs of each simple perceptron connect only to simple
perceptron inputs in a subsequent layer. More complicated cases in which feedback connections
are present are studied in the theory of recurrent neural networks (see e.g., [Pin87]).

1.2.1 Training neural networks

Although the concept of neural networks has been around for many years[Heb49, Ros62] it is
only comparatively recently that they have found widespread use. One of the reasons for this
was the lack of a suitable training algorithm, especially for networks more complicated than the
simple perceptron. A particularly fruitful approach to developing training algorithms comes
from defining an energy function, or training error[Hop82]. For a set P consisting of the P
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training example pairs (x!,y')..(x”, "), the training error is defined to be the sum quadratic
loss of the P examples,

EtT W|7D

[\Dl»—\

Z_: —y7)*.

where y(w,x7) is the output of the student (with weight connection parameters w), and y? is
the output of the teacher for input x?. The student parameters can be adapted to minimise the
training error by (stochastically) descending the training error surface, updating the students
parameters at time ¢ by gradient descent (see e.g., [WRB93]),

8wi oFE W P

— _M + Fi(t),

8t 8wi
where F;(t) is white noise such that (F;(¢)F;(t')) = 276;;6(t —t') and T is the learning tem-
perature. This type of learning is known as batch learning as the student weights are updated
according to their error on a batch of P training examples. The alternative approach, termed

on-line learning can be thought of as a limiting case of batch learning in which the weights are
modified from a stream of single examples. Learning is carried out at some finite temperature in
order to avoid local minima in the error surface, and a heuristic annealing schedule for lowering
the temperature is typically implemented. The equilibrium (¢ — oo) distribution of students
that this algorithm produces is a Gibbs distribution,

P(W[P) = 7 PP(w) exp(— iy (w]P)/T), (12)

where PP"'(w) represents prior constraints on the student and Z is a normalisation constant.
The dynamics of batch learning will not concern us here, and the reader is referred to other
works (for a discussion, see[KH92]). In the limit of zero learning temperature, the Gibbs
distribution becomes uniform over the set of student weight vectors that exactly reproduce the
training set, and zero elsewhere; the Gibbs algorithm then selects a student randomly from
this distribution. This is also known as ezhaustive learning and the space of zero training error
students is termed the version spaceflWL92|. The performance of the students generated by the
Gibbs learning algorithm is tested on a test set of M examples, M = {(«*,y*),up = 1..M},
and measured by the test error, defined by

1 M

etest(W|M W ) 2M

> (y(x") - y")’ (1.3)

Ideally, one would like to know the generalisation function, i.e., the expected error that a
student drawn from P(w|P) will make on a random test example, and this is found by averaging
the test error over the distribution of test sets. As the generalisation function is still dependent
on the examples that were used to train the student and also on the Gibbs weight distribution,
a further average over the Gibbs distribution and training set are taken in the definition of
the generalisation error. In some cases it may be possible to carry out these averages exactly,
and where we have been able to do so, we shall present such exact results, although these
situations are rare[Han93]. Within this framework, there are several sources of randomness:
The randomly distributed training data is employed by a stochastic learning algorithm which
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is then tested on randomly distributed data. In order to measure these different sources of
randomness, we calculate test error (co)variances, and use the notation,

var (eie : A) = ([erest — (crest) u]’) (1.4)

Cov(et%t? egest : “’4) = <[6t55t - <6t55t>A] [egest - <6;est>A]>€ ’ (15)

where £ denotes all sources of randomness and A is a set denoting one or more sources of
randomness®. In words, var (€. : A) is the variance of ¢, over A, averaged over all sources
of randomness (and similarly for cov(egest, €., : A)). The different kinds of (co)variances that
we can consider come from the different possible settings of A, which are combinations of
P, M, LW WO, P is the set of training examples, and M the set of test examples, with their
union L denoting the dataset. W is the set of student weights consistent with the student
post-training distribution, and W? is the set of teacher weights consistent with the training set.
All sources of randomness are therefore contained in the union, & = LU W U W°.

Rather than enter into a detailed discussion of the possible measures of variance here, we
shall introduce them when necessary in the text. Nevertheless, the quantity that we shall
mainly be interested in measures the typical deviation of the test error from the average test
error (generalisation function) and is given by,

var (€est 1 M) = <(6test - <6test>M)2>g- (1.6)

As an application of the techniques we use for calculating variances, we also evaluate the
variance of cross-validation estimates of the generalisation error. Cross-validation is a widely
used statistical technique used to estimate, for example, the generalisation error with a limited
amount of data. Rather than splitting a dataset into a single training set on which a single
student is trained, and then tested on the remaining data, cross-validation partitions the dataset
into multiple training and test sets, with a separate student being trained on each test/training
partition[Sto74, Sto77]. The cross-validation estimate of the error is then the average of the
multiple cross-validation student errors. There has been a great deal of work carried out on
the analysis of cross-validation, much of it, however, concerned with the asymptotic limit of a
large amount of data. We show how analytic results can be obtained for cross-validation using
ideas from statistical mechanics for all amounts of data.

1.3 Structure of thesis

A great deal of work has been carried out in the average case formalism for one of the simplest
possible networks, the linear perceptron - a single layer perceptron with a linear activation
function. In chapter(2) we examine the linear perceptron in the noiseless case (and hence
without regularisation), introducing some of the methods that can be employed to calculate
variances exactly and approximately. Details of the calculations will normally be relegated
to appendices at the end of each chapter. An analysis of cross-validation is carried out for
this simple model, with a comparison made between variants of cross-validation. For the more

ZStrictly speaking, in general A is a set only in the limit of zero training temperature, otherwise it represents
a distribution.



CHAPTER 1: INTRODUCTION 7

realistic case of a teacher corrupted with noise, we perform a detailed analysis of the variance
of the linear perceptron with a regularisation parameter in chapter(3), continuing with a com-
parison of variants of cross-validation. With the introduction of a regularisation parameter, we
consider issues of model selection and how we can use cross-validation to differentiate between
two competing models. In chapter(4) we calculate test error variances for a representative
non-linear student /teacher, the binary perceptron - a single layer perceptron with a sign acti-
vation function. These results enable us to make some connections between our work and the
PAC formalism. We examine a two layer perceptron in chapter(5) using a different learning
algorithm from batch learning, namely online learning, in which the student’s weight vectors
are updated after presentation of a single example in a stream of data examples. A detailed
discussion is made of finite size effects for the soft-committee-machine architecture, including a
scheme to both reduce the finite-size effects and also facilitate learning via the introduction of
an extra student weight constraint. As this extra constraint on the student leads to a reduction
in the generalisation error, we examine briefly in chapter(6) whether it is always the case that
the extra knowledge in the form of additional student weight constraints necessarily leads to a
reduction in the generalisation error. We conclude with a summary of the main results in the
thesis in chapter(7) and an outlook on future research. Appendix(A) contains details of the
replica formalism employed throughout much of the thesis in the calculation of (co)variances.



Chapter 2

The Linear Perceptron I: Spherical
constraint

Abstract

We calculate the fluctuations in the test error induced by random, finite, training
and test sets for the noise free, zero temperature linear perceptron of input dimen-
sion N with a spherically constrained weight vector. This variance enables us to
address such issues as the partitioning of a data set into a test and training set, for
which we find that the optimal assignment of the test set size scales with N2/, Fur-
thermore, we examine the variance of cross-validation errors in the non-asymptotic
data regime.

2.1 The Spherical Linear Perceptron

A training set is defined to be a set of P input/output pairs, P = {(x7,y7),0 = 1..P}.
Each component of the input vectors x? is drawn from the zero mean, unit variance normal
distribution, and the outputs y” are generated by a noiseless teacher perceptron, y7 = \/LNWQXU,

characterised by the teacher weight vector w®. The student is of the same form as the teacher,
namely a linear perceptron of dimension N with weight vector w, where both student and
teacher weight vectors are of length VN (spherical constraint). The set of student perceptrons
that agree with the teacher on the training set (i.e., produce the same output as the teacher
for the inputs from the training set) and that obey the spherical constraint is a subset of the
set of all weight vectors, termed the version space (VS)[WRB93|. The training erroris given
by,
1P

B (w|P) = 52 (—w X7 —y )2. (2.1)

The spherical constraint is imposed by adding to Fi.(w|P) an extra term, equivalent to
a Lagrange multiplier. The resulting equilibrium distribution of students as t—o0 is a Gibbs
distribution,

1
P(w|P)=6(w-w—N) Ze_E"(W“))/T,
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where Z is a normalising factor. The VS is then found as the set of weight vectors w of non-zero
probability P(w|P) in the limit of zero temperature Gibbs learning. Students from the VS are
tested against the teacher on a test set of M elements M = {(X“, N sw0.xt = y“) Ju=1.M}
1 where the x* are taken from the same normal distribution that was used to generate the
training set inputs x?. The training set and test set together form the data set of L elements,
L=PUM, with L = P+ M. The average error that a student from the version space will
make on a random example is given by the generalisation function,

estwlw?) = s (((w =) %))

where (..), denotes an average over test example inputs. In a practical situation, this quantity
is approximated by the test error,

Erest(W|M, w°) = L 3 LW-XM -yt 2 L 3 ((W = VVO)-X“)2 (2.2)
o ’ 2M =\ VN 2MN =, ’

which is an M sample estimator of the generalisation function. The generalisation function
averaged over the version space of students and the possible training sets? that define the
version space is the generalisation error,

¢ = <ef(w|w0)>w7p. (2.3)

Each of the M error contributions that sum to form the test error is independently and identi-
cally distributed and, applying the central limit theorem?®, one expects that the generalisation
function will be €5 (W|M,w°) + O (1/\/M)

The variance due to the random training and test sets, and also the different possible choices
of students from the version space is given by,

var (€est 1 M) = <(etest(w|./\/l,w0) — ef(w|wo))2>€.

In section(2.2) we show how to calculate this variance, employing these results in section(2.3)
to find the “optimal” test set size and in section(2.4) to gain insight into confidence in the
testing/training procedure. In section(2.5) we examine the variance of the cross-validation
error, and conclude with a summary in section(2.6).

2.2 Calculating the Averages - Geometrical approach

The P training examples constrain a student w to lie on the hyperplane,

H ={w|w-x? = w’x?,0 =1..P}. The version space is given by VS= H N S, where S is
the spherical constraint, w-w = N. The space of vectors that satisty the intersection of
a hyperplane and a hypersphere is a hypersphere of the dimension of the hyperplane (see

!Note that the indices o and p refer to training and test set inputs respectively.

“Isotropy of the problem in weight space ensures that e;(w|w?”) is the same for all teachers w®. We will,
however, later include an average over w® alongside the training set average for calculational simplifications.

3The central limit theorem holds for any input distribution.
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-
. =

(

Figure 2.1. In three dimensions each training example is associated with a plane forming,
for P examples, the subspace H (drawn here for only one example). The version space is the
intersection of H with the spherical constraint, S. In the above example, this results in a
circular version space. In general, the resulting version space is a hypersphere of dimension
N — P, centred at ¢ = w’ — Pw", where P is the projection onto the subspace H, and the
radius of the version space is R = [Pw"|.

figure(2.1)). After training on P examples, therefore, the VS is a hypersphere of dimension
N — P. For @« = P/N > 1, provided that at least N of the training examples are linearly
independent, which is the generic case, the VS collapses to a single point, i.e., the teacher
weight vector, and the test errors become zero. We therefore limit the analysis to the case
a < 1.

2.2.1 Version Space Averages

We illustrate the techniques used in the calculation of the test error variance by demonstrat-
ing how to perform the averages over the test error, which itself is needed for the variance
calculation. Equation (2.2) can be written as,

1 XM T

Erest(W|M,W°) = SN (x*)T (W — WO) (W — WO) x",
j=1

where (X“)T denotes the transpose of the vector x*. When written in component form, averages
over the VS, (..}, are concerned only with the quantity

((wi = wp) (w; = uf)),, - (2.4)

In order to understand the geometrical picture, it may be helptul to consider a specific example
which we draw schematically in figure(2.1). For the perceptron of dimension three, the students
(and teacher) are constrained to lie on a sphere of radius /3. One training example pair (X, %)
forms a plane with normal in the direction of x, a perpendicular distance y/|x| from the origin.
This plane intersects the sphere to form a circular VS whose centre is along the direction of x, a
distance y/|x| from the origin. As the endpoint of the vector w® lies on the VS, the centre of the
VS can be found by subtracting from w? its projection onto the plane. For the N dimensional
case, the centre of the version space is given by ¢ = w® — Pw?, where P projects onto the
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subspace H.* Decomposing the vectors w and w® into the centre of the VS and remaining
contributions,

wi =i+, w) =+,
and exploiting the symmetry of the hypersphere, equation(2.4) becomes simply,
(riri)y + r?r?. (2.5)

Details for the calculation of the first term of the above equation are given in appendix(2.7.1)
at the end of the chapter, which lead to the result,

1 M (WOPWO

. L wrw.
<6test(W|M7W )>W ~ 2MN S AN =P

(x) T Px* + ((x*)T PWO)Z) . (2.6)

2.2.2 Teacher and Data Set Averages

Due to the isotropy of the teacher and student spaces, an average over teacher vectors is not
strictly required; calculational simplifications are achieved, however, by including one. We
thus average equation(2.6) over all teachers w® satisfying the spherical constraint, (WO)TWO =

N. Evaluating the averages <(W0)TPWO>WO and <((X“)T PWO)2> , by using the result
WO

0,,0 — 5. ;
<wi wj>W0 = 0;;, we obtain,
1 M

TrP
<6t65t(W|M,WO)>WWO = SN (x)T Px* (N —5 1) :
’ =1

TrP is the trace of the projection matrix P, which is simply the dimension of the space onto
which it projects, in this case that of the version space, TrP = N — P. We now perform the
average over the possible test set input examples x*. Since the inputs are normally distributed,

<(X“)T PX“>M = TrP, and one obtains the well known result [SST92],
€ = <6t65t(W|M,WO)>W o =L@

where o« = P/N. Learning can be pictured in the following way: the root mean square distance
of the centre of the hypersphere from the origin increases as v Na; the radius decreases as

N(1 — «), the VS ‘shrinking’” around the teacher weight vector.

2.2.3 Test Error Variance Results

The calculation of the test error variances follows on from the arguments presented in the
previous two sections. Details are given in appendix(2.7.2) at the end of the chapter, and one
obtains, for P < N:

224 N—P)(1+N —P)
MN(N +2)

var (€est 1 M) = (2.7)

4The projection matrix P can be found explicitly by orthonormalising the training set of input vectors {x°}
to form an orthonormal set {%7}, from which P;; = 6;; — Zle zixd.
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Figure 2.2. The variance, var (€. : M), in the test error induced by the random test sets,
the version space, and the training sets. The triangles represent a perceptron of dimension
N =10, and the dots N = 100. The test set size is equal to the training set size.

v 2+N-P)Q1+N-P)(24+ M) P2
var (€est : £) = MN(N12) _<1_N) ) (2.8)

Where var (€. : M) is the (average) test error variance over test sets (¢f. section(1.2.1)), and
var (€pst 1 €) is the test error variance over all sources of randomness (i.e., the weight space
and dataset). For M, P o N >> 1, one can readily verify that the variances are O (N™!),
and thus zero in the thermodynamic limit (N — oo), which is the underlying assumption of
self-averaging in statistical mechanics calculations. For P = N, there is zero variance in the
test errors since the VS collapses to a single point. We shall primarily be interested in the

deviation of the test error from the average test error over a fixed training set, and concentrate
therefore on var (€5 : M). We note, parenthetically, that var (€5t : M) < var (€re5¢ = ), which
is generically true. A more detailed discussion of the relationship between these two types of
variances is given (also for more general networks) in appendix(2.9) In figure(2.2), we plot
var (€pest : M) as a function of « for perceptrons of dimension N=10 and N=100, with the
number of test examples set to the number of training examples (M = P). For small values of
«, there is a correspondingly large test error variation, decreasing monotonically with increasing
«. The variance of the test error for a close to 1 is small, indicating that students in the
version spaces generated by random training sets have almost equal test errors. For large N,

var (€es : M) decays as 2(1 — «)?/(aN) which, for fixed «, scales with 1/N.

2.3 Optimal test set size

We now turn our attention to the partitioning of a data set of examples into a training set and
a test set. That is, given a data set of L elements, how many elements should be assigned to
the training set, and the rest to the test set, given that we wish to produce a student with a
low generalisation function.

A student that has a low test error will not necessarily have a low generalisation function,
unless we can show that the test error will (at least on average) be close to the generalisation
function. (Using nearly all the dataset examples for training may result in a student with a
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low test error when tested on the remaining few examples, but our confidence that the test
error is representative of the generalisation function is low because so few examples were used
in the testing procedure). By applying the central limit theorem, the difference between the
generalisation function and the test error will be distributed in a gaussian manner with mean
zero[Fel70], where the standard deviation of this distribution is over the realisations of the test
set. This means, for example, that with probability 0.84, the generalisation function will not
lie more than one standard deviation above the test error. This bound, however, is dependent
on the actual test error value, whereas we will here be interested in the typical upper bound
when one takes into account the version space and different possible training sets. We therefore
represent the test error by its average (the generalisation error) and the standard deviation
over test sets alone by that over test sets, students, and training sets. Thus doing, we define
the average probabilistic upper bound on the generalisation function as,

ew(M|L) = €, + Ty/var (€est : M). (2.9)

Setting 7 = 1, we will be 84% confident that the generalisation function will, on average, not
be more than one standard deviation above the test error. Similarly, for 7 = 2, we will be 98%
confident that e;(w|w?) will, on average, be less than two standard deviations above the test
error®. If we fix the size of the data set, L, we can consider the variance and generalisation
error as a function of the test set size, M, the training set size being given by P = L — M.
In figure(2.3) the generalisation error and standard deviation are plotted for a perceptron of
dimension N =400 and data set size L =200. For small M, the standard deviation is large
and the generalisation error is small, the perceptron having been trained on a relatively large
number of examples. This situation reverses as M is increased, which gives rise to a minimum
in the upper bound, €,(M|L) for M = M*. We note from figure(2.3) that this is at M* =24
for 7 = 1. The dependence of M* on N and L is rather complicated; however, in the limit of
large N and setting L = oy, /N, an asymptotic expansion in N reveals the following scaling law
for the optimal test set size,

o

M ~ %(27 (1= ane) N) (2.10)

Or, writing this as the optimal fraction of the data set to be used for testing,

|

M N (7 (1 — aer)) 1

L Aot (QN)%

For fixed 7, a1, the optimal test fraction tends to zero as IV increases to infinity. Even though
the fraction of test examples tends to zero, there is still a very large number of test examples,
enough that the test error will be close to the generalisation function. For fixed N, 7, the
optimal test fraction tends to zero as ay,; approaches 1 as the perceptron then has increasingly
more data at its disposal to learn the teacher, which results increasingly in a restriction on
the possible student weights, and therefore a restriction on the variance of the test errors. For
7 tending to zero, we recover the normal case in which we utilise all the data set as training
examples, regardless of test error fluctuations.

SHere we have employed standard results about the percentage of the normal curve less than a certain number
of standard deviations from the mean.
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Figure 2.3. The standard deviation ¥ = var (s : ./\/l)l/z, generalisation error ¢, and upper
bound (7 = 1) plotted against the test set size M. The dimension of the perceptron is N = 400,
with data set size I = 200, and test set size P = L — M. As M increases, the deviation of
errors decreases, whereas the generalisation error increases (as the number of training examples
decreases). The value, M* for which the upper bound is minimised represents the optimal test
set size; in this case, M* = 24.

2.4 Confidence in the training/testing procedure

One way to quantify confidence in the training/testing procedure for a learning machine is to
compare the result of training and testing the machine on different sets, and seeing whether or
not the test errors are close. We have in mind the following scenario.

We divide a 2P-dimensional data set into two disjoint sets of equal cardinality - a ‘left’
and a ‘right” half. Perceptron wy is trained on the right set and then tested on the left, and
Wy is trained on the left set and tested on the right. This generates two test errors, egigt and
egt for perceptrons wy and w, respectively. If the difference between egigt and egt is large,
our confidence in the training/testing procedure would be small. A quantity that measures the

mean square difference between the test errors of the perceptrons is
2
A= (= 2)) =2 (var (i s €) — cov(eld, ).
Wi Wa, L
where we have defined the covariance,
1) (2 1 2
Cov(el(fegh ez(fegt) = <(62(fegt - 69) (62(56225 - 69)>W1 Wo £

In figure(2.5), we present numerical simulations performed to calculate cov(egigt, eﬁgt) for N =
64, justifying the theoretical prediction detailed later in section(2.5.1). These covariances were
found to be an order of magnitude smaller than the variances calculated from the results of
section(2.2.3). The results in figure(2.4) demonstrate how the root mean square difference
between egigt and egt decreases as the data set size increases. For small «, there is minimal
information supplied to both perceptrons about the teacher and the two students vary greatly

in their errors. As «a increases, the version spaces become more constrained around the teacher
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Figure 2.4. The crosses are the simulated values of A, the root mean square deviation between
the two test error values generated by training perceptron (1) on the right half of the data set
and testing it on the left, and vice versa for perceptron (2). The perceptron is of dimension

(1) (2)

N = 64. The dots are the approximation to A which neglects the covariance term cov(€;. s, €;oat)-

and the degree of belief in the training/testing procedure increases. As the dimension, N, of
the perceptron is increased, A? scales with 1/N.

Training and testing more than one student on the dataset is used extensively in practice in
order to gather information about the performance of students trained with a certain algorithm,
and this leads naturally onto the topic of cross-validation, discussed in the following section.

2.5 Cross-Validation

Cross-validation (CV) is a widely used statistical technique that can be employed to estimate
the generalisation ability of a set of models, each model being trained and tested on the same
finite data set [Sha93, Sto74, BFOS84]. From the set of possible models, the model which has
the lowest CV error is then chosen as the “best” model, and a single student from this model
trained on the whole dataset, and used as the single best estimator. In chapter(3), we discuss
the problem of model selection; for the moment, however, we assume that a particular model
has been selected, and concentrate on how to use the dataset in order to predict the error that
a student from the selected model will make.

