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training error, or penalized training error in the case of regularized networks[7, 3, 9].The setting of the associated regularization constants is often achieved by compu-tationally expensive approaches such as cross-validation which search through a setof regularization constants chosen a priori. Furthermore, much of the informationcontained in such computation is discarded in favour of keeping only a single regu-larization constant. A single set of RBF parameters is subsequently found by mini-mizing the penalized training error with the determined regularization constant. Inthis work, we assign prior distributions over these regularization constants, both forthe hidden to output weights and the basis function centers. Together with a noisemodel, this de�nes an ideal Bayesian procedure in which the beliefs expressed in thedistribution of regularization constants are combined with the information in thedata to yield a posterior distribution of network parameters[6]. The beauty of thisapproach is that none of the information is discarded, in contrast to cross-validationtype procedures. Bayesian techniques applied to such non-linear, non-parametricmodels, however, can also be computationally extremely expensive, as predictionsrequire averaging over the high-dimensional posterior parameter distribution. Oneapproach is to use Markov chain Monte Carlo techniques to draw samples from theposterior[8]. A simpler approach is the Laplace approximation which �ts a Gaussiandistribution with mean set to a mode of the posterior, and covariance set to theinverse Hessian evaluated at that mode. This can be viewed as a local posteriorapproximation, as the form of the posterior away from the mode does not a�ect theGaussian �t. A third approach, called ensemble learning, also �ts a Gaussian, but isbased on a less local �t criterion, the Kullback-Leibler divergence[4, 5]. As shown in[1], this method can be applied successfully to multi-layer perceptrons, whereby theKL divergence is an almost analytic quantity in the adaptable parameters. For �xedbasis function widths, the KL divergence for RBF networks is completely analyticin the adaptable parameters, leading to a relatively fast optimization procedure.2 Bayesian Radial Basis Function NetworksFor an N dimensional input vector x, we consider RBFs that compute the linearcombination of K Gaussian basis functions,f(x;m) = KXl=1 wl exp���ljjx� cljj2	 (1)where we denote collectively the centers c1 : : : cK , and weights w = w1 : : : wk bythe parameter vectorm = [c01; : : : ; c0K ; w1; : : : ; wK ]0. We consider the basis functionwidths �1; : : : �k to be �xed although, in principle, they can also be adapted by asimilar technique to the one presented below. The data set that we wish to regressis a set of P input-output pairs D = fx�; y�; � = 1 : : : Pg. Assuming that the targetoutputs y have been corrupted with additive Gaussian noise of variance ��1, thelikelihood of the data is1 p(Djm; �) = exp (��ED) =ZD; (2)where the training error is de�ned,ED = 12 PX�=1 (f(x�;m)� y�)2 (3)To discourage over�tting, we choose a prior regularizing distribution for mp(mj�) = exp (�Em(m)) =ZP (4)1In the following, ZD, ZP and ZF are normalising constants



where we take Em(m) = 12mTAm for a matrix A of hyperparameters. More compli-cated regularization terms, such as those that penalize centers that move away fromspeci�ed points are easily incorporated in our formalism. For expositional clarity,we deal here with only the simple case of a diagonal regularizer matrix A = �I.The conditional distribution p(mjD;�; �) is then given byp(mjD;�; �) = exp(��ED(m)�Em(m))=ZF (5)We choose to model the hyperparameters � and � by Gamma distributions,p(�) / �a�1e��=b p(�) / �c�1e��=d ; (6)where a; b; c; d are chosen constants. This completely speci�es the joint posterior,p(m