Leave out M cross-validation: CV (M)

Consider a set £ containing [ data points. This dataset is then partitioned into two disjoint
subsets - a test set, M of dimension M, and a training set P of dimension L — M. In general,

there are (Z\%) possible partitions, which we label by ¢ and the size of each test set is given by

M = L]V for some chosen number of divisions of the data set, V. For example, for the case
V =4, we divide the dataset into four equal parts, which form 4 test sets of equal cardinality,

M(1)..M(4), which we depict schematically,
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Figure 2.5. The covariance of two test errors under the scheme described in section(2.4)
(Non-overlapping test sets of equal cardinality). The perceptron is of dimension N = 64. The
dots are the simulation values plotted with one standard deviation error bars. The solid line is
the theoretical value, (a® — 1) (1 — a)® /64. Note that error bars are largest for small a as in
this region, the version space is largest, resulting in relatively poor statistics.

£ = (M) [ M) [ M(3) [ M) ]

The complement of each test set M(7) forms the training set P(¢) = £ — M(z). A student s(z)
of the model under consideration (e.g., the spherical linear perceptron) is then trained on P(z)
and tested on M(7), forming the test error €(¢). This is repeated for S students, from which
the CV error is then found,

v =1 Ze(i). (2.11)

The rationale behind this procedure is that the resulting CV error is an unbiased estimator of
the generalisation function, with a variance less than that from only a single student.
The increase in computational expense incurred from (re)training S students is not necessarily

a major factor if data is scarce. However, training students on all the possible (Z\Z) partitions

is typically prohibitive, and 5 < (Z\Z) partitions are chosen either randomly, or selected

to minimise their mutual overlap. We shall investigate different schemes for choosing the 5
partitions. Previous studies along these lines have been made by Burman[Bur89] who looks at
the effect on the generalisation error and the variance of the test error for different numbers of
divisions.

The variance of the C'V error ¢“V that we shall ultimately calculate is the variance of this
estimate over all sources of randomness (which is an upper bound on all the other possible
variances).

By training S students on independently, identically distributed (iid) examples, and from
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the definition (2.11), one obtains the decomposition®,

var (GCV : E) = %Var (e(1): &)+ (1 — %) cov(e(l),e(2): &). (2.12)

(We typically shall drop the notational dependence on £ for the remainder of our analysis of
cross-validation errors). Note that, as the examples are iid, this variance is not dependent on
the student number ¢, and we choose, without loss of generality, student : = 1 (and similarly,
we choose students (1) and (2) for the covariance). Using the general result cov(e(1),e(2) :
E) <var(e(l): &) in (2.12) we obtain immediately,

var (GCV : E) <wvar(e(l):€). (2.13)

This result motivates the use of CV to improve the accuracy of prediction of errors over using
single estimates. We shall primarily be aiming to quantify the improvement that one can
expect from using the CV procedure over using a single student, and also to quantify the
abilities of different CV schemes to minimize their variance. Other methods for estimating
data dependencies such as the Akaike information criterion[Aka74], the jackknife, and bootstrap
[Efr83, Efr86] are asymptotically equivalent to leave-one-out cross-validation, CV(1).

Using CV to estimate errors

Ideally, we would like to estimate the generalisation function €¢(i) of a particular student -
that is, the expected error that a perceptron trained on a set P(¢) will make on a random test
example. In order to estimate the proximity of the CV estimate, we define,

W2 = <(60V - ef(1))2>£, (2.14)

where the average is taken over all data sets, £. By simply adding and subtracting ¢, in (2.14),
we obtain,

v = <(60V - eg)2>£ +{e(1)2), + = 2((¢7) L esD), - (2.15)

At this point, however, there is a problem: FEven if we choose the size of the CV training
sets to be equal to the training set size of the single perceptron, there is little that can be
said about the quantity <<60V>M ef(1)>P = Y0 (es(i)es(1))p /S without knowledge of the
correlation between the generalisation functions of perceptrons trained on different subsets of
L. Theoretically, one may be able to calculate this for the specific model under consideration.
Alternatively, the approach we take here is to assume that learning has reached the stage such
that there is little difference between the generalisation functions of perceptrons trained on
different subsets i.e., that they are almost fully correlated. Under this assumption, we write,

VLR <(60V . eg)2>£. (2.16)

Hence, in order to minimise the average square difference between the CV error and the gener-
alisation function/error, we seek to minimise the variance of the CV error alone (with respect
to the different types of CV schemes).

SCorrelations between the examples used to train/test the different students affect only the covariance term
cov(e(1),€e(2) : £). Such correlations do not affect the variance term as we average over all possible datasets.
When we later address using different ways of generating (correlated) training/test sets for the different students
from a dataset, these differences will manifest themselves in the covariance between two test errors.
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Computational cost

As all the CV schemes we shall consider are unbiased, we shall be interested in comparing
simply the variance of the different schemes under a given amount of computational resource.
We define the computational cost C of a CV algorithm to be proportional to the total number
of examples that are used in the training of the S students,

P 1
c=s7=5(1-17) 217

L V Y ( )
where P/L is the fraction of examples in the dataset used to train each student, and S is
the number of students trained. This definition is motivated from the experience that testing
students is computationally inexpensive compared to training them. When C' = 1, a total of L
examples have been used in training all the students.

2.5.1 Non-overlapping test sets S <V (NOCYV)

In each of the following four sections, we shall calculate the variance of different cross-validation
schemes, relegating details to appendices at the end of the chapter.

For S <V, we are able to partition the dataset £ into .S disjoint sections, forming S test
sets, M(1),..., M(S). S perceptrons are then trained in the following way: Perceptron (i) is
trained on £ — M(¢), and tested on M(¢), forming the test error, €(z). This procedure is
repeated for all the S students, 7 = 1..5 and the resulting cross-validation error is defined”

1.8
VOV = —N"e(1). (2.18)
S
As the examples in the dataset are iid distributed, (e () e(j)) = (e(1) €(2)) for ¢ # j and using
this, we express the variance of the CV error as,

var(eNOOV) — %Var(e(l)) + (1 - %) cov(c(1),¢(2) [NOCV) (2.19)
Here, var (¢ (1)) is the test error variance of a single perceptron having been trained on a set of
size L(1 —1/V), and tested on a set of size L/V. Looking back at equation(2.8), we note that
this is a quantity that we have already calculated. The covariance can be calculated by using
the replica formalism, as outlined in appendix(2.8.1).

For the case of two divisions, V' = 2, and two students, S = 2, the covariance is given by
(see figure(2.5) and figure(2.6)),

cov(e(1),e(2)INOCV) = % (0 = 1) (a = 1), (2.20)

which is negative throughout the range of possible v values from 0 to 1. As a partial explanation
of this effect, without loss of generality, we consider one of the halves of the dataset, say
M(1), to have examples which cover the input space more thoroughly than the other half of
examples, M(2). This means that perceptron (1) will have a higher test error than perceptron
(2). Generically, one of the test errors will be higher than average, and the other lower than
average, thus giving rise to a negative covariance.

"This is sometimes termed “v-fold cross-validation” in the statistics literature[Bur89].
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Figure 2.6. Scaled covariance Ncov(e(1),€e(2)) of two test errors for the various CV schemes,
for two divisions (V' = 2). The lower curve is the case for a total of only two students (S=2)
in the CV scheme, for which the optimal scheme OCV and non-overlapping scheme NOCV are
the same. The middle curve is for four students, S = 4, plotted for the optimal scheme. The
upper curve is for the Monte-Carlo scheme, which is independent of the number of students.
The upper and lower curves represent limiting cases for the covariance - in the lower curve,
there is no overlap between the test sets of the students, whereas for the upper curve, there is
an overlap that would occur for randomly selected test sets. For the case in which the overlap
between the test sets is maximal, then the covariance tends towards the variance as then the
test and training sets of the two students are the same. Hence, as the test set overlap aqs
increases, we expect an increase in the value of the covariance.

2.5.2 Random Partitioning, or Monte Carlo CV (MCCYV)

For a set of L examples, and V' divisions, there are (L%V) different partitions of the dataset

that could be constructed. As thisis typically exponentially large, a computational compromise
is given by randomly selecting a subset of the set of all the possible partitions®. (Note that the
maximal number of partitions limits the reduction in the CV variance that can be obtained.)
However, randomly selecting training/test sets for the student perceptrons may not be the
optimal strategy as, with some probability, the same examples will be assigned to different
students. We write the probability that an example lies in the test set of two student perceptrons
as ajz, which for the random partitioning case gives ajy = V72,

In figure(2.6) we plot the covariances of two students trained under different CV schemes
and for different numbers of students. We see that the random scheme MCCV (upper curve)
yields positive covariances, in contrast to the NOCV case (lower curve), where the covariance
is negative. These results are difficult to interpret; however, some intuition may be gained from
considering the extrapolation of the small test set overlap given by MCCV to that of maximal
test set overlap, for which the covariance tends to the variance - a positive value. The middle
curve of figure(2.6) is explained later in section(2.5.4).

8This scheme is termed “repeated v-fold cross-validation” by Burman[Bur89).
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2.5.3 Block CV scheme (BCV)

The non-overlapping partition scheme NOCYV is ideal for S < V' as the students will then be
tested on disjoint sets, which will cover the input space better than overlapping sets.
The maximal number of students, however, for NOCV is I, — 1. As there is no restriction on
the number of students for the random partition case, random partitioning will eventually yield
a lower variance than the non-overlapping scheme for some S > V. This immediately brings
us to consider another CV scheme, similar to the non-overlapping case, but which allows the
same number of students as for the random case. We have in mind the following scenario: We
randomly permute the members of the dataset, and then apply non-overlapping partitioning
cross-validation (NOCV), training S = V students. This procedure is repeated, each time
randomly permute the dataset, and then applying non-overlapping CV. We call this scheme
Block cross-validation (BCV) as the students are trained in blocks of V| such that the total
number of students trained is S = BV.

We define the Block CV error to be the average of the NOCV errors over B blocks, namely,

1 B
6BC’V — E ZGNOCV(Z') (2‘21)
=1

where V99V (1), for each block 7 of V students, is defined in equation(2.18). The variance of
the BCV error is then given (for a number of blocks, B) by,

1 1
BCVY _ NOCV
var (6 ) = Evar (6 ) + (1 — E) cov(e(1l),e(2) IMCCV) (2.22)
Writing this out more fully we get,
1 (1 1
BCVY _
var (6 ) = 5 {Vvar (e(1)) + (1 — V) cov(e(l),e(2) |NOCV)}

+ (1 - %) cov(c(1),¢(2) IMCCV) (2.23)

For the case of two divisions, V = 2 and two blocks, B = 2, we get

var (#9V) = ivar(e(l)) + icov(e(l) L€(2) INOCV) + %cov(eu) Le(2) IMCCV)  (2.24)

whereas for the random case it is,
1
var (M) = Jvar (e (1) + Zcov(e (1),€(2) IMCCV). (2.25)

Recalling the results from section(2.5.1) that the covariance under the NOCV(V = 2) is neg-
ative, and that they were positive for the random case, we see that the variance of the BCV
scheme will be lower than that for the random scheme. Indeed, using cov(e(1),€(2) INOCV) <
cov(e(l),e(2) IMCCV), it follows that var (GBOV) < var (GMCCV). Hence for any Monte-Carlo
CV scheme, we can find a block CV scheme that has a lower variance for the same computational
cost?.

“Provided the number of students in the random scheme is non-prime.
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2.5.4 Optimal Partitioning (OCV)

The BCV scheme is an improvement over the random case because the overlap between the
testsets is smaller, but can we do better - is there a way to assign the test sets to the various
students that minimises their mutual overlap? The formulation of such a question leads to a
straightforward linear optimisation problem. Solving this, one finds that the minimal overlap
achievable is (P.Sollich, personal communication),

2 _ 1 (1_L) (1_l)+A57((;:?))7 (2.26)

where A = 2 — |z], and & = S/V. To construct such a partitioning we define €(7) to be the
fraction of examples on which exactly 7 students are tested and set,

e(|lz])=1-A, e([z]) = A, (2.27)

where |x] is the nearest integer < x, and [z] is the nearest integer > x. All other €(7) are set
to zero.

An example V =4 and S =6.

Suppose that we are going to partition the dataset into four equal parts (V = 4) and train 6
cross-validation students (S = 6). Hence = 1.5 and A = 0.5, giving €(1) = 0.5 and €(2) = 0.5,
so that half of the examples are tested on only one student, and half on two students. In order
to construct such a partitioning, lets say we had 12 data points, (1), .., 2(12). This means that
each test set will consist of 3 examples, and we assign the test sets for the 6 students as:
M(1) = {2(1), 2(2), 2(3)}, M(2) = {a(4),2(5), 2(6)},

M@3) = M) ={x(7),2(8),2(9)}, M(5) = M(6) = {=(10),2(11),2(12)}.

The training sets for each student are simply the complement of the test sets. In figure(2.6) we
plot the covariances of individual students with V = 2. The graph can be interpreted as results
for the optimal scheme OCV(2) with different numbers of students. The lower curve is for two
students, the middle for four, and the upper curve is for an infinite number of students. The
covariance essentially becomes more positive as the number of students is increased, reflecting
the convergence of the OCV scheme to the random scheme as the number of students increases.
In figure(2.7) we plot the (scaled by N) variance for a number of students S = BV against
B and V. These graphs serve as baseline values against which we shall compare other CV
schemes.

Comparison of various CV schemes

In figure(2.8) we plot the errors that the Monte-Carlo CV and Block CV schemes make relative
to optimal CV for two different values of as,. As the number of blocks is increased (remember
that the number of students is given by S = BV), the performance of the optimal scheme
becomes increasingly similar to both the random and block schemes. Although the relative
performance for some schemes can degrade for larger datasets, the absolute values of the CV
variances converge towards zero in the limit of a large amount of data. In the limit of an
infinite amount of data, the three compared CV schemes will have zero variance and thus the
same performance. For the same amount of computational cost, C' = B(V — 1), BCV performs



22 CHAPTER 2: SPHERICAL LINEAR PERCEPTRON

Figure 2.7. The (scaled) variance of the optimal partitioning scheme, Nvar (OCV), versus the
number of divisions V' and number of blocks B, such that the number of students is given by
S = BV. (a) asor = 0.1, (b) azr = 0.8. Actual variances are given by dividing by N. Generally
increasing the number of partitions and/or students lowers the variance, as does increasing the
total amount of data available, ay;.

better than MCCV, with a relative difference between the variance of the BCV compared to
OCYV of typically less than 5%. Although the MCCV scheme also performs well, it does worse
than BCV, with a relative difference between the variance of the MCCV compared to OCV of
typically less than 25%. From this we conclude that BCV is a very good approximation to the
optimal scheme.

2.5.5 Optimising the upper bound

Having analyzed different CV schemes, we address the following question: Given that we wish
to both minimise the generalisation error, and to maximise our confidence in the estimate of
the error, how should we best use a CV scheme with a given amount of data and computing
effort? This is essentially the same question that we asked in section(2.3) except that there
we did not assume fully correlated generalisation functions, and thus restricted ourselves to
training only a single perceptron'®. Again, we form an upper bound function (¢f. (2.9)),

¢V =€, + 7y/var (€V), (2.28)

which we minimize with respect to the CV parameters S and V for a given cost, C' = S(1—1/V).
For convenience, we set 7 = 1 throughout.

As there is generally only a small difference between the performance of the various CV schemes,
we concentrate on the MCCV scheme as this is the most convenient to analyze. (In the large

10The resulting optimal test set size asymptotic scaling law, however, can be shown to be the same for
estimation of the generalisation function and the generalisation error. The reason for this is that there is an
implicit assumption that there is a large amount of data (N is large), as ayor (the ratio of dataset size to the
size of the perceptron) always takes a finite value. This means that the generalisation function will be close to
the generalisation error, and that the scaling laws for the best approximation of the generalisation function and
generalisation error will be the same.
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Figure 2.8. Relative performance of block CV and Monte-Carlo CV compared to optimal CV,
versus the number of divisions V" and blocks, B. (a),(b): (var (BCV)—var (OCV))/var (OCV)
(a) aror = 0.1, (b) auer = 0.8. Figs. (c),(d): (var (MCCV) — var (OCV))/var (OCV) (c)
e = 0.1, (d) awe = 0.8. Note that in Fig.(d) the axes have been rotated. Although the
dependence on the number of divisions is not straightforward, as the number of blocks is
increased, the relative performance improves because optimal CV becomes more like Monte-

Carlo CV.
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N limit, there will essentially be no difference between the CV schemes.)

As in section(2.3), we empirically find that there is a 2/3 power law scaling for the optimal
test set size scaling. Upon making such a scaling Ansatz, we find the prefactor for the optimal
number of divisions:

|
N
]
Q
S’
ol
e
N
&
Z

Ve = (2.29)

Alternatively, we can write this as an optimal test set size,

M — (W) (2.30)

Comparing this with the optimal test set size we found for the single student (equation(2.10)),
we see that,

1
M*(CV) = FM*(OTSS), (2.31)
where M*(OT SS) is the optimal test set size calculated for a single student. We can also write,
VH(CV) = CTV=(OTSS). (2.32)

This could be viewed in a rather pessimistic light - namely that, for using say twice the amount
of computing resource (C' = 2) in the CV procedure, we have reduced the amount of examples
required for testing by a factor of only 1/2'/3 = 0.79. Given that we know that the relationship
between the error and test set size is linear, it appears that a great deal more effort yields little
in the way of improved performance.

There are interesting comparisons to be made between this work and that of Burman[Bur89],
who (numerically) researches the best number of partitions to use for a linear student learning
a quadratic teacher rule, although Burman does not explicitly optimise a measure of the bias-
variance tradeoff by introducing a quantity such as the probabilistic upper bound. Although
there is no general prescription given for the best number of partitions, Burman advises a
number greater than V = 2. We find, from equation(2.29) that the number of divisions should
scale with the 1/3 power of the computational cost (normalised number of examples used in
training).

2.6 Summary

We have explicitly calculated the variance in the test error of a linear N-dimensional spheri-
cal perceptron and found that it decays with the system size N as 1/N for a number of test
examples and training examples proportional to N. Furthermore, the variance decreases mono-
tonically to zero as the number of training examples approaches the system size. Using these
variance results, we found the optimal test set size M™*, defined by minimising the average upper
bound on the generalisation function given the test error. That is, for a data set of dimension
L, an upper bound on the expected error that a student perceptron will make on a random
test example by training on L — M and testing on M examples, is minimised for M = M*.
For large N, M* scales with N?/3. A simple measure of the confidence in the training/testing
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procedure was given, being the difference between the test error values for two identical per-
ceptrons trained and tested on the same data set. This difference necessarily decays to zero as
the number of training examples increases.

We have examined the performance of various cross-validation schemes for estimating the gen-
eralisation error. We found that there was little difference between the optimal scheme and the
block cross-validation scheme (less than 5% difference), the Monte-Carlo scheme performing
worst (less than 25% difference). Extensions to this work for the case of noise and weight decay
are presented in chapter(3), and to non-linear systems in chapter(4).

2.7 Appendix: Geometrical approach

The first two appendices deal with the geometrical approach to calculating the variance of the
test error.

2.7.1 Appendix: Version Space averages

For a single test example, the average of the test error €,.q(w|M,w") over the VS can be
written,!

1
mxixj ((rirﬁw + r?r?) \

where r = w — ¢, ¢ is the centre of the VS, and r® = Pw?,

In order to perform the VS average, we transform the coordinate system, under a rotation
matrix R, to express the hyperspherical VS in canonical coordinates, VS : PR PR p = R
where R? = w'Pw?. Then

T (Tirj)yg = TelalicRjg Ria Rjp (FaTh) 75 -

In the canonical system,

~o i
f 5(11)7

TS = N p
where,

N {5ab a,b< N-P
5ab:

0  otherwise.
For a rotation matrix, R;.R;, = d4., hence,

R R

viej (rivj)ys = plabady = w0

xTPx. (2.33)
Using the definition r° = Pw®, we have
xixjr?r? = (XTPWO)Q.

Generalising the above argument to the case of M test inputs gives equation (2.6).

The summation convention will be adhered throughout.



26 CHAPTER 2: SPHERICAL LINEAR PERCEPTRON

2.7.2 Appendix: Averaging the square generalisation function

The test error variance (2.1) can be written,
var (€5 : M) = <6t65t(W|M,WO)2>M7W7P — <6f(W|WO)2>W7P )

and we demonstrate how to calculate the second term (ef(w|w®)?),, ». The first term can be
calculated by employing similar techniques. A straightforward gaussian integration gives the

generalisation function as 1 — (WTWO) /N and squaring this and averaging over the version

space gives,

(e, = =1+ 25 () P 4 5 (7)), + (7)),

where, as before, r = w — ¢, and ¢ = w® — Pw’. The term in the above equation that still

needs to be explicitly averaged over the version space can be calculated by employing equation

(2.33), replacing x with w°. Further performing a teacher average leads to the equation'?,

(eslolw),, = %<((W0)pro)z>wo

Writing the average in the above equation in component form, we need to find,
0,0 0 0
<ijkwpwq>wo P Py,.
We show below that for a spherical constraint,

N
<w?w2wgwqo>wo = m (5jk5pq + 5jp5kq + 5jq5kp) ) (2-34)
which gives,
N—-—P+1
042 _
<6f(W|W ) >W,W° - N(N _ P) (N‘|‘ 2)

(T:P)* +2 Tr (P?)] .

The final expression for <6f(W|WO)2>W7W07P is obtained by using TrP = N — P in the above
expression.

An elementary derivation of equation (2.34) is given by noting that the second factor follows
from symmetry arguments, as only even power combinations of the teacher weight vector com-
ponents contribute. The prefactor can be obtained by considering'?,

N? = (whwo = N(wi)wo + N(N — D){wiws)ye,
for which one can then explicitly calculate,

o o df cos* §sinV =20 3N

4
o= N —
(wi)w [T dfsin™ 29 N +2

where, w; and wy are simply two independent directions. We note that for the case of a
unit variance, zero mean gaussian measure, (wiw3),,0 = 1, such that the difference between a

spherical and a gaussian measure is O (N™'), disappearing in the large N.

12The teacher space average is over the constraint that the w® vectors are of length /N.
135We drop the teacher ‘0’ index on teacher components raised to some power.
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2.8 Appendix: Statistical Mechanics Formalism

The following appendices relate to the calculation of the covariance of two cross validation
errors. The general formalism relating to these calculations is presented in appendix(A).

2.8.1 Non-overlapping test sets CV

In appendix(A), we construct a double replica formalism that allows general (co)variances
to be calculated. In order to find the CV covariance, we consider the dataset as the union
of the V disjoint test sets, M(1),..., M(V). This means that we can write, explicitly, for
perceptron (1), that P(1) = M(1) U M(2)... U M(V — 1). Similarly, for perceptron (2), we
have, P(2) = M(1) UM(3) U...U M(V). Using these explicit test/training sets, we find that

the required double replica free energy is,

FY = Gy 4+ S G (30 8) 4 G (Bi7,) + (V = 2)G7 (3:8) ) (2.35)
where G'? and G2 are given by equations (A.32) and (A.35) respectively. Extremising this
free energy gives the values of various order parameters which describe the state of the system.
These take the form of overlap parameters, ¢ = w*w? /N, R = wow*? /N, and ¢12 = wi-wJ /N.
The parameter ¢ measures the overlap between student solutions in different replicated weight
spaces, W*, and W?. Similarly, R measures the overlap of the student weight vector with
the teacher, and g1 measures the overlap between weights from the two different students. In
principle, there is no difficulty in calculating results for the CV variance for any temperature,
T'. We concentrate our analysis, however, on the zero T' limit as in this case analytic results are
readily obtained. This also leads to the simplification ¢ = R. The covariance is then found from
F'2 by differentiating with respect to the auxiliary fields v, and ~, in the limit of vanishingly
small fields and setting the order parameters to their saddle point values.

Zero temperature

At zero temperature, we have that ¢ = R = (1 — 1/V )ayse. That is, the overlap of the students
within the version space is equal to the overlap of a student from the version space with the
teacher weight; the value of these overlaps increases linearly with the training set size. The
value of the inter-replica overlap is given by,

(g—1)V —=3¢+2
d12 = ¢
(g— 1)V +1-2¢

(2.36)

For the case V = 2, we have ¢1o = ¢* = R%. In the limit V—oo, we have ¢ = ¢. A
straightforward explanation of these results is found by considering the decomposition, w? =
Rw®+w? for i=1,2 where w? is a zero mean, random vector perpendicular to the teacher, with
variance <(€VZU)2> = N(1 — R?), and covariance (W? -w’) = N(q — R?). (This decomposition
guarantees (w7 -w®),, = R; the spherical constraint; and the intra-replica constraint.) Using
this decomposition, we write the inter-replica overlap, ¢12 = R* + (W7 -w5). For the case of
V' = 2, the training sets of the two perceptrons are independent, and therefore the average of
w? W) is simply zero, leaving ¢12 = R*. As V tends to infinity, the training sets become fully
correlated, and w9 = Wi, giving ¢1o = R* + ¢ — R™.



28 CHAPTER 2: SPHERICAL LINEAR PERCEPTRON

2.8.2 Appendix: Monte Carlo CV

Following similar logic to that of appendix(2.8.1), by explicitly constructing partitions that will
satisfy that the probability of overlap of two test sets is given by a2 = V72, we find that the
double replica free energy is given by,

= Gt SV DG () 4 (V- )6 (51

+ (V= 172G (3:8) + G (41572) } (2.37)

This leads to a rather complicated ¢;5 value, which reduces for MCCV(2) to q12 = ¢/(2 — q).
Again, we have that ¢;2 must approach q as V grows.

General test set overlap

Parenthetically, we note that specification of the test set overlap aq, is sufficient to determine
all other relevant probabilities, such that we can write the double replica free energy as.

1 1
F2 o= Go' + augy { (V - 0412) G (11;8) + (V - ozm) G (B:7,)

+ (1 — é + 0412) G (85 8) + a12G* (35 ’72)} (2.38)

2.9 Appendix: More general Networks

Up to now we have been looking at the relatively simple case of the linear perceptron. In this
appendix we study (for a broader class of activation functions than the linear one studied so
far) the relationship between the variance due to all sources of randomness, var (€. : £€) and
the average variance due to the test set var (€es: : M).

Writing,

var (ﬁtest : M) = % <<6§est>M - <6test>3\4>W7P (2-39)

we remark that since the input distribution over which the test error is averaged is isotropic,
the absolute directions of the student and teacher weight vectors are irrelevant - it is only their
relative separation that is important. This means that €5 = (€sest) o can only be a function of the
overlap between the student and teacher vector. Let us now consider calculating var (€5 : M)
when there have been no training examples yet presented.

2.9.1 Overlap distribution at o =0

It we can find the overlap distribution at a = 0, we shall be able to calculate the variance of
the generalisation function at o« = (. The motivation for doing this is that it will lead us to an
approximation for var (€5 : M). As mentioned above, the term (€ses:) oy = €7(R) is a function
of the overlap,

1
R=—w-w' (2.40)
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Hence, in order to perform the average over the student weight space, (..),,,, we need to find the
distribution of R at a = 0 which, fortunately, has a particularly simple form. Due to isotropy,
without loss of generality, we may take the teacher weight vector to be,

(w)T = (V'N,0,0,0,...0). (2.41)

Remember that both student and teacher weights satisfy the spherical constraint, w-w = N,
w'-w? = N. This means that the overlap is simply, R = w; /v N and the overlap distribution
is given by,

/dw5 (R - —) §(w-w— N). (2.42)

By expressing the delta functions in integral representation form and performing a subsequent
saddle point calculation, one finds that the overlap distribution becomes,

N
P(R) o (1-R?)7 (2.43)
which is highly peaked around R = 0. In the limit N—oc, this distribution approaches

P(R) = gexp —~NR?/2, (2.44)

a gaussian of variance 1/N, mean zero. Hence, at a = 0, the average over the student weight
space of the square of the test error becomes simply,

YR)), :/_O:o Dr ¢ (\/x—ﬁ) (2.45)

where Dz is a unit variance, zero mean gaussian measure. By straightforward Taylor expansion,
one readily finds that the variance over the overlap distribution of €..5:(R) is,

(B, — e Ry = (j];; (R = o>)2 +o(55) (2.46)

As patterns begin to be presented, the overlap distribution becomes more peaked around its
mean value. This means that the variance of €;(R) is maximal at o = 0, decreasing mono-
tonically with a. For bounded €¢;(R), equation(2.46) shows that one can bound the difference
between the average of the square of ¢; and the square of the average of ¢; by order 1/N. This
being the case, we can write var (€5 : M) as,

Mvar (€rest : M) =var (€est : E) (M =1)+ O (N_l) ) (2.47)

Hence, the only extra work involved in calculating var (€5 : M) is in finding the average of the
squared test error. The variance on the right side of equation(2.47) is simply the full variance
calculated for one example. In appendix(A), we show how one can apply replica methods to
find this variance, with the result in the form,

var (€est : £) = %f(,u), (2.48)

where the test set size is given by M = pN. The full variance var (€. : €) (M = 1) for one
example can then be obtained from equation(2.48) by taking the limit,

var (€pest 1 E) (M =1) = Mlgn)g wf(p) (2.49)

Hence, by applying replica methods, we can find the variance var (€. : £), and then by the
above procedure, the variance var (€, : M) can be derived up to order N7



Chapter 3

The Linear Perceptron II: Weight
Decay

Abstract

By finding the variance of the test error due to randomness present in both the
data set and algorithm for a noisy linear perceptron of dimension N, we are able to
address such questions as the optimal test set size. We find that the optimal test
set size possesses a phase transition between linear and 2/3 power law scaling in the
system size N, dependent on the level of noise and the available amount of data.
Cross-validation is assessed in terms of its variance, and results concerning model
selection are presented.

3.1 Learning from noisy examples

In chapter(2) we built up a general framework for calculating variances, and used a variety
of techniques from geometrical methods to statistical mechanics. Introducing noise into the
formalism is a step towards a more realistic learning scenario, which we briefly review.

We consider the scenario in which the inputs are represented by N dimensional real vectors,
x € RV, and the output is a real variable, y € R. A data set £ is a set of L input-output pairs,
L ={(x"y"),p = 1..L}. The inputs x” are assumed drawn independently and identically
from a zero mean, unit covariance matrix Gaussian distribution. The (corrupted) outputs are
y” = y°(x”) + n* for some teacher function y°(-), where n” is additive noise. For the purpose of
learning from examples, £ is split into two disjoint sets, the training set, P = {(x7,y7),0 =
1..P} and the test set, M = {(x*,y*),u = 1..M}, where L = P+ M". The aim is to find, using
the information in P, a student function y(x) that matches as closely as possible the output of a
randomly chosen input-output pair. That is, we search for student functions that generalise well.
Clearly, the optimal student is identical to the teacher, and we shall assume that this function
is accessible to the student, i.e., that the learning problem is realisable]l WRB93, BS95b]. In
this chapter, we shall again deal with one of the simplest input-output mappings considered in

'A o index will refer to a training input, and g to a test input.

30
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the learning from examples literature, namely the noisy linear perceptron[HP91], for which the
output y is related to the input x by
)=
X) = —W-X
y \/N b
where the weight vector, w € RY. The data set outputs are generated by a ‘noisy’ teacher,
y? = w’ x?//N + 17, where w is the teacher vector, and the noise is drawn from a gaussian
distribution of mean zero, variance o, such that (p’n™) = ¢2¢,,. In addition, the spherical
constraint is assumed on the teacher, namely that it lies on the hypersphere w® - w® = N.
Student perceptrons that match the outputs of the training set well are found by minimising
the training energy?,

P P
B = 30 (yx7) =) = 3 (x” =),
o=1 o=1

where, for convenience, we have defined w = (w — w") /V/N. However, to prevent the student
learning the noise in the training set we add a regularising term, Aw?, to the training energy
to form an energy function, £ = E;, + Aw? [KH92, DW93]. This extra weight decay term
penalises large weights and prevents overfitting, improving generalisation performance. As
Eu(w|P) x P, as the amount of data increases, the relative importance of the weight decay
decreases. The equilibrium (t — oo) distribution of students that this Giébbs algorithm produces
is a (Gibbs distribution,

P(w[P) =  exp(~B/T),

where Z is a normalisation constant. The test error, defined by
0 Lo I #Y)2 LS5 e I uy2
Clest(WIM, W) = — > (¥ —y(x"))" = = > (Wx" — "), (3.1)
M pn=1 M pn=1

measures how well a student performs on (corrupted) examples from the test set. Ideally, one
would like to know the test or generalisation function, i.e., the expected error e;(w|w®) =
(€test(W| M, W?)) , that a student drawn from P(w|P) will make on a random test example®.
The generalisation function averaged over P(w|P) and all possible training sets P is termed
the generalisation error, ¢,.

The test error forms an M sample estimate of the generalisation function and, according to
the central limit theorem, the generalisation function will be distributed in a gaussian manner
around the test function[Fel70]. It is the central aim in this chapter to calculate the variance
of this distribution. The fluctuations due to random training sets for a particular student
generated from the training set P are quantified by ((ereet(W| M, W°) —er(w|w®))?) ; the

2In comparison to the spherical linear perceptron, there is no 1/2 factor in the definition of the training
error, or test error. This is to ensure that the generalisation error in the absence of any examples is 1.

3Although e;(w|w?) is a function of the teacher, due to isotropy of the teacher space, the results of this
chapter depend only on the length of the teacher vector, which is fixed. To simplify the calculation, however, we
include later a teacher average which is implicit in the average over the data set. For convenience, we denote the
generalisation function as an average over all possible test sets M of size M, although this average is naturally
independent of the number of test examples.
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average fluctuation of students generated by the training set can be found by averaging this
over P(w,P) = P(w|P)P(P). We then write the average fluctuation for a P dimensional
training set as®,

var (€5 : M) = <(etest(w|./\/l,w0) — 6f(w|wo))2>M,W,P = %212, (3.2)
where (..) sy » denotes an average over test sets, post-training student, and training set dis-
tributions respectively. 3,2 is the variance of the test error calculated for a single test example.
It the vast majority of the data examples are assigned to the training set and very few to
the test set, the confidence in how well the test error matches the generalisation function will
generally be small. Indeed, the test error in this case would typically fluctuate wildly over
different test sets, i.e., the variance, var (€. : M) would be relatively large. We really want
to use the data in a dual manner: to minimise the test error, yet remain confident that it will
be representative of the generalisation function. That is, given a data set of size L, we aim to
know how many examples, M, should constitute the test set, assigning the other P = L — M
examples to the training set. In order to address this, we form the generalisation function upper

bound e (M|L) = €,(M) + 71/var (€t : M), where 7 is a confidence parameter to be chosen.

We view €,,(M|L) as an average probabilistic upper bound on the generalisation function of
students trained on P examples and tested on M examples. In order to calculate the optimal
scheme to satisfy the above dual requirement, we minimise €,,( M |L) with respect to M to find
the optimal test set size, M*. This requires the calculation of the variance, var (€5 : M).

In the following section(3.2), we calculate the variance exactly for a restricted region of the
space of parameters A\, 7', o%, and give results that hold for all parameter values, but are valid
only for the large N regime in section(3.3). Using these results, we present the optimal test
set calculations in section(3.4), and in section(3.6) we extend our analysis of cross-validation
to look at model selection, concluding with a summary and discussion in section(3.7).

3.2 Exact variances

In the following two sections, we present briefly results of calculations that are exact in the
sense that they hold for all N. These results represent the continuation of work presented in
chapter(2), in which the variance of the noise-free spherical linear perceptron was calculated
under exhaustive learning®.

The exact calculations, however, were performed without a weight decay term in the training
energy F. We defer presentation of results including weight decay until section(3.3) as these
results rely on a large N approximation.

3.2.1 Gibbs learning without weight decay (A =0)

Recently, the generalisation error for the finite N Gibbs learning algorithm, without weight
decay, was given[Han93] and as the calculation of the variance employs these results, we briefly
present the line of argument.

*An average over the noise is implicit in the average over the test and training sets.
°In the exhaustive learning scenario considered in [BS95¢], P(w|P) is given by the distribution that is uniform
over those student weights that reproduce the training set exactly and that satisfy the constraint w-w = N.
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The average of the test error, given by equation(3.1), over the noise distribution, test sets,
and student distribution becomes, after straightforward gaussian integrations,

<6test(W|M7W0)>M7W = <VA{72>W + 0-2- (33)
By explicitly evaluating the first term of equation(3.3), we find,
T
0 _ 2\ (/0 A -1 2
(nlwlMw)) = (5407 (AT + 02 (3.4)
where the covariance matriz A is defined,
1 & T
A=) x"(x)", (3.5)
N o=1

and tr'(-) = Tr(-)/N, where Tr(-) is the trace. The generalisation error is found by taking an
average of tr/(A~') over the gaussian inputs of the training set, which we denote by (..)x, and
using the fact that A~" is distributed according to an inverse Wishart distribution, W~(I, P)
[Eat83, Han93] where I is the identity matrix. In order that the average of the inverse is finite®,
we require P> N 4+ 1, and have the result, (tr'(A~')) = N/(P — N — 1), which gives,

T N
Gg: <§+02)m+02. (36)
For the variance, we rewrite equation(3.2) as,
var (€5 : M) = <6t65t(W|M,WO)2>M7W7P — <6f(W|WO)2>W7P ) (3.7)
where, as before, e¢;(w|w?) = (€a(W|M,w°)),,. After carrying out the average over M,

equation (3.7) gives

2 _ o /g4 252 4
N2 =2(W + 209 + o >W7P. (3.8)
A straightforward gaussian average over P(w,P) gives
1 2 T 2
2 _ 10 A =2 2 e 2 2
Y, _2<ﬁtr(A ) (7 +207) +[tr(A )(§+a)+a]>x. (3.9)
This can be explicitly evaluated for P> N 4 3 by employing [Eat83],
PN +2— N*—-2N)N
trrA7h)?) = ( 3.10
(A7), (P-—N)P—N—1)(P—N—3) (3.10)
and
N?(P -1
(tr'(A7)) = ( ) : (3.11)
x (P=N)P-N-1)(P-N-=3)

The full expression for 3,? is somewhat cumbersome, and we present here only the large N
limit,

2 a—1

where o = P/N > 1. Thus both the generalisation error and variance diverge for a—1. As «

2 2
v2o L (M) +o (N, (3.12)

increases beyond 1, ¥1% decreases to its asymptotic value 20?.

SFor P < N, there are unconstrained directions for the student, which lead to a divergent integral in the
average.
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3.2.2 Pseudo Inverse

The pseudo inverse algorithm is a limiting case of the general Gibbs algorithm in which the
temperature and weight decay both tend to zero such that T/A < 1 [KH92, DW93]. The
benefit from the point of view of the analysis here is that we are able to calculate exactly the
variance for both P <N and P> N, rather than being restricted to P> N as in section(3.2.1)

The generalisation error for the pseudo inverse algorithm for P> N+1 is given by employing
the T = 0 limit of equation(3.6)[Han93]. Similarly, the results for the variance for P> N + 3
can be readily obtained from equation (3.9) by setting T'= 0. For P < N, the pseudo inverse
algorithm is given by w = Pw?, where P is the projection onto the subspace spanned by the
training inputs[HP91]. Thus P(w|P) is zero except for the single point, w = X7 (XXT)~1Y,
where YT = (y',..,9") and XT = (x!,..,x"). This gives,

P 2 -1
egzl—ﬁ—l—a (1—|—<tr(B )>x),
where B = XXT/N. Comparing B with the N x N correlation matrix for P patterns,
A = XTX/N, (¢f. equation (3.5)), we remark that B is also a correlation matrix, distributed
identically to A, but with the roles of P and N reversed. The results from section(3.2.1) con-
cerning the averages of the correlation matrix can then be employed directly by interchanging

P and N. For P<N — 1, we obtain,
P , N—1

=1—- — -

“ NTON-PoT
in agreement with known results for N — oo, o = P/N=const [KI92]".
A straightforward calculation of the variance for P <N — 3 leads to

Nur = o (B )+ (B +2(B ) 1
+ (N=P) [202 ((wB™) +1) + NLH (24N — P)] . (3.13)

The results in equations (3.10) and (3.11) can then be employed to find the variance explicitly.
In figure(3.1), we plot the generalisation error and ¥ /v/2 against « for a system of size N = 20.
We remark that the two curves are very similar, a result which we show in the next section is
not coincidental. Note that both curves possess the characteristic divergence as the training
set size P approaches the system size N.

3.3 Weight Decay

In this section we present results for the general Gibbs learning algorithm for arbitrary tem-
perature, weight decay, and noise.

After carrying out the gaussian integrations over the noise and test set inputs, the resulting
generalisation error and variance are necessarily of the same form as equations (3.3) and (3.8)
respectively, the only difference being in the distribution P(w|P) which now includes a weight

"Note that in [KH92] the generalisation error is calculated for uncorrupted test sets.
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Figure 3.1. Pseudo inverse rule, T'= 0, A = 0. Dashed curve generalisation error. Solid curve,
scaled standard deviation. The noise is 0% = 0.2, N = 20.

decay term. By continuing the gaussian integrations required for the average over P(w|P), we
obtain,

€ = o+ (; + 02) <tr’(M_1)>x + A ()\ — 02) <tr’(M_2)> , (3.14)

X

where
M=A 4+ AL

Here A is the correlation matrix defined earlier in equation (3.5)%. The difficulty arises in
the calculation of the averages of inverse powers of the matrix M. tr/(M™!) is termed the
response function, G, which can be shown to be self averaging in the thermodynamic limit,

with (G — G)?), = O(N7?), where G = (G), [Sol94a]. Moreover, Sollich [Sol94a] obtained the

first order corrections to the average of the finite N response function in the form,
G =Go+Gi/N+0(1/N?),

where G is the averaged response function in the thermodynamic limit, and has the value,

1
Gozﬁ<1—0z—)\—|—\/(1—oz—)\)2—|—4)\).
G, is related to Gy by the equation, Gy = G&(1 — AGo) /(1 + )\Gg)2. Using these results,
the first order approximation to the average (tr'(M™!))
(tr'(M™%))

. can readily be found. Similarly,

. can be found by using (tr'(M™2%)), = — (9/9X) (tr/(M™1)). .

8Note that the pseudo inverse rule is best explained as the limiting case of using the matrix M for no weight
decay.



36 CHAPTER 3: NOISY LINEAR PERCPETRON

At this point, however, we note that for the linear perceptron under consideration, we can
rewrite the equation for the variance as

%le = 63 + var(W?)w.p, (3.15)
where w = (W—WO)/\/N and var(w?)yy p is the variance of W-w over the distribution P(w,P).
By straightforward gaussian integration, one finds that this variance is a function of the average
of terms involving tr'M ™", ¢ = 1..4. Furthermore, the resulting expression is O (N~!), such that
any finite size corrections to tr'M~% will be O (N~2) corrections to ¥2. Whilst these corrections
are straightforward to obtain, the resulting lengthy expressions do not merit inclusion here.
Hence, up to order O (%), the standard deviation of the test error scales linearly with the
generalisation error. Indeed, looking back at equations 3.12,3.6, we note that the large N
expansion of the variance satisfies

¥ =22+0 (N7, (3.16)
Evaluating (3.14) and expanding for small A gives

_12020z—|—T aXT + 402

“=3 a1 2la-p PO (317

where o > 1 + N7/ A < 1. (A similar expansion holds for o < 1). A weight decay term is
therefore advantageous in reducing the generalisation error and the variance.

Up till now, we have considered an isotropic input distribution. More general input distribu-
tions can be considered in which the inputs are ‘spatially’ correlated, P(x) o< exp(—xTI'"!x/2)
(see e.g., [Sol94a], [TL93]). For this correlated input distribution, equation (3.15) remains true
on replacing W with T''/2%. The variance of a single test example can then be well approxi-
mated as before by twice the square of the generalisation error under the spatially correlated
input distribution.

3.4 Optimal test set size

Now that the variance has been calculated, we can proceed to establish the optimal test set
size.

A data set L, consisting of L elements, is split into the two disjoint subsets, P and M. As
before, P is the training set consisting of P examples, and M is the test set of M examples,
such that £L = PUM, and L. = P+ M. Given a data set of L elements, we can then set
P = L — M in the equations for the variance and generalisation error, and let M vary between
1 and L —1.

For small M. the standard deviation is relatively large and the generalisation error is small,
as the perceptron has been trained on a relatively large number of examples and tested on
only a few. This situation reverses as M is increased. The resulting competition between the
generalisation error and standard deviation leads to the following definition:

The probabilistic upper bound on the generalisation function is defined by e (M|L) =
€5 + Ty/var (res 1 M), where 7 is a confidence parameter.

From the central limit theorem, the generalisation function will be distributed in a gaus-
sian manner around the test error [Fel70] and, on average, the generalisation function will
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Figure 3.2. Solid curves, upperbounds for A = 0.01 (upper curve), and 0.05. Dashed curve
generalisation error. The noise is 0% = 0.2, N = 100, L = 200, 7' = 0. The global minimum in
each upperbound represents the optimal test set size.

be distributed similarly around the generalisation error. Setting 7 = 1, we will be 84%
confident that the generalisation function will lie below €,(M|L). Similarly, for 7 = 2, we
will be 98% confident®. For convenience, we set 7 = 1 throughout. In figure(3.2), we plot
the generalisation error and upper bound function for two values of the weight decay for
N =100, L = 200, ¢? = 0.2, and 7' = 0. We note that the two graphs are qualitatively
similar, differing maximally for small M. This can be explained by using the approximation to
the variance, and writing the upper bound as'®,

cw(M|L) = (1 + &) &+ 0 (ﬁ) . (3.18)

We see from figure(3.2) that the optimal test set size, M™, for both weight decays is M* ~ 24.
Empirically increasing the system size, N, we find that M* scales like N/3. Further experiment
leads to the conclusion that, in general, there exist two scaling laws for M*. One is the
aforementioned 2/3 scaling, and the other is linear. These different scaling phases occur due to
the existence of two competing local minima in the upper bound function. 2/3 scaling implies
a relatively small test set compared with linear scaling. We would expect that, for small noise

levels, or large weight decay, the optimal test set size, M*, would be minimal, and that as we
increase the noise, M grows. This conjecture is borne out in figure(3.3), where we plot the
prefactors of the linear and 2/3 scaling laws for L = 0.6 N, ¢? = 0.8, T'= 0. For A<0.15, the
scaling is linear (M* large), and the prefactor reduces quickly as A tends to 0.15. There is then
a transition to 2/3 scaling (M* small) as A increases beyond this transition point. Initially, the
prefactor for the 2/3 scaling is large, reducing as A increases.

“Here we have quoted the percentage of the normal curve less than a certain number of standard deviations
from the mean[Fel70].

0Equation (3.18) also holds for (spatially) correlated inputs on replacing €, with the generalisation error
calculated for correlated inputs, from which the modified optimal test set size can be calculated accordingly.
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Figure 3.3. Scaling law prefactors for the optimal test set size for a data set of size [ =

0.6N, 02 =0.8, T =0.

In general, isolating the phase boundaries involves the solution of a rather complicated
expression and, as such, the boundary needs to be found numerically. For the pseudo inverse
algorithm, however, analytical expressions for the the large N limit are readily found. In
figure(3.4) we plot the phase diagram for the pseudo inverse rule (N > 1). The values of the
prefactors in the regions (a), (b), and (c) are respectively:

2/3

L [ Mo — (0 + (o — 1)2)

21/3 o2 — (atot — 1)2

1
W [Oétot(Oétot - 1)]2/3,

, O+ oy — 1,

where ay; = L/N.

For large N, the variance is essentially zero, and the transition regions are simply given
by consideration of the generalisation error. If this is a monotonically decreasing function of
«, such phase transitions will not exist as the ‘optimal” scheme in this sense is to simply take
the smallest test set. For a large enough value of A, the generalisation error will necessarily be
monotonic, and we will have 2/3 scaling. Thus, small test sets are reasonable for a large weight
decay or small noise levels, in that the test error will be a good estimate of the generalisation
function. The existence of a phase transition in the scaling law of the optimal test set size
is an effect of the non-monotonicity of the generalisation error in the presence of noise. The
overfitting phenomenon around « = 1 is therefore the origin of the linear phase transition
wedge drawn in figure(3.4) - due to overfitting, it is better to use less examples in the training
procedure, and more for testing.

General scaling argument

Using the approximation in equation(3.16) that we found for the variance of the linear percep-
tron, we can differentiate the upper bound equation(3.18) explicitly as a function of «, and find
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Ny = L/N

Figure 3.4. Phase diagram for the pseudo inverse rule. In each region, the optimal test set
size scales either linearly with N, or like N?/?

the optimal test set size prefactor for 2/3 scaling is given by,

2 —€ :
N_gM* — g , 3.19
(ﬂ) )

and the asymptotic (o > 1) generalisation error is given by'!,

12020+ T
= ——. 3.20
69 2 o — 1 ( )
For the noiseless case, the asymptotic generalisation error is given by,
T
= — 3.21

and using equation(3.19), we note that the linear dependence on T' cancels, and does not affect
the optimal test set size. This gives the optimal test set size prefactor as,

N™EM* =27%a7, (3.22)

and for the case of noise we find,

2 V202 : s
N ZM* = (m 3. (323)

UThe pseudo inverse rule prefactor is found by setting 7" = 0 in (3.20). Note that this means that the noise
enters only as a prefactor in the error. From (3.19) we see therefore that the optimal test set size will be
independent of the noise.



40 CHAPTER 3: NOISY LINEAR PERCPETRON

With noise therefore, more test examples are needed than in the noiseless case. We note that
the prefactor is bounded for large noise, which is a reflection of the fact that the noise affects
both the training and test examples. Examining equation(3.23) we see that as we increase the
temperature, the prefactor reduces - increasing the temperature means that there is increased
uncertainty in the training procedure, and more examples should be devoted to training.

3.5 Cross-validation

An examination of cross-validation for the noisy linear perceptron is complicated by the param-
eters of noise and weight decay, extra to those of the spherical linear perceptron in chapter(2).
Perhaps the more interesting situation that we shall now be able to address is that of model
selection in terms of cross-validation in a region where asymptotic theories of statistics are not
valid. We leave a brief discussion of these results until section(3.6).

3.5.1 Student Error Covariance

As mentioned in chapter(2), a comparison of the effectiveness of different CV schemes boils down
to an analysis of the covariance of two cross-validation student errors. The calculation of these
covariances follows the method outlined in appendix(2.8) with, however, a slight modification
as explained in appendix(3.8.1). For simplicity, we examine here the case of leave-out-half
CV, comparing the results for the covariance with those for the spherical linear perceptron in
section(2.5). The most striking qualitative difference between the spherical and weight decay
constraints is for the case in which there is no overlap between the test sets, a2 = 0. Comparing
figure(2.6) and figure(3.5)(a), we see that the covariance for the weight decay constraint begins
at zero, whereas it begins at negative 1 for the spherical case.

As a partial explanation of the results for the covariances for small «, let us consider the
simple case of a dataset consisting of only two examples, and V' = 2, such that each student is
trained and tested on only one example. At zero temperature, the resulting one dimensional
constraint from the requirement of zero training error gives (after minimising the Gibbs error
with respect to w),

(600 — @) 00 = ) (3.24)
and similarly for the second perceptron, w®), where @ = (w — w°) /v/N. Setting w® = V/'N,

A =1, and the noise variance equal to 1, we can explicitly calculate the covariance of the errors
formed by the weight vectors which are solutions to (3.24), assuming the two examples x(!) and

() are independent.'? Expanding these results for large N, the covariance of the two errors is
given by,
Cov(e(l) 6(2)) = E + 0O (N_Q) ) (3.25)
’ N

12Parenthetically, we note that the student solutions to (3.24) are w = O (N_%). For the spherical linear

perceptron, we have w = O (N%).
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Figure 3.5. Covariance of the error of two cross-validation students trained on half of the data
set (V=2) for different values of the test set overlap ay5 and noise. The lower curve is a2 = 0,
middle a3 = 1/6 (corresponding to OCV for S=4), upper a2 = 1/4 (random, MCCV)(a)
c?=0,A=10"% (b) 02 = 0.2,A = 0.2.

Similarly, the variance is given by,

16
var (6(1)) =8+ N + 0 (N_Q) . (3.26)
These results suggest that in the limit of no training data, the covariance is an order smaller
than the variance. For the case of some correlation between the examples in the training and
testing sets of the two perceptrons, the variance of the two errors can be thought of as the
limiting case in which the two halves of the dataset are fully correlated. Since we have seen
that for the case of full correlation (variance), the covariance is an order larger than with no
correlation, we expect that for a non-zero level of correlation, the covariance will be an order
larger. For both the spherical constraint and the weight decay, for correlated test sets (a12 > 0),
there is a divergence in the covariance as the amount of data decreases to zero. Again, this is
explicable when we consider that for the fully correlated case, corresponding to the variance,
there is always a 1/M prefactor for the variance.

For the case of noise, with the weight decay set optimally, we see in figure(3.5)(b), that
the covariance for the correlated test sets is larger than for the clean case. For the case of no
test set correlation, in the limit of an infinite amount of noise, the student CV errors become
random, yielding zero covariance.

In figure(3.6) we again plot covariances: in (a) we show the result of under-regularised
students(A < ¢?), finding that optimal partitioning (OCV) can yield a big improvement over
random partitioning (MCCV). In figure(3.6)(b) we see that using an over-regularised student
can be less risky than an under-regularised student in that it’s covariance is closer to that of
the optimal weight decay (A = o?). Indeed, we see that for larger values of the weight decay,
we can actually reduce the covariance of the CV errors below that for the optimal weight decay
setting, although this is not particularly of interest, as an over-regularised student will perform
badly in terms of it’s generalisation error.
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Figure 3.6. Covariance of the error of two cross-validation students trained on half of the
data set (V=2). (a)o? = 0.5,A = 107°: upper curve MCCV, middle curve OCV(S=4), lower
OCV(5=2). (b) 62 = 0.2, ay2 = 1/4 (MCCV): from below A = 0.4, 0.2, 0.1, 0.01.

3.6 Model selection using Cross-validation

3.6.1 Introduction

In the previous discussion concerning cross-validation, we have assumed that a particular model
has been chosen (or a hyperparameter set to a particular value), and we subsequently wish to
evaluate the performance of that model. We now turn our attention to the problem of choosing
a model from a collection of possible student models. In particular, we shall be interested in the
case where one wishes to set the value of some (hyper)parameter - the weight decay parameter,
for example. Typically, there will be some global optimal setting of the hyperparameter such
that one student will perform better than another. We then select that model for which the
error, estimated by cross-validation, is lower than that for all others. In this section, we examine
what would be the best CV scheme to use, given that we wish to discriminate between two
different models.

This work is related to work by Shao[Sha93], who discusses linear model selection by cross-
validation in the asymptotic data regime. The type of linear models that Shao considers are,
in our language, essentially low dimensional linear perceptrons in which certain teacher com-
ponents are set to zero. The possible students can then be classified as too powerful (student
contains more nonzero components than the teacher), optimal (nonzero student components
correspond to nonzero teacher components only), or too weak (not enough nonzero student
components). There is some similarity in Shao’s model selection scenario to the weight decay
case in which the weight decays are set either too weakly, optimally, or too strongly. Shao
examines the behaviour of leave-one-out CV for selecting a linear model, in terms of the con-
sistency. A model selection procedure is defined to be consistent if, in the limit of an infinite
amount of data, it is unbiased and the variance of the parameter selection distribution tends
to zero, so that the probability of selecting the model with the best predictive ability tends to
one. Leave-one-out CV is a popular choice amongst practitioners of CV, arguably because it
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Figure 3.7. The generalisation error vs A, for two partitions, V = 2, and a noise level o2 = 0.2,
with a dataset of size oy = 2.

is easily implementable, and has an intuitive feel. Shao’s main result is that leave-one-out CV
is inconsistent and that in order to have a consistent procedure, one needs to use leave-out-M
CV with M/L—1 as L—oo. That is, we need to make the cross-validation set size as large as
the the whole data set as the amount of data increases. On reflection, however, this is not as
surprising as it might at first sound. Let us consider the weight decay case. For consistency,
we need the variance of the cross-validation estimate of the optimal weight decay parameter
to tend to zero as the amount of data increases without bound. However, as we increase the
amount of data, the prior (i.e., weight decay) becomes increasingly less important, and the
error surface increasingly insensitive to the choice of weight decay - no matter what weight
decay we use, the errors will tend to the same thing. Indeed Marion[MS96] has shown that the
variance of the optimal weight decay diverges as the amount of data increases. This highlights,
therefore, the difficulty of judging different CV schemes on the basis of the consistency. We
prefer to concentrate on how they perform - i.e., what error they have. For this reason, we
shall judge the various CV schemes on the basis of the variance of their errors, and not on the
variance of their parameter estimates.

3.6.2 Discriminating between two models

The issue we are here concerned with is the following: given two models (two linear percep-
trons with different weight decay parameters), how can we use cross-validation to best decide
which is the better model? We denote the cross-validation errors of the models €, €;, where the
models have been trained with weight decays Ay and Ay respectively. One way to discriminate
between the two models is to look at the difference between their CV errors, ¢; — ¢;. If this
has large modulus, it should be clear which model is the better. However, the cross-validation
errors are random variables (due to the random dataset), and we therefore need to consider
the joint distribution of CV errors. If the expectation of [¢; — 62]2 is large, and the variance
of [ — €]” is small we can be sure that one model will be consistently better than the other.
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Figure 3.8. Two models are evaluated by their cross-validation errors, ¢; and ¢;. The joint
probability distribution P(er,€z) is represented by the ellipse, and the projection onto the -
axis (e — 62)/21/2 is drawn. In order to discriminate between the two models, we desire a
large modulus of €; — €5, and essentially a small variance. These criteria are embodied in the
minimisation of the separation ratio, W.

This is equivalent to prefering a minimal value of the similarity ratio,

var (€) + var (e3) — 2cov(eq, €3)
() — (&))"

As the variance and covariance typically are order O (N '), the similarity ratio will typically be
order O (1). We shall consider here only the case of MCCV (random partitioning) which means
that the covariance in equation(3.27) is equal to simply the covariance of two cross-validation
students - i.e., independent of the number of students S.1* As we know how to work out the
(co)variance of cross-validation errors we can, in principle, determine the best CV scheme to

T, A) = N (3.27)

use - i.e., how many divisions/students to use for a given computational cost.

In figure(3.9), we plot the similarity ratio W(A1, A2) against the number of divisions for a
computational cost of C' = 10. (Remember that the number of students is related to the cost by
S =VC/(V —1)). Three cases are considered: (a) both models are under-regularised (b) both
models are over-regularised, (¢),(d) one model is under-regularised, the other over-regularised.
In (a),(b), and (d) there is little difference between the sizes of the optimal divisions, all of
which are of the order of V' = 2. For (c¢), however, there is a greatly increased optimal division
size, with a much larger value of the similarity ratio. Looking at figure(3.7) we see that for the
two values Ay = 0.1 and Ay = 0.4, the average CV errors are almost the same. In this case, it
is extremely difficult to differentiate between the two models, giving rise to a large value of the
similarity ratio. The best that can be done in this circumstance is to train the students on a
large fraction of the dataset in order to distinguish between their average errors. The situation

13This covariance is easy to work out: we have already found the covariance of two CV students for the case
in which they are both trained using the same value for the weight decay. It is straightforward to show that
for the case in which the students have different weight decays, the resulting expression for the covariance is
equivalent to the case in which they are both equal, however with their single replica values calculated with
different values of the weight decay.
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Figure 3.9. The similarity ratio W(Ay, Ag) of the cross-validation errors for the random par-
titioning scheme plotted against the number of divisions V', with a fixed computational cost
C =10 and ay,; = 2. The optimal setting of the weight decay is A = ¢* = 0.2. The minimum
in each graph represents the best partitioning to maximise the discrimination between the two
models. (a) Ay = 0.05, Ay = 0.1. (b) Ay = 0.6, A\ = 0.4 (¢) Ay = 0.4, Ay, =0.1. (d) \y = 0.4,

A2 = 0.05. The different curves correspond to different values of the computational cost, C'.
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Figure 3.10. The similarity ratio W(A;, A3) of the cross-validation errors for the random
partitioning scheme plotted against the number of divisions V', for ay,; = 4. The optimal
setting of the weight decay is A = 0% = 0.2. The curves in each figure represent different
computational costs: from above, ¢'=>5,10,20,40,1000. The minimum in each graph represents
the best partitioning to maximise the discrimination between the two models. (a) Ay = 0.05,

in (c) is not generic but demonstrates the effect of trying to differentiate between two models
which perform very similarly.

As can be seen from figure(3.9)(d), the dependence of the optimal division on the amount of
computing resource is weak. Increasing the computational cost translates into using more stu-
dents, but not changing the number of divisions. This leads to reduced values of the similarity
ratio and increased distinction between the two models.

In a similar fashion, in figure(3.10) we look at the similarity ratio, now for a larger dataset
(ot = 4), (a) for an under and an over-regularised model, and (b) for two over-regularised
models. The case of two under-regularised students is very close to that in graph (a). Again,
there is a weak dependence on the computational cost, with however, a reduced value of the
optimal division number from that of using a smaller dataset.

In order to determine the dependence of the optimal number of divisions on the size of
the dataset, we plot in figure(3.11) the decay of the optimal number of divisions for two over-
regularised models and one over, one under-regularised model. (For the case of both mod-
els under-regularised, we found there was little change from the over-under regularised case).
Asymptotically, there is power law decay, V ~ 14+ O (ozt_o}f) towards V = 1 which corresponds
to using all the dataset to test the students, with only a limitingly small fraction used to
train the students. As the size of the dataset increases, the importance of the weight decay
diminishes and we enter a “data dominated regime.” All models will perform similarly, and it
becomes increasingly difficult to differentiate between two models, based upon their test error
performance/cross-validation error. This is a similar situation to that found by Shao, which we
discussed in section(3.6.1). For the linear model that Shao considers, a power law decay of the
number of divisions V' ~ 1—|—ozt_01/4 is used in order to ensure consistency of the model parameter
selection scheme. Therefore, although we used a different criterion to that of consistency (which
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Figure 3.11. The optimal division size V versus the size of the data set oy, plotted for a noise
level 2 = 0.2 The upper curve (circle) is for both models over-regularised, Ay = 0.6, Ay, = 0.4
The lower curve (cross) is for one model over-regularised, and the other under-regularised

A1 = 0.05, Ay = 0.4. Asymptotically, the optimal partition decays as 1 4+ O (ozt_o}f).

is based on asymptotically selecting the correct parameters of the model), namely the similarity
ratio (based on differentiating between the errors of two models), a similar conclusion is reached
- the test set size should be increased as the amount of data is increased in order to optimise the
cross-validation procedure. Note that this apparant paradox, that as more data is available, it
becomes increasingly difficult to choose the ‘right’” model, is not necessarily apparant in other
methods of model selection. The optimal setting of the weight decay, as we have considered
above, is to set the weight decay equal to the noise level. Clearly, there are measures of noise
that will become more sharply defined as the amount of data increases, and hence with those
measures, one can say which would be the better prior/noise model - however, what we have
shown above is that the performance of models with different weight decays (priors) becomes
increasingly similar as the amount of data increases.

3.7 Summary and Outlook

We have calculated the variance in the test error of the linear perceptron due to randomness
present in both the data set and algorithm. Where an exact calculation was not tractable, we
showed that the variance can be very well approximated by a simple scaling of the square of the
generalisation error. We applied these results to address the question of the best assignment of
a data set into a test and training set. We found that there exist two different regions for the
scaling of the optimal test set size with the system dimension, one linear, which operates for
example for relatively large noise, and one 2/3 scaling. We demonstrated how one can apply
the techniques of statistical mechanics in order to analyse cross-validation in a model selection
problem, and how to optimise the test set size of cross-validation students in order to help
discriminate between two models.
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3.8 Appendix

3.8.1 Replica methods

The replica calculation for the weight decay linear perceptron differs only slightly from that
for the spherical linear perceptron. In terms of the free energy contributions Gy and G,
only the entropic term, GGg, which expresses the form of prior student constraints is affected.
Rather than introducing a gaussian average over a delta function representation of the spherical
constraint, we now have simply a gaussian weight decay measure. In carrying out the replica
method, we will then need to make a slightly more general replica symmetry ansatz, as the
length of students trained on the same data is no longer fixed (as was the case for the spherical
constraint). Specifically, the replica symmetry ansatz now takes the form (¢f. (A.13)),

quT/ _ q057,7” _I_ (1 o 5777/) q
qATyT/ _ qAO&Tﬂ_/ _I_ (1 o 57,7’)@
The resulting entropic term is given by,

Go = —RR + 24— OAO—lln(ﬁ)\—l—A—To)—l—li (3.28)
0 599= 94 — 3 = 20) T =2 :

and

1 o Bqg—2R+140?
GT:§1H(1+5(q _q))+§1+ﬁ(q0—q)‘ (3.29)

The saddle point equations resulting from extremising the free energy Gy — ai, are,

1—|—02—|—q—2]%2

=ab 1+ 3(¢° = q)
R=R(¢"—q)

5 Ozﬂ
R_1+5(QO—Q)

The solution of these equations is given by [DW93],
¢"=q+Q

14024+ a
a—_ =

q: ¢2—O{
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R
¢
where
1 2
Q:%(1—Q—A)+¢(1—Q—A) 14 (3.30)
¢=A+5AQ +a (3.31)

3.8.2 Double replica

Because there is also noise present in the weight decay calculation, the double replicated Hamil-
tonian changes form slightly to accommodate this (¢f. (A.35)):

1 By G
214817 —q1) 1+ B4 (43 — ¢2)

Giz(ﬂlvﬂQ) =

{(912 — RiRy+ Ry —1)(qia — RiRo+ Ry — 1) +20% (qug — Ry — Ry + 1) + 04} (3.32)

where subscripts 1,2 denote the replica system. The entropic term is given by

G2 _l 12 — 1 Ry
0 0 0 9
2(¢7 — 1) (63 — @)

(3.33)

where the single replica solutions are given in appendix(3.8.1).



Chapter 4

The Binary Perceptron

Abstract

The binary perceptron is fundamentally different from the linear perceptron in
that the output is discontinuous. Cross-validation schemes performing random, or
optimised partitioning are found to perform to a greater degree of similarly than
for the linear perceptron. By calculating the variance of the generalisation function
over the version space, we make a tentative connection with the PAC worst case
analysis by approximating the distribution of errors. Even for small system sizes,
the probability of an error close to the worst case bound is extremely small.

4.1 Introduction

Having studied in some detail the linear perceptron in the previous two chapters, we turn
our attention to a simple non-linear system, the binary perceptron. The motivation in so
doing is to check some of the conclusions inferred for the linear perceptron against a non-linear
system and we shall again be working within the framework of batch learning with the teacher
of the same form as the student. As for the linear perceptron, a considerable body of work
already exists for the binary perceptron, for which many calculations have been carried out with
recourse to the thermodynamic limit [GT90, WRB93]. We aim, therefore, both to calculate
variances for the binary perceptron, and also to check the performance of cross-validation for
which much of the work carried out on cross-validation has been on linear and/or continuous

models[Sha93, Bur89].

4.2 The Binary Perceptron

The binary perceptron has the same structure as the simple perceptron introduced in chapter(1),
now with a binary valued activation function, such that the output for real valued inputs x is
given by:

SR o

30
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Figure 4.1. Geometrical interpretation of the generalisation error between a binary perceptron
student and teacher with weight vectors w and w®, respectively. Shown is the projection of
the input space onto the plane spanned by w and w?; the input regions for which the outputs
of student and teacher disagree are marked by asterisks. The generalisation error ¢, is equal
to the probability with which a random input vector will ‘land’ in one of these regions. For
isotropically distributed inputs, this probability is simply 2¢ /7 where &, the angle between w®
and w, is given by ¢ = arccos(w?-w/N) due to the normalisation (w°)* = w? = N.
where sgn(h) = +1 for h > 0, and —1 otherwise. The spherical constraint, (w%)? = w? =
N is again imposed as a convenient normalisation. Geometrically, the output of the binary
perceptron depends on which side of the hyperplane, specified by the weight vector w, the
input example x lies; the output is positive for a positive projection of the example onto the
hyperplane, and negative for a negative projection. As we do not consider a threshold (which
simply adds a constant to the activation &), the hyperplane passes through the origin.

As before, we shall be interested in the generalisation performance of a binary student
perceptron, specified by weight vector, w, learning a binary teacher perceptron specified by
w?. Students are generated by minimising the training error on a set P of P examples, given

by

p

By =23 0(—tgsy), (4.2)

k=1

where §(z) = 0 for + < 0 and +1 otherwise, and t; , s; are the outputs of the teacher
and student on input example x* respectively. The inputs are selected randomly with each
component drawn from a zero mean, unit variance normal distribution. Note that the training
error equation(4.2) counts the number of errors that the student makes on the training set.
We again take an extensive number of training examples P = a/N such that the training error
itself will be extensive. The Gibbs algorithm selects (spherical) student weight vectors from
the distribution o exp —fE,(w)'.

1One way to achieve this for example is to simply randomly sample candidate spherical student weight vectors
(with uniform probability over student weight space), which are then selected with the Gibbs probability.
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The generalisation error

In order to test the performance of trained binary perceptron students, we again form the test

67“7“07“,2

9 M
Etest — M mzz:l 0 (_tmsm) 9 (43)

where the test set is composed of the M input-output pairs, M = {(Xl, t(xh), .., (XM, t(XM))}
and the generalisation error is defined as the test error averaged over the test set distribution.
In figure(4.1), we show geometrically how the generalisation function is related to the average
overlap between the student and teacher vectors,

2
e = —arccos(R), (4.4)
s
where we define the overlap parameter, R = %WO-W. In order to calculate the generalisa-

tion error, we need to average equation(4.4) over the weight space and training/test sets. The
non-linearity of the activation function increases the complexity of the calculation of the gen-
eralisation error, compared to that for the linear perceptron, although these difficulties can be
overcome using the replica formalism of statistical mechanics, following the procedure outlined
in appendix(A). The generalisation error calculation was initially carried out by Gyorgyi and
Tishby[GT90], and we briefly restate some of their results®. Details of the replica method as
applied to the binary perceptron are found in appendix(4.7.1).

Zero-mean additive gaussian noise on the weight vectors (of variance o, ;) and input

components (of variance a7 ) noise have similar effects, and manifest themselves in the noise

nputs
parameter,

7= ((1 + O-?nputs) (1 + O'Z;eights))_l/z : (4.5)

so that a noise free system is modelled by the selection v = 1, and the generalisation function
in the presence of noise is given by,

2
€= arccos(yR). (4.6)

The resulting generalisation error is plotted in figure(4.2) for different values of the noise pa-
rameter, 7. For zero noise and large «, the generalisation error decays algebraically,

€y = % +0 (oz_z) . (4.7)

In the presence of noise, the residual generalisation error as a—oo is given by,

2
€, = —arccos (), (4.8)
T

“The test error is scaled so that e.g.,(a = 0) = 1, as for the linear perceptron.
3Whereas in [GT90] the generalisation error is defined such that the zero « value is a half, we define the zero
a value to be 1, as we did for the linear perceptron.
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Figure 4.2. The generalisation error plotted for different settings of the noise parameter 5
against the training set size, « = P/N . The standard deviation of the test error for a student
trained at zero temperature on noiseless examples is also plotted.

and the asymptotic decay of the generalisation error is given by,
€5 — € X oz, (4.9)

In contrast to the noise free, zero temperature linear perceptron, there is no critical value of
« for which the generalisation error becomes zero. For the binary perceptron, the student and
teacher outputs identify only whether a given input lies between the planes defined by the
student and teacher. As more examples are presented, the student rotates toward the teacher,
but there will always be a chance that an example arises that lies between the student and
teacher planes, thus giving an error for finite a.

4.3 The Variance

Once the generalisation error has been calculated, the desired variance is straightforward to
obtain. Referring back to the discussion in section(2.9) we remark that, up to order O (N™1),
the variance var (€. : M) obeys,

Mvar (€rest : M) =var (€est : E) (M =1)+ O (N_l) (4.10)

As the output of the binary perceptron is the sign function, we arrive immediately at the result,
1

var (€pest 1 €) (M = 1) = 2¢, — 63 + O (N) , (4.11)

and hence that
1 1
var (€est 1 M) = i {26g — 63} + O (W) (4.12)
This shows that the asymptotic decay of the variance for the binary perceptron is much slower
than that for the linear perceptron: for the binary perceptron, the variance decays only with
the generalisation error, whereas it decays as the square of the generalisation error for the linear
perceptron.
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4.3.1 Optimal test set size

Analogous to the optimal test set size analysis that we carried out for the linear perceptron
(see sections(2.3,3.4)), we again look for the best partitioning of a data set into a test and
training set in order to find a low test error, yet remain confident that the test error is close to
the generalisation function. Rephrasing this, we wish to (confidence) bound the generalisation
function from above: this can be achieved by adding on to the average error say one standard
deviation of the generalisation function distribution, forming the upper bound e, (M|L); with
probability 0.84, the generalisation function will be lower than €, (M|L), and we seek to min-
imise this upperbound with respect to the freedom we have in choosing the fraction of examples
assigned to the test/training procedure. Using the approximation to var (€.s : M), given in
(4.12), we have for a one standard deviation confidence,

2, — 2\ 1
e (M|L) = ¢, + (%) G (ﬁ) (4.13)

Optimising this upper bound with respect to «, we make again the scaling ansatz, M = eN.
This ansatz is motivated by numerical optimisation of the upper bound or, alternatively, by
consistency arguments. For large N, we find,

¢= (L%_eg) 3 , (4.14)

2¢!

g

where ¢, is the value of the generalisation error at the optimal value of «. Unlike the linear
perceptron, the binary perceptron generalisation error is a monotonically decreasing function of
a, regardless of the (fixed) noise level. This means that there will not be a phase transition to
a different (linear) scaling law as the noise level rises, as was the case for the linear perceptron.
For large N, o = a1 + O (N_%), and we therefore approximate €,(a*) by €,(aust). Similarly,
¢, is the value of the derivative of the generalisation error at the optimal value of «, which
we approximate by ¢ (ay.). For the case of no noise, using equation(4.7) gives the asymptotic

value of the prefactor for large «,
c=2.5"%a = 0.733a, (4.15)

which corresponds well with the gradient of the curves in figure(4.3) for large . For the case
of noise present we use equation(4.8), and again find, asymptotically, a linear scaling of the
prefactor ¢ with «, which may at first seem surprising. On deeper reflection, however, we realise
that noise enters the process only through the variable 4 which is bounded between 0 and 1
(an artifact of the binary nature of the problem) so that the residual generalisation error is
bounded, even for infinite levels of weight and input example noise. We see from figure(4.3)
that the asymptotic values of the prefactors are indeed linear, and have bounded gradient. This
is to be contrasted with the noisy linear perceptron, described in section(2.3), where noise gives
rise to a different prefactor scaling in a, namely a 4/3 power law.

As the temperature is increased, the optimal test set size tends to decrease, which is a
similar effect to that found for the linear perceptron. The explanation is that as T is increased,
there is less confidence in the training procedure, and more examples are required to reduce
the training error.
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Figure 4.3. Prefactor ¢ for the optimal test set size M* = ¢NF for various values of the noise
and temperature. All curves tend to a linear prefactor in the limit of large ay,;. Note that
there is little change in the curves for different temperature. The effect of noise is to increase
the required size of the test set in order to compensate for the higher implicit variance of noisy
examples.

4.4 Cross-validation

Similar to the analysis carried out on cross-validation in the previous two chapters, we briefly
examine here the relative performance of different cross-validation schemes in the context of a
highly non-linear rule. We refer the reader to chapter(2) for the general aims of our analysis
here.

We again perform a replica analysis as we did previously for the linear perceptron, and
an overview of the requisite results for the method is given in appendix(4.7.1). Although the
procedure is essentially the same as for the linear perceptron, the resulting saddle point problem
necessitates the application of more sophisticated numerical techniques. Also, for the case of
noise, the replica method breaks down if the learning temperature is too low, and we try to
avoid such regions. As pointed out in chapter(2), an analysis of the relative performance of
different cross-validation schemes boils down to a comparison of the covariance of two individual
cross-validation students.

In figure(4.4) we plot covariances for the case of 2 divisions, V' = 2, under the different CV
schemes described in chapter(2). We see from figure(4.4) that the covariance is most negative
for the scheme where there is the smallest test set overlap. This figure is to be compared to
figure(2.6) in section(2.5) where we plotted for the spherical linear perceptron the behaviour
of cross-validation under the same conditions. Noteworthy is the similarity of the curves for
the binary scheme relative to the curves for the linear model, under the different types of CV
schemes. We therefore expect very little difference between the performance (i.e., CV error
variance) of CV schemes for the binary perceptron, relative to the differences in the linear
perceptron. Learning with a small temperature has little effect on the covariance. (The graphs
of zero noise and T' = 0.25 are indistinguishable from figure(4.4)(a)). The effect of noise is to
increase slightly the the tail of the covariance curve as it tends towards the zero asymptotic
value. Furthermore, the optimal CV scheme is seen to be very close to the random (Monte
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Figure 4.4. The (scaled) covariance of two test errors for different CV schemes, all for two
partitions, V = 2. The lower curve is for the non-overlapping scheme for S=2, equivalent to
the OCV scheme for S < V. The middle curve is the OCV scheme for S = 4. The upper curve
is the MCCYV scheme, which is independent of the number of students. (a) The noise is set to
zero, and so is the temperature. (b) v = 0.6, 7' = 0.25.

Carlo) CV scheme ¢f. figure(4.4)(b), and we conclude that the effect of noise does not bring
about significant advantages of using one CV scheme in favour of another. In conclusion
therefore, the CV procedure for the binary perceptron is more robust to noise and temperature
changes than is the linear perceptron.

4.5 Connection with PAC learning

The standard PAC analysis deals with binary output systems[Ant95], and we are now in a
position to make some connections between the average case and the PAC analysis. The work
in this section is linked to that by Engel and Fink [EvdB93] who use techniques of statistical
mechanics to calculate a worst case analysis for the performance of the binary perceptron.

Let us review briefly the picture that we have of zero temperature learning: A set of training
examples P is used by the (zero temperature) Gibbs learning algorithm to generate a set of
candidate students - the version space - and a student is picked at random from the version
space. Although all students in the version space have zero training error, they will in general
have different generalisation functions, and a measure of the scale of this difference is given
by the variance of the generalisation function over the version space. A worst case analysis is
concerned with bounding the performance of the worst student from the version space. Fngel
and Fink are concerned with checking how tight the bounds from the distribution free PAC
theory are in the case of a specific input distribution. However, it may still be the case that
these bounds are not tight in the sense that, for all but pathological input distributions, the
overwhelming proportion of the error mass lies far from the worst case boundary. Equally,
while Engel and Fink can calculate the worst case error for a specific input distribution, we can
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calculate how likely it is that we come close to saturating that bound for the same input distri-
bution. Given our understanding of the gaussian nature (for large N) of the error distribution
around its mean value, with a variance of the order of O (N~'), it is intuitively clear that for
iid distributed inputs, the probability that an error occurs close to the worst case error will be
exponentially small. However, what is not immediately clear is whether the prefactor of this
variance is so large that for “moderate” system sizes, there is still an appreciable chance that
an error occurs close to the worst case.

We restate briefly the theory of PAC learning as explained by Engel and Fink. Initially,
Engel and Fink are interested in bounding the difference between the training error (which will
be set to zero later), and the generalisation function. For a fized student, the probability that
the training error Fy, and the generalisation function ¢; differ more than a quantity ¢ is given
by the Hoeffding inequality,

Prob {|E: — €] > €} < 2exp (—262P) ) (4.16)

which, for a constant bound gives € ~ 1/v/P, corresponding to the central limit theorem picture
that we have been using throughout. In a worst case analysis, the maximal difference between
the training error and generalisation function over a class of possible students is given by the
Vapnik and Chervonenkis bound,

Prob {maxw|Fy — €5 > €} < eA(2P)exp (—262P) ) (4.17)

where for P > N, the growth function A (m) is given by A (m) = 232 N5! (m ; I
Stirling’s formula, and approximating the summation by a saddle point integration gives, for

a>l1l, N>1,

). Using

A(2aN) =2 Z__jl (m - 1) ~ exp (N [2a log (2a) — (2a — 1) log 2a — 1]). (4.18)

Using this in the VC bound (4.17) we obtain,
Prob {maxw|E:y — €5] > €} < cexp (N [2@ log (2a) — (2a0 — 1) log2ar — 1 — ozez]) (4.19)

Hence, in the limit of an infinitely large perceptron, N—oo, the maximal difference ¢}° between
the training error and generalisation function is bounded from above by,

¢ () = \/2log 2a — (2 — 1/a) log (2a — 1) (4.20)

with probability 1. For large «, this means that the maximal difference between the training

error and generalisation function scales like, €5 ~ 1 /log a/a.

4.5.1 Restriction to the version space

For the case in which the set of possible student vectors is restricted to the version space (zero
training error), the bounds tighten, such that the maximal generalisation function of students
from the version space is given for large « by,

ve 2loga
6f ~

—. 4.21
alog 2 ( )
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Figure 4.5. Bounds on the generalisation performance. The generalisation error is plotted
as the solid curve. The dotted curve is the asymptotic curve for the performance of the worst
student from the version space, €}° ~ 3/a. The dot-dash curve is the asymptote to the normal
VC theory limiting value of the error, €5 ~ 2log a/(alog2). The dashed curve is the (scaled)
variance over the version space of the generalisation function. Note that we plot only from
o = 2 as below this, the asymptotes are wildly incorrect.

Engel and Fink provide a replica symmetric calculation for the performance of the worst student
from the version space (given by the student in the version space with the smallest overlap with
the teacher), which gives the large « result (see figure(4.5)),

we 2 (4.22)

Although replica symmetry is found not to hold for @ > 2, a replica symmetry breaking
calculation gives the same asymptotic scaling with «. Hence the VC bound over-estimates the
generalisation function of the worst student by a factor 2log a/(3log 2). According to Engel and
Fink, however, the VC bounds can be tightened by using information theory to give (for any
input distribution), a bound 2/« for large «, which is very close to the (distribution specific)
worst case bound given by Engel and Fink.

Given that it is possible to calculate the generalisation performance of the worst student
from the version space, one might ask, how likely is it that a student sampled from the version
space will have an error close to this worst case? Since we have been calculating variances
(including those of errors over the version space), and given our usual assumption of a normal
distribution, we see that we are in a position to say how likely, for a given value of «, a
generalisation function so far from the average case is likely to occur. For the iid distributed
input examples, the variance of the distribution of errors is order O (N~!) and hence, for any
finite difference between the worst case generalisation performance and the typical performance,
the probability of a randomly selected student with error close to the worst case will become
exponentially unlikely as the size of the perceptron increases.

The variance that we require in order to calculate the probability of picking a student
with a generalisation function worse than the average worst case student is the variance of the
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generalisation function over the version space, var (5 : W). Explicitly, this is not a quantity
that we have previously calculated although, in principle, it is straightforward to calculate
this variance?. However, as the number of test examples grows, the test error approaches the
generalisation function, and we have ¢y = €. +O (M_ %) We therefore simply approximate the
variance of the generalisation function by that of a large sample test error. There are, however,
some subtleties hidden here. Engel and Fink calculate the worst case generalisation function by
assuming a binary valued input distribution, namely, P(x) = [T;—;_~ [%5 (i — 1)+ 16 (2 + 1)],
for which the first two moments are the same as for a zero mean unit variance distribution.
The calculation of the free energy, from which all statistical properties, including the thermal
variance, are derived depends only on the first two moments of the input distribution. This
means that we can take the results for the (auxiliary field) free energy of our replica calculation
for gaussian inputs and the results for the thermal variance will hold for the binary input
distribution.

We take several representative points from the learning curves for the worst case analysis (as
computed by Engel and Fink), and calculate the probability that such a student will be chosen
by the Gibbs learning algorithm. Technically, we should also take into consideration the variance
induced by the fluctuations of the finite NV corrections to the average worst performing student.
This would give rise to two order O (N~!) variance bumps around the thermodynamic mean
generalisation function and the worst generalisation function. Leaving aside such concerns, let
us calculate the probability that a student would have an error larger than the average worst
case analysis for a finite dimensional system. Using the assumed normal distribution for the
generalisation function, the probability of an error worse than Ae}* (for some chosen A <'1) is,

we 1 _N% we
Prob {6f > A } = perie ( 2var (e : W) ()\ef ) 69)) 7 )

where var (e : W) is the variance (not divided by N) of the generalisation function over the
version space. We calculate the variance of the generalisation function by taking the thermal
(weight space) variance of a large-sample test error (M/N = 100), checking that this is a
good approximation for the case of zero « in the fashion outlined in section(2.9). The thermal
variance of the generalisation function in terms of the overlap R is

1 1

var (ef : W) = 3 <[arccos(R)]2>g ) ([arccos(R)))z . (4.24)
As we know the distribution of the overlap at zero «a, a straightforward calculation yields,
1 (=% 1 1 . 0.405 .

Using the large-sample test error (M /N = 100) predicts this value to the third decimal place. As
a rather crude analysis, we take two values of o and read off the worst case analysis results from
the paper by Engel and Fink[EvdB93], (o = 10, €} = 0.29, ¢, = 0.1225, var (¢; : W) = 0.011),
(@ = 20,¢f° = 0.14,¢, = 0.06,var (¢; : W) = 0.003). In figure(4.6) we plot, using (4.23), the

probability that a student from the version space will be chosen that has an error greater than

4One introduces the generalisation function as an auxiliary field in the Gibbs training energy. The second
derivative of the resulting free energy gives the thermal variance of the generalisation function.
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Figure 4.6. The probability of picking a student with a generalisation function worse than 0.8
of the error of the worst case student, versus the system size N. The upper curve is computed
for o = 10, and the lower for a = 20.

the average worst case student, as calculated by Engel and Fink. It should be stressed that for
such small system sizes as plotted, corrections to our finite size analysis will be relatively large.
Nevertheless, we see that even for such small system sizes, the chance of picking a student that
has an error close to that of the worst student is very small.

We are therefore lead to the conclusion that, although the PAC theory can yield “tight”
bounds on the generalisation performance for the distribution independent case, with the as-
sumption of a specific input distribution (here a gaussian), the overwhelming fraction of students
in the version space perform similarly to the average case analysis, and not to the worst case,
even for ‘small’ system sizes.

4.6 Summary

We have extended our analysis of finite size effects to a highly non-linear system, primarily
by employing techniques from statistical mechanics. However, we have found a very simple
relationship between the test error variance and the generalisation error. This simple relation-
ship shows that the variance of the test error decays only with the generalisation error and
not with the square of the generalisation error as for the linear perceptron. A (double) replica
analysis showed that the performance of cross-validation is much less sensitive to the scheme
used (random CV or block CV or optimal CV) than is the linear perceptron. For the optimal
test set size, we again find a 2/3, power law scaling with the system size, where the prefactor is
linear for both noisy and clean examples. As the worst case PAC analysis is generally concerned
with binary output systems, we were able to calculate how likely a student is chosen with error
close to the worst generalisation performance as predicted by the PAC theory. We found that
this probability decreases exponentially with the system size, and that even for relatively small
systems, errors close to the worst case generalisation performance are exceedingly unlikely.
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4.7 Appendix

4.7.1 Replica Method

As explained in appendix(A.1.3), the thermal variance can be obtained by a straightforward
extension of the single replica method. What is required is the average of the partition function,
which was calculated in [GT90]. We refer the reader therefore to [GT90] and state here the
final expression for the free energy which is composed of two contributions,

F=Go+aG, (P) (4.26)
where the entropic term is given by,
1 (q— R?
—Go = = In(1— 4.2
=g (A - ) (127

and the replicated Hamiltonian is given by,

G (9) = 2/000 Dy /_O:O m{e—ﬁ n (1 - e—ﬁ) i (“ a _%_ WR)} , (4.28)

where denote a gaussian measure, Dy = (271')_1/2 exp (—y*/2) dy, and

H(u) = / " D = %erfc (%) . (4.29)

One must however bear in mind that the above formulae hold only in the region where replica
symmetry is valid. This region is found by examining the stability of the replica solutions from
the Hessian evaluated at the saddle point. As given in [GT90], the condition for stability is,

2

2
r=1- za/o Dy /_Oo Dt (%m s + H(z)]) > 0, (4.30)

where ug = (exp (3) — 1)~". However, for T = 0, replica symmetry is stable and believed to be
exact.

4.7.2 Double replica free energy

As the weight vector constraints for the binary perceptron are the same as those for the lin-
ear perceptron, the double replica entropic term is unchanged, as given by equation(A.32).
The calculation of the Hamiltonian term follows the usual line of argument as presented in
section(A.3), with the expression being of exactly the form given in equation(A.23). However,
there does not exist any straightforward simplification of the general expression and as such, a
numerical integration needs to be performed.



Chapter 5

On-line learning of multi-layer neural
networks

Abstract

We complement the recent progress in thermodynamic limit analyses of mean on-
line gradient descent learning dynamics in multi-layer networks by calculating the
fluctuations that real, finite dimensional systems necessarily possess. Fluctuations
from the mean dynamics are largest at the onset of specialisation as student hidden
unit weight vectors begin to imitate specific teacher vectors, and increase with the
degree of symmetry of the initial conditions. In light of this, we include a symmetry
breaking term to stimulate asymmetry in the learning process, which typically also
leads to a significant decrease in training time.

5.1 Introduction

The framework of the previous chapters has been that of batch learning in which the student
is found from minimisation of the training error of many training examples. In the large
input dimension limit, the training error approaches the average training error, and the error
surface becomes ‘smooth’. That is, the thermodynamic limit of the batch learning process is
deterministic (in the limit of zero temperature). On-line learning can be thought of as a limiting
case of batch learning in which the training error consists of only a single example. This leads
to a simplified dynamics of learning, often more amenable to analysis, and recent advances in
the theory of on-line learning have yielded insights into the training dynamics of multi-layer
neural networks. In this chapter, we shall adopt the conventional notation adhered to in on-
line learning, so that the weights parametrising the student network are successively updated
according to the error incurred on a single example from a stream of input/output examples,
{&€",7(&€")}, generated by a teacher network 7(-)[HP91, Ama67, HK94, BS92, BS95d, BSS95b].
The analysis of the resulting weight dynamics has previously been treated by assuming that
the input dimension is infinite (the thermodynamic limit) such that a mean dynamics analysis
is exact[SA95]. Here we present a more realistic treatment by calculating the corrections to the
mean dynamics, induced by finite dimensional inputs[Sol94a, Hes94, BSS95a, BSS96].

62
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Figure 5.1. The error function, erf(Sx) for 5 =1 - a sigmoidal function and bounded between
0 and 1. For f—oo, erf(x) approaches the step function.
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Figure 5.2. The soft committee machine. Each hidden unit computes the transfer of its acti-
vation. The final output value is given by the sum of the hidden unit outputs, y = 25 _ ¢(J,.-€)

The Soft Committee Machine (SCM)

We assume that the teacher network the student attempts to learn is a soft committee machine[BS95d]
of N inputs, and M hidden units, this being a one hidden layer network with weights connect-

ing each hidden to output unit set to +1, and with each hidden unit n connected to all input
units by B,,(n = 1..M). Explicitly, for the N dimensional training input vector ", the output

of the teacher is given by,

¢ =Y g(B,€), (5.1

where g(x) is the activation function of the hidden units, and we take g(z) = erf(z/v/2), which
is an analytically convenient sigmoidal function (figure(5.1)) . The teacher generates a stream
of training examples (£”, ("), with input components drawn from a normal distribution of zero
mean, unit variance. The student network that attempts to learn the teacher, by fitting the

training examples, is also a soft committee machine, but with K hidden units. For input &,
the student output is (see figure(5.1)),
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o(J,¢") Zg (J:-€"), (5.2)

where the student weights J = {J;}(¢ = 1..K) are sequentially modified to reduce the error
that the student makes on an input &,

2
1 1 M
0.6 = o0, - ¢ = (Latat) - S at)) (5.3
n=1
where the activations are defined 2! = J;-£€", and y* = B,,-&". Gradient descent on the error
equation(h.3) results in an update of the student weight vectors,

gott — g D gngn 5.4
K K N K ( )

where,

() [;g@z) - ig«c;)] , (5.5)

i=1

and ¢’ is the derivative of the activation function ¢g. The learning rate 5 is typically chosen to be
small, so that convergence to a minimum is guaranteed (we shall later consider only very small
n). Equation (5.4) is demonstrative of the general class of on-line learning rules in which a
‘weight’” parameter is updated according to a Markov process. As learning is a Markov process,
the probability of the system being in a particular state depends on the state at the previous
time step, and on the transition matrix between states. This leads to a master equation (an
integro-differential equation) for the time evolution of the probability of being in a particular
state, given initial conditions. A general solution of the master equation does not exist, and
generally, one needs to make approximations such as a small learning rate. Fortunately, for the
case we study here, the form of the update equation is simple enough for the average dynamics
to be calculated exactly, without recourse to a small learning rate. Nevertheless, in the analysis
of finite size effects, a small learning rate shall be assumed. Ultimately, the quantity of interest
is the typical performance of the student on a randomly selected input example, given by the
generalisation error,

= (c(3.€)). (56)

where (..) represents an average over the gaussian input distribution. As the dependence
of the error on the input enters only through the student and teacher activations ¢ and y,,
one can rewrite the probability of an input &£ in terms of the joint probability P (x,y) =

[ dENL6 (v, — &) 11,6 (y, — &€-B,,) exp (—€-&/2), which gives,
1 1

P(xy) = =———=cxp—5

S S y) e (xy), (5.7)

where C is the (M 4+ K) x (M + K), correlation matrix,

C:[gT J;] (5.8)



CHAPTER 5: ON-LINE LEARNING 65

and the elements of the submatrices are the overlap parameters, R;, = 3;-B,,, Q);; = J;-J;, and
Tom = BB (i,7 = 1..K;n,m = 1..M). Using this distribution one finds that the generalisation
error in terms of the order parameters is given by[SA95],

{Z arcsin Qlk + Z arcsin L

- 2 5 . 9
E arcsnl \/1 - \/1 — } ( )

where 1 < ¢,k < K sum over the student hidden units, and 1 < n,m < M. Using (5.4), we
derive (stochastic) update equations,

Rt — Re = Lgv 5.10
mn mn N K3 yn? ( )
Qi — Qly = < (8t + 6tat) + 15 s (5.11)

We have therefore reduced the N dimensional weight space update equation(5.4) to a set of
K (K +1)/24+ KM coupled difference equations. One could iterate these stochastic difference
equations to find the order parameters at each discrete time step. However, the approach used
in [SA95, BS92, BS95d, CC95] is to take the limit of an infinite input dimension, and form
differential equations for the average overlaps from these stochastic difference equations.! We
therefore average over the input distribution to obtain deterministic equations for the mean
values of the overlap parameters, which are self-averaging in the thermodynamic limit. In
this limit we treat p/N = « as a continuous variable and form differential equations for the
thermodynamic overlaps, R?

Y ik
dRY.
o ! {6iyn) , (5.12)
dO°

where, as before, (..) represents an average over the input distribution. The expressions resulting
from these gaussian averages are given in appendix(5.5.1). For given initial overlap conditions,
the differential overlap equations can be integrated to find the mean dynamical behaviour of
a student learning a teacher with an arbitrary numbers of hidden units [SA95] figure(5.2).
Typically, ¢, decays rapidly to a symmelric phase in which there is near perfect symmetry
between the hidden units. Such phases exist in learnable scenarios until sufficient examples
have been presented to determine which student hidden unit will mimic which teacher hidden
unit. For perfectly symmetric initial conditions, such specialisation is impossible in a mean
dynamics analysis. The more symmetric the initial conditions are, the longer the trapping in
the symmetric phase (see figure(5.3)).

"'Whilst the transformation of these difference equations to differential equations is intuitively clear for infinite
N, such that the differential equations and differential equations are equivalent, we mention that by choosing
the discrete time updates to be Poisson distributed, the resulting differential equation is an exact model of the
discrete dynamics[Hes94].
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L
a

Figure 5.3. Schematic depiction of the small fluctuations ansatz for a learning rate set to
n = 1. The thermodynamic distribution of the order parameter @ is given by the delta peak
centred at ®. A finite dimensional system is characterised by a gaussian peak of variance

(Aa)?*/N, centred at (a) = a® + a'/N.

5.2 Finite size effects

Large deviations from the mean dynamics can exist in the symmetric phase as a small per-
turbation from symmetry can determine which student hidden unit will specialise on which
teacher hidden unit [BS95d].

We can rewrite (5.10,5.11) in the form

@t — gt = % (F, +nG.), (5.14)
where F, + nG, is the update rule for a general overlap parameter . In order to investigate
finite size effects, we make the following ‘small fluctuations’ ansaetze[Hes94] for the deviations
of the update rules F, (the same form is made for (¢,) and overlap parameters a from their
thermodynamic values,?

Fa:FS—I—AFa—I—%F;, a:ao—l—ﬁAa—l—%al, (5.15)
where (AF,) = (Aa) = 0. The update rule ansatz is motivated by observing that the activa-
tions have variance O (1) which, iterated through (5.14), yield overlap variances of O (N71).
Terms of the form, Aa represent dynamic corrections that arise due to the random examples.
Terms like a! represent static corrections such that the mean of the overlap parameter a is
given by a® + na'/N - the thermodynamic average plus a correction. In order to simplify the
analysis, we assume a small learning rate, , so that the thermodynamic overlaps are governed

by,

da® _ o

da @

(5.16)

where F? is the update rule F, averaged over the input distribution, and the rescaled learning
rate is given by

a = na. (5.17)

2If the order parameter represented by c is Q11, then ¢® = Q%;, and Ac = AQq;.
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Substituting (5.15) in (5.14) and averaging over the input distribution, we derive a set of coupled

differential equations for the (scaled) covariances (Aa/\b), and static corrections a’,

d(Datrb RYa OF°
% > (Babsd) S5+ Z<A5AC> o+ (ARAL) (5.18)
1d%a®  da' IF? D*F?
57 T g —Z b a0 T3 Z AbAe) 555 + G (5.19)

Summations are over all overlap parameters, {Q;;, Rin|t,J = 1..K,n = 1..M}. The static cor-
rections G} to the update rules are calculated analytically in the appendix(5.5.2). The elements
(AF,AFy) are found explicitly by calculating the covariance of the update rules F,, and F,
(see section(5.5.3)). ® From this differential equation for the density, we obtain (5.18).

Initially, the fluctuations (AF,AF,) are set to zero, and equations (5.16,5.18) are then
integrated to find the evolution of the covariances, cov(a,b) = (/N ) (AaAb), and the correc-
tions to the thermodynamic average values, (/N)a'. The average finite size correction to the
generalisation error is given by

g =€, + ﬁeg, (5.20)

el 1 0?e°
6517 = Za —4 5 Z (Aab) Oagbo. (5.21)

ab

These results enable the calculation of finite size effects for an arbitrary teacher/student learning
scenario. For demonstration, we calculate the finite size effects for a student with two hidden
units learning a teacher with one hidden unit. In this over-realisable case, one of the student
hidden units eventually specialises on the single teacher hidden unit, while the other student
hidden unit decays to zero. In figure(5.2), we plot the thermodynamic limit generalisation error
alongside the O (N~') correction. In figure(5.2a) there is no significant symmetric phase, and
the finite size corrections (figure(5.2b)) are small. For a finite size correction of less than 10%, we
would require an input dimension of around N > 255. For the more symmetric initial conditions
(figure(5.3a)) there is a very definite symmetric phase, for which a finite size correction of less
than 10% (figure(5.3b)) would require an input dimension of around N >50,0007. As the initial
conditions approach perfect symmetry, the finite size effects diverge, and the mean dynamical
theory becomes inexact. Using the covariances, we can analyse the way in which the student
breaks out of the symmetric phase by specialising its hidden units. For the isotropic teacher
scenario T,,, = 0y, and M = K = 2, learning proceeds such that one can approximate,
Q22 = @11, Rz = Ry1. By analysing the eigenvalues of the covariance matrix (Aa/Ab), we
found that there is a sharply defined principal direction, the components of which we show in
figure(5.4). Initially, all components of the principal direction are similarly correlated, which
corresponds to the symmetric region. Then, around & = 20, as the symmetry breaks, Ry; and

3The derivation of the above equations for the fluctuations is consistent with the Van Kampen expansion
approach, whereby the Kramers-Moyal representation of the master equation is expanded under the ‘small
fluctuation” ansatz, yielding a partial differential equation for the fluctuation probability density [Hes94].
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Figure 5.2. Figure 5.3.

Figure 5.2. Two student hidden units, one teacher hidden unit. Non zero initial parameters:

Q11 = 0.2,Q22 = Ri1 = 0.1. (a) Thermodynamic generalisation error, 62. (b) O (N™!) correc-
tion to the generalisation error , ¢;. Simulation results for N = 10,7 = 0.1 and (half standard
deviation) error bars are drawn.

Figure 5.3. Two student hidden units, one teacher hidden unit. Initially, ();; = 0.1, with
all other parameters set to zero. (a) Thermodynamic generalisation error ¢). (b) O (N~")
correction to the generalisation error, €.
Ry become maximally anti-correlated, whilst there is minimal correlation between the ()17 and
(012 components. This corresponds well with predictions from perturbation analysis [SA95].
Essentially, the symmetry breaking is characterised by a specialisation process in which each
student vector increases its overlap with one particular teacher weight, whilst decreasing its
overlap with other teacher weights. After the specialisation has occurred, there is a growth
in the anti-correlation between the student length and its overlap with other students. The
asymptotic values of these correlations are in agreement with the convergence fixed point,

RR=Q=1.

5.3 Breaking the symmetry

In light of possible prolonged symmetric phases, we explicitly break the symmetry of the student
hidden units by imposing an ordering on the student lengths, ()11 > Q22 > ... > Qxx. This
constraint is enforced in a ‘soft” manner by including an extra term to (5.3),

K-1

" = % Z_: h(Qjy1j01 — Qi) 5 (5.22)

where h(x) approximates the step function,

ITTER)) -

This leads to an easily implementable modification involving the addition of a gaussian term
in the student weight lengths to the weight update rule (¢f. (5.4)). In figure(5.5), we show
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Figure 5.4. (a) The normalised components of the principal eigenvector for the isotropic
teacher. M = K = 2, (Q2 = @11, R22 = Ri1). Non zero initial parameters ()11 = 0.2,
(D22 = 0.1, Ry = 0.001, Ry, = 0.001.

Figure 5.5. Two student hidden units, one teacher hidden unit. The initial conditions are
as in figure(5.3). (a) Thermodynamic generalisation error, €) . (b) O (N~") correction to the
1

generalisation error, €.

the overlap parameters and their fluctuations for =10, K = 2, M = 1. This graph is to be
compared to figure(5.3) for which the initial conditions are the same. There is now no collapse
to an initial symmetric phase from which the student will eventually specialise. Also, the initial
convergence to the optimal values is much faster. As there is essentially no symmetric phase,
the finite size corrections are much reduced. They are now largest around the initial value of
& where the overlap parameters are very symmetric, becoming rapidly smaller due to the large
driving force away from this near-symmetric region. For the case in which the teacher weights
are equal, the constraint (5.22) will prevent the student from converging optimally. In light
of this, we need to adapt the constraint as learning proceeds. A naive scheme is to adapt the
steepness, (3, such that it is inversely proportional to the average of the gradients ();;, which
decreases as the dynamics converge asymptotically.

5.4 Summary

In this work we have complemented the recent significant advances in the theory of multi-layer
networks by finding the conditions under which thermodynamic limit calculations in on-line
learning can be expected to be representative of real learning scenarios. We provided, also,
more detailed insights into the specialisation process out of the symmetric phase. In addition,
we found that by breaking the internal symmetries of the network, we were able to reduce both
finite size effects and training time. We conjecture that such symmetry breaking is potentially
of great benefit in the practical field of neural network training.



70 CHAPTER 5: ON-LINE LEARNING

5.5 Appendix: On-line learning

In the following appendices, we outline the derivation of the update equations in the thermo-
dynamic limit, and demonstrate how finite size corrections to these equations, both static and
dynamic, can be obtained.

5.5.1 Appendix: Thermodynamic equations

From (5.13) and (5.12), we require the averages of two types of multivariate gaussian integrals
over the distribution P (x,y) given in (5.7). The terms which are proportional to 5 involve the
three dimensional integral,

Iy = (g'(u)vg(w)), (5.24)

where u is one of the components of x while v and w can be components of either x or y.
Similarly, for the terms proportional to 7%, we need to evaluate integrals of the form,

Iy = (g'(u)g'(v)g(w)g(2)), (5.25)

where u and v are components of x while w and z can be components of either x or y. Also
required are the integrals of the above form given for I35 and [y when two of the arguments
are equal. However, this simply means that those two arguments are fully correlated, and the
resulting integral is found by modifying the correlation matrix accordingly. The full equations
for the dynamics of the thermodynamic overlaps is given by,

= n {Z Is(t,n,m) — Z]g(i,n,j)} , (5.26)

dgozk = n{;lg(i, 213 } U{Z (k,i,m) 213 ) }

+ 7 {Zh(i, konym) — 2> Ly(ik,j,n) + 214 k,j,1) } , (5.27)
n,m 7

The function [I5(¢,n,j) is defined as the three dimensional gaussian average, [3(i,n,j) =
(¢'(x:)yng(x;)), where the covariance matrix is given by the projection of the full covariance
matrix (5.8) onto the subspace spanned by z;,y,, and x;:

Qi R Qi
Cs=| Rin Toun Rjn (5.28)
Qij i Qjj
The value of I5 is then given by evaluating,
2 1 Cu(l+Ch)—CiCis
VA 14+ Cyy ’

where, in terms of the projection onto the four dimensional covariance matrix we have defined,

A3 - (1 —|— 011)(1 —|— 033) 013 (530)

I = (5.29)
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The integral 1, is found similarly by projecting the full covariance matrix onto the subspace
spanned by its four arguments, for which,

o AL ein (Ao (5.31)
4—7T2\/A_4arcsm ) .

where
Ay = (14 Ci)(1 + Cy) — CF
Ao = AyCsy — CosCy(1 4+ Chy) — Ci3C1u(1 + Coy) + C12C15C 5 + C12C14Chs
Ay = Ay(1+ Ca3) — C(1+ Chy) — CE(1 + Cya) + 2C12013C53
Ay = Ag(1 + Cyy) — C3,(1 + C1p) — CL(1 + Coz) + 2C15014Co4 (5.32)

The resulting dynamical equations enable the average case dynamics of soft-committee machine
learning to be found for arbitrary student and teacher architectures.

5.5.2 Appendix: The static correction to the update rule

We turn our attention to the term in (5.11),

% (6:6:6-€) = (5:8) + O (N1, (5.33)
where we are interested in calculating the order N=! contribution. The thermodynamic term
(6;61) has already been found, and is given as the factor of the n* term in (5.27). Each student
weight vector gives the constraint z; = J;-&, and similarly, each teacher weight vector gives
the constraint, v, = B,,-§. As the contribution of the student and teacher weight vectors only
occur through these K + M scalar products with the input vector, we can consider the weight
vectors to be K + M dimensional, setting the remaining N — K — M components to zero.
This means that we need also only consider the first K + M components of the input vector,
£ = (&1, -, Exinr). We write the constraints in the matrix form,

€1 J1T

TK J(T ~

| g |8 (531
YM ByT

Inverting the above equation, we can write

"2

& =T (WWT) x, (5.35)

where W is the matrix of student/teacher weight vector components given in (5.34). The

-1

prefactor of the order N™" correction to the thermodynamic value of (5.33) is then given by,

<5i5kxT (ww™)™ x> (K 4+ M) (5:8). (5.36)
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As WWT is just the covariance matrix (5.8), after some algebra, we can write the static
correction as,

0 (8:6:(171C))

- , (5.37)

A=1

where (8;6¢(A7'C)) is the value of the expression (8;8;) calculated using the modified covariance
matrix A7!C.

5.5.3 Appendix: Covariance of the update rules

In section(5.2) we mentioned that one needs to find the covariance of the update rules explicitly
by calculation. Ignoring terms higher than n? we note that in order to calculate the covariance
of two update rules, we need only find the average of the general quantity (6,6xx,25) where
and x5 stand for arbitrary activations. The method of calculating these is straightforward: we
know how to find (6,0x) (this is just I4), and the gaussian measure P (x,y) is the exponential
of a quadratic form containing all the possible z,z3. Therefore, by adding to the each element
of the inverse of the full covariance matrix (5.8) the parameter A, and by differentiating the
average (6;05) with this modified covariance matrix, we ‘pull down’ the factor x,x4:

0 dxdy 1 T [
Sibprany) = —— [ XY {—— (e +A) (x, }52»5
(0ibkzap) = =5+ Y expd —=(x,y)T (C7'+ A) (x,¥) { i

5 (5.38)

A=0

where the matrix A has zero elements, except where those elements contribute to the term
zog, which then contain A (the diagonal elements contain 2X). After a few lines of algebra,

we find,

<5i5kwa$g> = a <525k (6(4))>

_ﬁ + [C]a,ﬁ <525k> R (539)

A=0

where O™ is the projection onto the four dimensional subspace of the modified full covariance

matrix (C™! + A)_l.



Chapter 6

Does extra knowledge necessarily
improve generalisation?

Abstract

The generalisation error is a widely used performance measure employed in the
analysis of adaptive learning systems. This measure is generally critically dependent
on the knowledge that the system is given about the problem it is trying to learn. We
examine to what extent it is necessarily the case that an increase in the knowledge
that the system has about the problem will reduce the generalisation error. Using
the standard definition of the generalisation error, we present simple cases for which
the intuitive idea of ‘reducivity’ - that more knowledge will improve generalisation -
does not hold. Under a simple approximation, however, we find conditions to satisty
‘reducivity’. Finally, we calculate the effect on the generalisation error for weights
constrained to a particular sign. This particular restriction results in a significant
improvement in generalisation performance.

6.1 Introduction

The employment of a priori knowledge in designing a learning machine is crucial to the success of
the machines ability to generalise well. Given that knowledge affects the generalisation ability,
our aim here is to address the following question: does more knowledge necessarily improve
generalisation? Intuitively, the answer to this question would seem to be ‘yes’, depending, of
course, on the definitions of knowledge and generalisation. Nevertheless, this question phrases a
possible desiderata, which itself can affect the design of learning machines. Again, we formulate
the problem in the language of learning from examples[Bar96, BS95a]

A training set of input/output pairs is generated by some teacher function, and the task is to
find a student function whose outputs match closely the outputs of the teacher function on the
training set. Constraints on the set of possible teacher functions that generate the training set
are critical in narrowing down the search for a good student. Indeed, without any constraints it
is an impossible task to find a student that generalises to unseen examples (see the discussion
in chapter(1)). A priori assumptions are therefore made as to the form of the teacher, that is,
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restrictions are imposed on the space of teacher functions. Throughout this chapter we assume
that the spaces of the teacher and student functions are the same. The learning problem is
then realisable in the sense that amongst the student space, there is a student that will match
perfectly the output of the teacher on all possible inputs. We denote the teacher/student space
of functions by F(W), and a particular mapping as y = f(x,0) for f € F(¥) and 6 € U, where
the output is denoted by y, and the input by . A particular mapping that a function performs
is represented by the point @ in the parameter space W. We assume that a single teacher 6°
generates the noise free set of training data £ = {27, f(2?,6°)}, where o indexes each element
of the training set £. In the learning problem, one attempts to find a student f(x,8) that
matches the teacher f(x,6°) on the training set.! To measure the extent to which the student
has learnt the teacher, an error measure €,(8,6°, z) is defined. The set of admissible students,
represented by the parameter space © € W, is determined by the requirement of minimising
the error measure on all examples in the training set, and satisfying a priori constraints on
the student. Hence © expresses all the information that the student has about the teacher.?
In section(6.2) we review briefly the definition of the generalisation error, before formulating
the original question more rigourously. We subsequently consider specific cases, beginning with
the simplest possible - a one dimensional version space. In section(6.3), we analyse higher
dimensions, using the linear perceptron as the function space F(¥) and present results for sign
constrained weights. In section(6.4) we conclude with a summary of the main results.

6.2 General Theory

6.2.1 The Generalisation Error

To measure how well the student performs on the training set, the training energy is formed,
Eu(w|P) o< 381 €(0,60° 27). The student is found by minimising the training error with re-
spect to the parameter 8, whilst also adhering to additional a priori constraints. This is typically
achieved by stochastic gradient descent, resulting in a post training distribution of students,
P(0|L) < PPri(w)exp(—FE;,(w|P)/T) where the temperature, T', controls the randomness of
the stochastic algorithm (see e.g., [WRB93]). PP"{(w) is the a priori constraint on the student.
In the limit of zero T', the distribution of students becomes uniform over those that have zero
training error and satisfy the a priori constraints; this space of student functions is known as
the version space, which we denote by ©.? In section(6.3.3), we present results for non-zero T,
but for the rest of this chapter, zero T' is implied. To find the expected error that a student
makes on a random example input, termed the generalisation function, we average the error
over the input distribution, P(z), giving €;(,0°) = [dxP(z)e,(0,6° x).* Hence, given the
teacher, €;(f,0°) measures the expected error that a student # makes, given that the teacher
is 0° and that the student is #. As the student does not know the teacher, we assume that ©

!Extra regularisation conditions on the student, such as weight decay, will not be considered here.

?We briefly note that the assumption that the set of admissible functions is all that is known about the
teacher function is found also in the PAC approach (see e.g., [Hau94] ); we addresses, however, somewhat
different issues.

3The student distribution we consider is known also as exhaustive learning (see e.g., [SSS90]).

4An extension to this framework is to consider the off-training-set error (see e.g., [Wol92]) in which the
expected error of the student 1s calculated for test examples not included in the training set.
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expresses all the information that the student has about the teacher. The generalisation error is
then defined as the expected performance of a random student from O, given a random teacher
from O,

€(0) = <6f(‘9790)>€€®790€®7 (6.1)
where (..)gpoco and (..),cq represent averages over the version space ©.° We write ¢,(0) to
emphasize that the generalisation error is a function of the version space.

Intuitively, one expects that any further restrictions or a priori assumptions, resulting in a
smaller version space, must necessarily reduce the generalisation error. Furthermore, an un-
derstanding of the relation between the geometry of the version space and the generalisation
error is desirable in light of possible algorithms that are based upon the geometry of the version
space (e.g., some forms of query learning which perform version space bisection). To formulate
this more precisely, we make the following definition.

Definition
F(©) is an ‘error reduced’ function space of F(0) if ¢,(0') < ¢,(0) for O C 0, and we say
that ‘reducivity’ holds.

In this chapter we examine which subsets ©' of © are error reducing, according to the
preceding definition. We mention briefly that one can also consider the generalisation error
for a fixed teacher, ¢,(0°,0) = (¢;(0,0°)),cq, and check reducivity with the teacher assumed
known. We show in a later section, however, that the main results also hold for ¢,(8°, ©), and
concentrate accordingly on ¢,(0).

6.2.2 One Dimensional Version Space

We begin with the simplest possible case of a one dimensional version space, assuming that
it can be paramaterized by a connected interval on the real line, which we write, without
loss of generality, as [0,a]. Furthermore, we assume that the generalisation function can be
written as, €;(0,6°) = dist(| § — 0°]), for some function dist(-).® €,(0) is then simply ¢,(a) =
fo dOP(9) [5 d0°P(8°)dist(] & — 6°|), where P(-) is the parameter space distribution. For a

uniform distribution, P(#) = P(6°) = 1/a, and we can write,

2 e y ,
€;(a) = —2/ dy/ dedist(x),
a? Jo 0
for which the requirement of reducivity i.e., dﬁc’}(ga) > (0 becomes

/a dadist(x) > g/UL dy /y dedist(x),
0 a Jo 0

*In this joint average of ¢;(6,6") over the version space, we assume independence of the student and the
teacher: As the training set is fixed, we write P(6°,0|£) = P(0|6°, £)P(6°|£). With the assumption P(0|0°, £) =
P(0|L£), we have that 6 and ° are independently distributed over ©.

In this assumption as to the form of the generalisation function we have in mind a larger class of er-
ror measures than the square error measure, ¢(6,60% ) = 1/2 [f(x, 0) — f(x, 90)]2, for which the assumption

€7(6,0) = dist(] 6 — 6°]) would hold only for the linear function f(z,8) = z6 and g(s) = s*.
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(O

Figure 6.1. A sphere of radius v/3. The shaded region represents the version space, @ =
{6 € 10.4,0.6], ¢ € [0,27]}. Making © smaller by pushing the inner boundary towards the outer
boundary does not result in a reduction in generalisation error.

This is equivalent to
2 a

al{dist), — —/ dea(dist), >0,
aJo

where (dist), is the average value of dist(-) over the interval [0, 2]. For a monotonically increas-
ing function, (dist), > (dist), (a > x), and thus reducivity holds for all monotonic increasing
functions defined on the real line.

Unfortunately, for higher dimensional cases, it is not generally possible to separate the
dependence of the generalisation function into a summation over the individual components
of the parameter vector, i.e., ¢€;(6,0°) # S "dist(| 6; — 6?]), where n is the dimension of
the parameterisation, and more complicated effects can appear. In the following sections we
concentrate on the linear perceptron, beginning with an explicit example of a two dimensional
version space which violates the error reduction property.

6.3 The Linear Perceptron

For the noise free linear perceptron, the inputs are represented by N dimensional real vectors,
x € RV, and the output is a single valued real variable, y € R (see e.g., [HP91]). The inputs
x are assumed drawn independently and identically from a zero mean, unit covariance matrix
Caussian distribution. The teacher outputs are given by f(x,w°) = w®-x/y/N. Similarly,
the student outputs are f(x,w) = w-x/v/N. We also impose the additional a priori spherical
constraint on both the student and teacher, w-w = w®-w® = N. The error measure is
taken to be proportional to the squared difference between the teacher and student outputs,
e(w, w? x) = (wx—w"x)?/2N. We proceed to analyse this model for a specific version space.

6.3.1 A Two Dimensional Version Space

We look now at the three dimensional linear perceptron. A point on the surface of a three

dimensional sphere of radius » = /3 is given by the ordered pair (¢, ), which represents the

usual spherical polar coordinate parameterisation.”

Tw; = rcos(¢)sin(0),ws = rsin(@)sin(f), ws = rcos(f) where, » = /3 for the spherical normalisation
condition.
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Assuming a zero mean, unit covariance matrix gaussian input distribution, the generalisation
function is e;(w,w") = 1 —w-w?/N. We write the scalar product in this expression in spherical
coordinates and average over the version space given by ©@ = {(¢,0),¢ € [a,b],0 € [¢,d]}. A
straightforward calculation gives

,(0)=1-— ﬁ (A (cos(d) — cos(c))’ + (sin(d) — sin(c))?) ,

where A = 2(1 — cos(b—a)) /(b — a)*. To violate reducivity we look for regions such that
when we reduce the width of, for example, the interval [¢, d], the generalisation error increases.
Without loss of generality, then, we search for regions for which de,(©)/dc >0, and we plot
one such region in figure(6.1). To find such a region explicitly, we look for the boundary at

which de,(©)/de = 0, and define A(e,d) = A(0¢,(0)/de = 0), which is given by the equation,
sinc¢ — sin d {sinc— sind 4+ (d — ¢) cosc}

cosd — cosc

A=

cosd —cosc+ (d—¢)sine

In figure(6.2)(a), we show how this relates to the reducivity. In region (1), A varies between
0 and 1, and J¢,(©)/dc can be of either sign, depending on the value of A; thus in region
(1), reducivity depends critically on 6 = b — a. For A > A, 0¢,(0)/dc < 0, and for A < A,
0ey(©)/de > 0. In both regions (2) and (3) A ¢ [0,1] and, as A € [0,1] (figure(6.2)(b)), the
sign of Je,(0©)/0c is fixed, independent of [a,b]. In fact, in regions (2) and (3), reducivity is
guaranteed. In region (2), as ¢ decreases (i.e., [a,b] shrinks), Je,(0©)/0dc becomes increasingly
negative, whereas in region (3), for decreasing 6, de¢,(0)/0c becomes less negative. The bound-
ary between regions (2) and (3) is given by the solution of cosd — cosc¢ + (d — ¢)sinc¢ = 0.
Despite the simplicity of the example, the behaviour of reducivity on the sphere is non trivial.

At this point, the reader may well conjecture that reducivity would be guaranteed for convex
regions © and © C O. (In general, a region is convex if the geodesic connecting any two points
lies wholly within the region itself). Perhaps somewhat surprisingly, we demonstrate in the
next section that convexity is not a sufficient condition for reducivity.

6.3.2 Euclidean Approximation To The Version Space

For simplicity, we concentrate on version spaces small enough such that the region can be
considered Euclidean. For the linear perceptron described above, this corresponds to a region
small enough such that the curved surface of the hypersphere appears ‘flat’. By writing w =
c+w, and w* = ¢ + w", where c lies in the space ©, we write the generalisation error as

¢,(0) = % <(W — W0)2>

where O is the approximately flat region on the sphere. As w and w® are uncorrelated, this
can be written in the form,

&) = 5 () g~ (Wice)-

We now consider an infinitesimal decrease in the space © = @ — A. For a uniform distribution
over the space, and ignoring terms in A% we can write, with a slight abuse of notation,

6(0') = () ~ NA(:) <<W2>Weé - <W2>WGA) : (6.2)

w,w0e®
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Figure 6.2. The version space is the region on the sphere given by 0 =
{(¢,0),0 € [a,b],8 € [e,d]}.(a) in (1) reducivity depends on the region [a,b]. In (2) and (3)
reducivity is guaranteed (Je,(©)/dc < 0). In (2), as [a, b] shrinks, d¢,(©)/de becomes more
negative, and vice versa in region (3). The region ¢ > d is unphysical. (b) The function A

versus 6 = b — a.
/<’7>\

h

Figure 6.3. Counter example used to show that convexity is not a sufficient condition for
reducivity. We take the hypotenuse to have length 2. The cross marks the position of the
teacher for the example of reducivity violation for a given teacher.

where A and © are the surface contents of A and O respectively. In equation(6.2), we have
assumed, without loss of generality, that (w)s g = 0, i.e., that the origin, c, is taken to be the

centroid of ©. Reducivity holds then for the condition

(W )wea > (w?) . (6.3)

Note that this is a general condition, holding for any dimension. Using this, we can show
that convexity (for the linear perceptron at least) is not a sufficient condition for reducivity to
hold. In order to do this, we observe that equation(6.3) will not be satisfied for regions, A,
sufficiently close to the centroid, since the left hand side of equation(6.3) will be small. This
observation leads to the following two dimensional counter example. Let the convex region O
be the larger triangle as shown on figure(6.3). By explicit calculation, one finds ¢,(tri)=4/9
for the marked angle v = 7/2. We now take ©’, a convex subset of ©, to be the trapezium as
shown, for which, in the limit h— 0, ¢,(trap)=2/3. Hence ¢,(0') > ¢,(0), demonstrating the
insufficiency of convexity as a condition for reducivity.

At this point we refer back to section(6.2.1) and note that we can readily find an example

of a fized teacher for which an increase in the students knowledge results in an increase in
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€,(0°,0). In the above trapezium/triangle example, consider a very flat triangle, for which ~
tends to . We take the teacher to be positioned at the cross marked in figure(6.3), for which,
€,(x,tri) = 1/6. Taking again, O’ to be the infinitely thin trapezium, we have €,( X, trap) =
1/3, which is larger than e,(x,tr).

The geometry of the above situation may appear somewhat pathological. Such non-reducive
situations can, however, be constructed for essentially any version space ©. In passing, we
mention another example to help clarify the situation.

For a two dimensional ellipse with minor and major axes a and b respectively, one readily
finds (W?)ipse = (a*+0%)/4. We see then that for a circle (b = a), all infinitesimal enlargements
of the circle are ‘expansions’ in the sense that they satisfy equation(6.3). Without loss of
generality, let b > a such that for an ellipse, we can violate equation(6.3) by choosing the point
on the perimeter about which we wish to expand to be close to the centroid ((w?)a = a*) and
b > \/3a. We note that this violation of reducivity occurs for an eccentricity (b/a) that is not
much larger than unity. In general, such non-expansive enlargements can occur for the following
reason: the centroid represents the best-guess student (within the euclidean approximation);
adding space as close as possible to this student increases the weight on the distribution of
weight space close to this best-guess, decreasing ¢,.

By examining equation(6.2), we note that the greatest decrease in generalisation error is to
be found for a region A furthest away from the centroid of the set. This is in line with the
intuitive notion that we can improve generalisation most by increasing our knowledge about
the teacher in those regions that contribute most to the generalisation error. One way to obtain
this knowledge is to choose an input x such that the reply from the teacher yields information
about the teacher in the desired region; this is the concept of query learning (see e.g., [Sol94b]).
However, we have shown here that there is no general realtionship between the volume of the
version space (entropy) and the generalistion error, so that query algorithms that reduce the
volume of the version space cannot be guaranteed to reduce the generalisation error.

The previous arguments have been aimed at infinitesimal, local alterations to O, and we
consider briefly an example of global enlargement. We envisage situations in which the bound-
ary of O can be expressed in a spherical coordinate system, r = r(¢,0,..), which is the case
for convex regions. The enlarged version space ©’ can then be defined by a new boundary,
= Xo,0,..)r(¢,0,..), for some A(¢,0,..) > 1. Assuming we can bound A by some extremum
values, Apin < A(0,0,..) < Apaz, it is then a simple matter to form an inequality such that the
generalisation error of the larger version space is greater than the generalisation error of the
smaller. For an enlargement A(¢, 6, ..) which preserves the origin as the centroid of both ® and
O’ a two dimensional case it is A2 . > Anas, a sufficient, but by no means necessary condition
for reducivity.

6.3.3 Sign Constrained Weights

In this section, our motivation is twofold. Firstly, up till now we have considered, for specific
examples, low dimensional version spaces; here we calculate the generalisation error for an
infinitely large perceptron under a new weight constraint. Secondly, the performance of a
perceptron with sign constrained weights is of some interest in itself. The constraint we examine
corresponds to predetermining the sign of each weight: sgn(w;) = p;, where each p; (i=1..N) is
pre-set to +1. This constraint has been studied previously in the context of pattern storage for
the Hopfield network, for which it was found that the sign-constrained capacity was half that
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Figure 6.4. Comparison of the generalisation error for the spherical constraint and the spher-
ical sign-constraint. The curves beginning at 1 for @« = 0 are the spherical constraint; the
sign-constraint law curves begin at 1-v/2/x for a=0.

of the unconstrained case[AWC89].

By writing the output of the perceptron as y = 3 a;sgn(w;)|w;|, where |..| is the modulus,
and transforming the inputs according to, @} = p;a;, the output can be written y = 3 2/|w;|. As
the input distribution is Gaussian and hence symmetric, the analysis of the sign-constraint is
equivalent to that of constraining the weights to be positive. In addition, we retain the spherical
constraint. The method of calculation is that of statistical mechanics, following closely the
exposition given in appendix(A). This will enable us to obtain results for any temperature, and
without recourse to the euclidean approximation employed is section(3.2). As is required in
statistical mechanics calculations, we define the limit of the dimension of the perceptron such
that the number of training patterns is proportional to the dimension of the perceptron, i.e.,
P =aN.

A sketch of the calculation is given in appendix(6.5); as the calculation follows so closely
that given by [SST92], we refer the reader to that work, and point out only the major differences
between our and their analysis. We note however, that constraining the signs of the weights
breaks the isotropy of weight space under the usual spherical constraint alone. This will leave
the generalisation error as a function of the specific teacher chosen, which we necessarily average
over the version space according to (6.1). In an isotropic weight space, such an average is not
actually required as the generalisation error is independent of the specific teacher chosen.

For the spherical constraint alone, the dimension of the version space (7" = 0) reduces
linearly with ¢, resulting in a linear reduction of the generalisation error, ¢, = 1 —a, o < 1.
For the sign-constraint, however, boundary effects result in a small deviation from linearity
(figure(6.4)). For T' = 0 and a > 1, the subspace collapses to a single point for both the
sign-constrained and spherical perceptron, and ¢, = 0. Non zero T' results in an increase in
generalisation errors, affecting both the sign-constrained and spherical perceptron similarly,
such that for a given (oz,T),ezign < ezph. For o = 0, the perceptron has no information
about the teacher other than that imposed by the a priori constraint, and we have ezph =1,

and ezign = 1 —v/2/x. The Gibbs learning algorithm itself can thus be regarded to be error
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reducing; the extra knowledge contained in the training examples as « increases leads, via the
Gibbs learning algorithm, to a reduction in generalisation error.

6.4 Summary

We have examined the effect of constraints on the generalisation error of simple learning sys-
tems, concentrating in particular on the linear perceptron. Assuming that both the student and
teacher lie in the version space of constraints, we studied what effect increasing the constraint,
by decreasing the version space, has on the generalisation error. For a connected one dimen-
sional case, in which we assumed that the error function is simply a monotonically increasing
function of the separation between the student and teacher, we showed that decreasing the
version space necessarily decreases the generalisation error. This however, is not the case for
higher dimensional version spaces, and we presented an explicit example. Furthermore, con-
vexity of the version spaces is not a sufficient condition for the smaller version space to have
lower generalisation error. In general it is a non-trivial problem to predict whether reducing
the version space will reduce the generalisation error, and each case must be treated explicitly.
For sign-constrained weights, we carried out a statistical mechanics calculation for the general-
isation error, finding that an increase in constraints over the normal spherical constraint does
lead to a reduction in generalisation error. The above analysis concentrated on the situation
in which we are able to choose the version space at will. In the situation of learning from
examples, after incorporation of a priori knowledge, the version space is subsequently modified
by a learning algorithm, to which the concept of reducivity can be applied, opening an area of
further research.

6.5 Appendix: Replica method for sign-constrained weights

The calculation for the linear perceptron with sign-constrained weights follows closely that
presented in appendix(A) and rather than entering into great detail, we sketch here the main
differences between the two calculations.

The free energy is separated into two terms, F' = Gy — a(,, where only the term G is
affected by the constraints upon the weights. Hence we need calculate only the term Gg for
the new weight distribution. As the new weight distribution arising from the sign constraint
retains connectedness, we envisage no problems with the replica symmetry ansatz, and expect
the results to be exact. Note that throughout, we use the same notation for the order parameters
as those in [SST92], namely that ¢ is the normalised overlap between two replicas, R is the
overlap between the student and the teacher. ¢ and R are conjugate order parameters arising
from the definition of the order parameters ¢ and R. We write Gy as,

1 n ~ 1 P 0
Go = —5(1 —q)§— RR+ ﬁf(q,R,W ),

where

I= /_0; Dzln/_o:o dp(w) explw - (21/4 + wOR)].
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~N/2 exp(—2-2/2)dz. The weight vector distri-

Dz is the N dimensional gaussian measure, (27)
bution for the sign-constraint is given by
2N
P(w) = 75(W-W — N)§(w)d(w),

and the corresponding measure is du(w) = P(w)d(w), where V is the surface content of an
N-sphere, and 6(-) is the theta function. Introducing the integral representation for the delta
function (which gives rise to the parameter A) and performing the saddle point approximation,
we obtain,

| VSRR | ™ N poo
I =const. + N ()\—I— o (q—I—R ) + §1n (ﬁ)) —I_;/—oo Dz Inerfe(—u;),

where
Z; \/5 + w?]%
Vax

By comparison with the results for the spherical perceptron, we observe that we can write

U, =

N
Géign = G?)ph + Z Ji ()‘7 qu Ev WO) )
=1
where

J, = i,/{)\ /OO du exp (— 1A (4)\u2 — 4\/X]%w?u + (w?)z)) In erfe(—u),
27\ ¢ J- 2q

and GP" is the contribution to the free energy given by the normal spherical constraint, given
in [SST92].

There remains an explicit dependence on the teacher weight w® and we thus average Gy
over possible teachers, having the same measure as the students. This results finally in the

expression for the contribution to the free energy,

sign __ ,ysph ¢2 &0 2.2 U¢I%
GEan = Ger _|_1/§/_Ooduexp (—q§ u )erfc(\/g In erfe(u),

where
A+
o=, —=
q+ 1?
For completeness, we state the further results necessary to find the free energy, namely
1 .1 L1 R4
Fh_N—Z(1—¢q)§— —qq — — —In(4X

and

Blg—2R+1)

211 51— q))

Now that the free energy has been found, the order parameters are set to those values that

actually extremise the free energy. The generalisation error is then found from the relation,
¢, = 1 — R. Unfortunately, in all but the simplest of limiting cases, the solution to this

G, = 1 + 51— )] +

extremisation problem needs to be solved numerically.



Chapter 7

Conclusion

In this thesis we have conducted an investigation of finite size corrections to infinite system size
calculations generally employed by physicists in the analysis of neural networks.

In chapters (2) and (3) we studied one of the simplest possible neural network models, the
linear perceptron. In chapter(2) we concentrated on exact analytical results for the variance of
the test error for a spherically constrained student learning a spherically constrained teacher
when there is no noise on the examples. Intuitively, we expect that the variance of the errors
scales like the inverse of the system size, which we found to be true. As an application of these
results, we showed how one can address the issue of an optimal test set size, in which one is
concerned with minimising the test error, yet wishes that the resulting error remains close to the
average test error. For a large system size N, we found that the optimal test set size scales with
N?/3. We also conducted an in depth analysis of the performance of different cross-validation
schemes when they are used to estimate the generalisation error. This is one of few analyses
that are able to tackle cross-validation without recourse to the limit of a great deal of data.
In particular, three different schemes, corresponding to different overlaps of the test sets for
two cross-validation students were analysed. These correspond to choosing the cross-validation
sets at random, to minimise their mutual overlap, and to minimise in a blockwise fashion their
mutual overlap. The optimal scheme, in the sense that the variance of the cross-validation
estimate of the generalisation error is the lowest, is given by the scheme which minimises the
mutual test set overlaps. Comparing the performance of the other two schemes against the
optimal, we found that there is less than a 25% relative difference between the optimal scheme
and the random scheme. This figure drops to less than 5% when the block scheme is employed.
Hence, in cases where the optimal scheme might seem too time consuming to apply, the easily
implementable block scheme is a good compromise.

In chapter(3) we extended our analysis of the linear perceptron to the inclusion of noise on
the examples. In order to suppress the learning of the noise, we included a weight decay in the
learning procedure and found that there are different phases for the scaling of the optimal test
set size with the system dimension. For small noise levels, or large weight decay, we found that
the scaling is again of a 2/3 power type. However, for large levels of noise, the test set size
needs to be much larger, and we found a linear scaling behaviour. With the introduction of the
weight decay parameter, we were able to address the issue of how to best use cross-validation in
order to discriminate between two different models. We found that the optimal scheme in this
sense is to choose a number of divisions that scales like 1 + O (a™'), that is, that the test set
size should approach the size of the total amount of data in the data set as the data set grows.
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This is a similar conclusion to that reached by Shao who considered linear model selection using
cross-validation based on the statistical requirement of consistency, although Shao advocates a
slightly different scheme, namely that the test set size should scale like 1 + O (oz_l/4).

As a representative of a non-linear rule, we analysed the binary perceptron in chapter(4)
in a similar manner to that for the linear perceptron. We found that the optimal test set size
scales like N?/3, with a linear prefactor for both noisy and clean examples. In terms of the
cross-validation error performance, we found that there is a much greater similarity between
the performance of the different CV schemes for the binary perceptron than for the linear
perceptron. We were able to make some connections between our work and the PAC worst-case
approach by calculating the probability that such worst-cases occur. Even for rather small
system sizes, we found that this probability is remarkably small.

In chapter(5) we analysed a different learning strategy, namely that of on-line learning, in
which the student weights are updated after presentation of a single example from a stream of
input examples. This work complements the recent significant advances in the study of on-line
learning in cases involving multiple hidden units. This analysis confirms that, provided the
initial conditions are not too symmetric, the thermodynamic learning curves calculated by the
average case theory are representative. Finite size effects are largest around the symmetry
breaking point, when the students hidden units begin to specialise on those of the teacher.
By stimulating asymmetry between the student’s hidden units, we showed that a considerable
reduction in both finite size effects and generalisation error can be achieved. We conjectured
that such symmetry breaking constraints can be employed to potentially great benefit in the
practical field of training neural networks.

With the motivation that extra constraints may reduce the generalisation error, we investi-
gated in chapter(6) to what extent it is necessarily true that increasing the knowledge we have
about the teacher reduces the generalisation error. Perhaps, counter-intuitively, we showed that
increasing this knowledge can increase the generalisation error, even for such cases as a metric
generalisation measure and convex constraints. For the linear perceptron, we showed how re-
ducing the generalisation error is related to increasing the knowledge far from the centroid of
the posterior student distribution. For the sign-constrained weight case, we found that there is
a considerable reduction in the generalisation error.

7.1 Outlook on future research

There are many questions left unanswered by this thesis. The most glaring is that we have
restricted our batch learning analysis to realisable cases only. In principle, having found a
general statistical mechanics framework in which finite size variances can be calculated, it should
be straightforward to extend these cases to unrealisable rules. This is particularly interesting
for the cross-validation analysis as there has been relatively little work carried out on non-
asymptotic data regimes. There is much work to be done on extending the preliminary results
on model selection, and there is potentially a great deal that can be said about how to select
cross-validation schemes from this type of analysis. Again, in principle, there is no difficulty in
extending this analysis to multi-layer structures, and in particular, the tree committee machine,
for which a generalisation error calculation already exists[SH92]. An exciting prospect is also
to extend the connection between the finite size results for the binary perceptron to the PAC
analysis. Indeed, if one were able to calculate the variance of the errors for a class of input
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distributions, one would be able to make a confidence bound connection to the worst case
results as formulated by the VC theory. It may be that this is a realistic way to bridge the gap
between the average and worst case analyses.

In terms of on-line learning, there is more work being carried out on unrealisable rules and
more general architectures. This work is important as the on-line learning approach represents
one way to avoid some of the difficulties inherent in the statistical mechanics analysis of batch
learning.

We hope therefore that we have shown how powerful tools from statistical mechanics can
be employed to calculate effects also for finite system sizes. These results, in addition to being
of interest in themselves, may lead to a much better understanding of the connection between
average and worst case analyses.



Appendix A

Statistical Mechanics Formalism

A.1 Introduction

In this appendix we explain in some detail calculational tools that can be employed in calcu-
lating both average test errors and their variances. For the case of the linear perceptron, we
have seen that geometrical arguments can lead in a straightforward manner to the evaluation
of the averages for the average test error and the variance of the test error (chapter(2)). For
more general network architectures, however, such calculational simplifications may not exist,
and we therefore describe a more general method which has its roots in the theory of statistical
physics. Statistical mechanics provides a mechanism for bridging the gap between a micro-
scopic description of a process and a macroscopic picture. For example, from the microscopic
description of a molecule as a hard sphere, and a description of the dynamical interaction of
such hard spheres, statistical mechanics is able to say something about macroscopic properties
of the system, such as the pressure. In order to do so, however, the number of particles (sys-
tem dimension) is taken to be arbitrarily large (the thermodynamic limit). Such a restriction
need not necessarily result in unrepresentative results compared to those for finite size systems
[Sol94a]. In order to say something about the macroscopic picture, an average over the possible
configurations is taken, each of which occurs with some probability which is physically related
to the energy of the system. For many physical systems, the resulting average behaviour is
equivalent to the typical behaviour of the system - this is called self-averaginglBY86]. Much
of the work in making the connection between statistical mechanics and neural networks was

pioneered by Amit et al[AGS85a, AGS85b] and Gardner [Gar87, Gar88, GGY89].

A.1.1 The Partition Function, Z, and the Free Energy

The starting point of the statistical mechanics treatment is the description of the probability of
a particular microstate. For the case of neural networks, stochastic gradient descent results in a
Langevin process and the equilibrium distribution of students is given by the Gibbs distribution,

P(WIP) = PP (w)exp(~3E),

where F is the training error, and 8 = 1/T is the training temperature. The partition function
Z 1s a constant such that the probability distribution is correctly normalised. The student
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prior PP"(w) expresses additional a priori constraints on the student, such as the spherical
constraint. The partition function is given by the integral,

P A

where € (w,x) is the error that a student makes on an example x.

Auxiliary Field Methods

Although it is often straightforward to express the generalisation error in terms of the average
overlap of student and teacher vectors, we demonstrate an alternative method which involves
augmenting the partition function with an auxiliary field (this approach which will turn out
useful later on), and we define,

Z(8,7) :/dwexp (—ﬂie(w,x)—yﬁe(w,x)), (A1)

so that we can write the thermal average of the test error,

0

(el = =57 iy, 52 (5.9) (A.2)

In order to calculate the generalisation error, we need to further average (A.2) over the dataset
inputs. By interchanging the derivative and the average, we can write the generalisation error
as a function of the (dataset) averaged augmented log partition function,

1 0 1 .. 0
o= =7 i (G Z (300 =~ Jin a2 (5)c. (A3)

Thus, by interchanging the order of averaging and differentiation, the statistical properties of
the system can be found from the free energy, F(3,7) = (InZ (3,7)):'. The free energy is
similar to a generating function in statistics, and we can generate higher (thermal) moments
from taking higher derivatives. Calculating the free energy by performing the dataset average
(known as the “quenched” average in statistical mechanics) lies at the heart of the statistical
mechanics formalism, and there have been many attempts to facilitate the technical difficulties
inherent in the average of the logarithm of a function[BY86]. Depending on the complexity of
the student/teacher architectures, it may well be possible to carry out the averages over the
Gibbs distribution, and over the data sets (the quenched variables) by fairly direct methods.
The method that we briefly review in the following section, however, is a rather general method
that can, in principle, be applied to a large class of difficult calculations.

!The standard definition of the free energy is given by —F/3
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A.1.2 Replica Methods - a brief introduction

The essential feature of the replica method comes from rewriting the logarithm in a more
convenient way. For small # we can expand the logarithm as,

In(1 + ) ::1;+(’)(:1;2).
For n < 1, we set 2" =1+ z, giving
mZ"=2"~140((1-2")?)

Using L.’Hopital’s rule, one then attains,

AVAD)
(InZ) = T}g}no o

This means that the difficulty of averaging the logarithm of the partition function has been
transferred to averaging powers of the partition function. We write Z" as the product of n
replicas of 7, and carry out the quenched average over this product, before performing an
analytic continuation of a vanishingly small number of replicas (n—0). The techniques for
carrying out such calculations are by now standard and we refer the reader to the works WRB93,
SST92] for more detailed discussions. The introduction of the different replicas artificially
introduces extra degrees of freedom to the calculation which typically manifest themselves as
order parameters, being overlaps between weight vectors from different replica solution spaces.
In order to proceed with such calculations, one therefore needs to determine these extra degrees
of freedom. The simplest possible assignment is that of replica symmetry, which assumes that
the solutions represented by the different replica systems are indistinguishable. Intuitively,
this corresponds to the case in which the weight space of solutions remains connected such
that the replicated weight space overlaps are identical. Such an assumption, however, is by
no means guaranteed to yield correct results. The validity of the results is commonly checked
by calculating the entropy of the resulting calculation, which is simply related to the free
energy. For the linear perceptron, however, the replica symmetry ansatz is exact. For discrete
systems, the entropy must be positive, and any violation of this will necessitate a breaking
of replica symmetry. In the case of the binary perceptron, we therefore restrict our analysis
to the region of validity for the replica symmetry ansatz. The second essential ingredient to
the statistical mechanics type calculations is the assumption of an infinite input dimension
(thermodynamic limit), which enables averages to be carried with recourse to the saddle point
method[Arf85]. The assumption of self-averaging assures that the saddle point approximation
to the integrals required becomes exact in the thermodynamic limit. The reason that the
saddle point approximation can be taken is that the training energy which appears in the
Gibbs distribution is extensive(scales with V).

A.1.3 The Thermal Variance

We have seen that statistical mechanics can be used to find the average of the test error (the
generalisation error), which is an order O (1) quantity, but how can it be employed to find the
variance? The training error is extensive (scales with N), which means that the variance of
the Gibbs distribution is order O (N~'), giving a generalisation error variance also of order
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O (N7Y). Thus, in the thermodynamic limit, the test error variance is zero! There is, however,
a way around this difficulty.

In the previous section we noted that in order for the saddle point method to work, we
need to introduce an extensive quantity in the exponent of the Gibbs distribution. Hence, in
applying the auxiliary field method, we use an extensive test error, rescaling the variance at
the end of the calculation. (In fact, we did exactly this in demonstrating how to calculate the
generalisation error using the partition function, (A.1)). This will be only an approximation
to the variance as the assumption that the test error variance scales exactly with 1/N means
that higher order terms in 1/N will not be captured by this method. Using the single replica
method only, one readily verifies that, from the definition of the partition function (A.1), the
second moment of the thermally averaged test error can be found from,

.. 0* 2 2
I A, 9 (InZ (8,7)) = ((€1ex)” — <6test>w>5 = var (€5t 0 W), (A.4)
which we term the thermal variance. It is the expected variance over the posterior distribution
of students trained and tested on a random data set. For zero temperature, we could also term
this the wversion space variance. This variance, however, does not capture all the fluctuations
in the test error caused by the stochastic algorithm and the random data sets. In order to

calculate the full variance, var (€. : £), we need to extend the replica formalism.

A.2 Double Replica Method

In this section, we extend the replica formalism to what we shall term the double replica
formalism in order to evaluate averages that depend upon two types of quenched averages. The
motivation for the double replica method comes from the wish to calculate averages such as,

var (erest : €) = ((ewest)’),, 6, (A.5)
The difference between this and the thermal variance (A.4) is
<<6f65t>3v>£ -4 (A.6)
By introducing two different auxiliary fields, we can write,
(= = Jim =10 Z (5,
) 0
(e = = Jim o= 2 (3,7)

Furthermore, using the identity,
) 0?ln (a™b")
0 Dmdn
we can write,
1 d? d?
2 2 - . m n
<<6t65t>w>£ —c, = e %7721}%17%_)0 7@71672 ErEm In(Z™(8,9,) Z" (7, 3)) (A.8)

Hence the full variance var (€5 : £) can be obtained simply adding equations (A.4) and (A.8).
Thus, in theory, one can apply a combination of the single replica and double replica method

= (Inalnb) — (Ina) (In b) (A7)

to obtain most of the kinds of (co)variances that one wishes.
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A.3 Double Replica Method for general Perceptron ar-
chitecture

Having demonstrated, in principle, how one can calculate variances and covariances by a com-
bination of the double and single replica methods, we present in more detail how such a double
replica calculation proceeds. We outline the derivation of the double replica method for a gen-
eral perceptron architecture, which has the single replica method embedded within it.

As we shall primarily be interested in using the double replica method to calculate cross-
validation type covariances, in which the training data of one perceptron is used as the test
data of the other, we derive the double replica results from the wish to calculate,

7 (310 7 Boae = [ T () [ TTntwi) [ T o)

exp{—mi S Wi -1 N Y cwhx) -8 Y ewhx) T e<w57x>}

p=1x€eP, p=1 xeM; 0=1xeP, O=1xeM,

For simplicity, let us assume that the size of the training set for the two systems are equal, and
similarly, the size of the two test sets are equal. Then,

2 () 2 (o)) = [ TL o) | TT (o)

{/dﬂ(x)exp{—ﬂliﬁ(wfax) — By Zn: e(wf,x)}}

{/d,u(x)exp {—’71 iﬁ(wfax) — 72 Zn: G(ngx)}}

which we write as

m n

(2" (Bryvi) 2" (52772»& = / H (dﬂ(wf))/ H (dp(w3)) exp {(PG (By; By) + MG (71572))} (A9)

where,

G (3,50,) = —In [ dp(x)exp {—m > e(whx) =5, ) e(w;7x>}

The evaluation of this replicated Hamiltonian follows directly the standard method presented in
[SST92], and we refer the reader therefore to that work for further details. The input examples
x appear always through the activation for some student, x-w. This means that by substituting
for the activations, we can write the integral over the inputs as an integral over activations.
Using the gaussian measure shorthand,

1 1
Dx = (27T)N/2 exp (—ﬁx-x) ) (A.10)
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we have

By
2

exp{G (B1; 1)} = /dxlddeyeXp{—%i[g(wf) —g(y)]’ - Zi: lg(x )]2}

e e )

The integral over the input examples can be carried out by introducing the integral represen-
tation of the delta function,

1 0
o(x) = %/—oo dz exp izl (A.12)

and integrating over the gaussian measure. We find that the weight vectors appear only in the
form of their mutual overlaps, namely

T,T/ _ 1 T T/' _
Qi = WWZWZ 1—172
77 1 T 7!
12 ﬁ“ﬁ Wy
1
RZ—ZWWZ— WO Z:1,2

QZ’T/ is the overlap between student weights from two replicas of the same perceptron. QI’;/is
the overlap between student weights from two replicas of different perceptrons. []is the overlap
between the the replicated student weight and teacher weight. The integral over the weight
space to find the free energy can then be transformed to an integral over the overlap parameters.
The great simplification of the replica method then comes about through imposing specific
forms for these overlap (order) parameters. The simplest possible assumption for the form of
overlap parameters is called the Replica Symmetric (RS) ansatz. This is the assumption that
the overlap between weight vectors from different replica systems is independent of the replica
system. Bearing in mind the spherical constraint, this means that the RS ansatz takes the

form,
QYT = bror 4 (1= 8- 2)gs
R =R,

71—727/ = {12 (Alg)

The calculation then proceeds by substituting in the RS ansatz to make the replicated Hamil-
tonian a function of the order parameters. Note that by using the identity,

/_Z Dt exp (\/ﬁxt) = exp (:1;2) (A.14)
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where Dt is a zero mean, unit variance gaussian measure, the quantities in exponentials that are
squared can be linearised by the introduction of an auxiliary variable, . After some straight-
forward algebra, one obtains,

exp{G (31 12)} = [ DyDiDEb"(3,)5(5,) (A1)

where

/D:L'exp—{ (xm—l—ﬂ)ly—tl\/ql Rz) —g(y )} (A.16)

R R
k(3) /D:z;exp—{ (xm+32y 1 91;7}{;)

- tQJ ¢ W]’?]f)) - g<y>} (A1)
Vil 1

We mentioned earlier that the single replica method is embedded within the double replica
method. To retrieve the single replica results, we set n = 0 throughout the derivation of the
double replica method, essentially ‘turning oft” one of the replica systems. We see therefore, that
the corresponding single replica result for the replicated Hamiltonian would simply contain an

integral over the function A(3,). A more intuitive way of expressing (A.15) comes from realising
that the functions h and k are related to the single replica function G,

exp (G} = /DyDt (8,1, q, R) (A.18)
This means that one can write,

exp G (By; )} = [ DyD(tr, )7 b (A.19)
where

hy = h(By,t1,q1, R1), hy = h(By,t2,q2, R2) (A.20)

and the measure D(t1, 1) expresses the coupling between the two replica systems,

1 1
Dt 1) = didi ——tTA—lt) A21
(17 2) 1 22 dt(A)exp< 2 ( )

where tT = (#;,;), and the covariance matrix A is given by,

1 __g1o—RIRy
A _ \/ ql_Rf\/ q2—R§
- q12—R1Ry 1

v/ a1—R3\/q2—R2

Taking the derivatives with respect to the replica numbers m,n, one obtains, in the limit
m, n—0,

G(By, By) = (Inhylnhy) — (Inhy) (In hy) (A.23)

(A.22)
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where (..) represents an average over the measure DyD(t1,t2). From (A.8), the variance is
given by taking also the limit of the two auxiliary field terms going to zero, i.e., v;,7,—0. In
this limit, ¢1, ¢2, q12—¢q, R1, Ro— R, where ¢ and R are the single replica order parameters in
the absence of an auxiliary field (i.e., they take their standard single replica values). Therefore,
when we take the derivatives with respect to v, and v,, we use the fact that

2

(In hy) (In hy) = {ai (In h1>} (A.24)

671672 71

This term is straightforward to calculate - it is simply the square of the derivative of the single
replica (&, with respect to the auxiliary field, evaluated in the limit of a zero auxiliary field.

A.3.1 Double Replica Entropic term

We have seen that the student and teacher vectors occur in the replica calculation only through
their respective overlap parameters. This being the case, we can transform the integral over
the weight vectors to an integral over the overlap parameters by introducing the definition of
the overlap parameters through delta functions.

The entropic term G represents the weight space constraints for the system, and is inde-
pendent of the functional form of the transfer function. The method of calculation parallels
that in [SST92], and we derive briefly below the final form of Gy. We write, symbolically, the
double replicated free energy,

1
(2" Z3) / { H deﬂ& ( i NW "W ) } exp{—=N (aG(By, 8,) + 1G(71,72))} (A.25)
7]7p7
where ij stands for a general overlap parameter, and 6 ( ”U — %Wf-wf) expresses the def-

inition of the overlap parameter in terms of the overlap of two weight vectors. The integral
is over all overlap parameters. As usual, one represents the delta functions in integral rep-
resentations, which introduce conjugate variables fj’a, each of which are integrated over the
imaginary axis. Again, symbolically, we write,

Sy oo _1 /H{d w?) }H{d (w? }exp{ S Qe } (A.26)

4,3,0,0 4,3,0,0

Applying replica symmetry, and removing the squares of the weight vectors in the exponential
by introducing auxiliary variables, z, we find,

A A 1 m frn
Go = —(m? — m)d1qs — mRy Ry — (n? — n)giqa — nRy Ry — mndragaa + N In (/1" f3) (A.27)

where
= /D(zl,zz).. (A.28)

D(z1,22) is the same as for (A.21), but with the matrix A replaced by NA. As before, f is
simply the corresponding term from the single replica formalism,

/d exp{ 1—{})W-W—|—W-<EWO—I—\/(]—R2Z)} (A.29)



94 APPENDIX: STATISTICAL MECHANICS FORMALISM

A.3.2 Determining the order parameters

At this stage a little care is needed. The double replica entropic term is given by the limit of
differentiating GGy with respect to m and n in the limit m,n—0. If we do this, we see that the
only terms that will remain for the double replica entropic term will be,

%:—@wm+%ﬁmﬁmﬁy4mﬁmmﬁﬂ (A.30)

Thus, from the double replicated free energy alone, we can only determine the saddle point equa-
tions for the order parameters which express the interaction between the two replica systems.
The issue is then how to determine the saddle point equations for the other order parameters.
Intuitively, these must reduce to the saddle point equations for the single replica system. One
can demonstrate that this is indeed the case by examining (A.27) more carefully.

Before we take the double replica limit, the terms in G of order m?, n?, and, more specifically
mn, are an order smaller than the terms in m and n alone. At this point, therefore, the double
replica free energy is dominated by the single replica system contributions, meaning that the
single replica order parameter saddle point equations can be obtained, before taking the double
replica index derivative.

The integrals in (A.30) above are straightforward to carry out, and one obtains,

Go= (1 —q)(1 - q2) (41—%1&2@12 + 2@12) — ¢12G12 (A.31)

As ¢19 appears only in G, ¢12 can be eliminated by solving the saddle point equation resulting
from differentiating the double replica free energy with respect to ¢;5. From this one finds,

G = I gio— RiRy
0= ——
2(1=q) (1 —¢2)

(A.32)

Again, we mention that this holds for any (single layer) perceptron, regardless of the activation
function.

A.4 Linear Perceptron
Single replica
From [SST92], we have the single replica results,

-
==

Go +1In(l—gq) (A.33)

GT:%ln[1+ﬁ(1_q)]+lﬂ(q_23+1)

ST+ A(1=q) (A.34)

The zero temperature minimum of the free energy Gy — a7, is given simply by ¢ = R =1 — «,
resulting in the generalisation error value ¢, =1 —- R =1 — «.



APPENDIX: STATISTICAL MECHANICS FORMALISM 95

Double replica

Following the procedure mentioned in section(A.3), the double replicated Hamiltonian can be
found from the variance of the single replica (see (A.23)). For the linear perceptron, this is
particularly straightforward to find, giving,

R v
2148, (1 —q1) 1+ 55 (1 — g2)

X

Giz(ﬂlvﬂQ) =

{(B1 =1 (R = 1" + (g2 = Baa) (By = 1) (Ry = 1)+ (qn2 = Ba Ra)?} (A.35)

Again, the entropic term is given by (A.32).
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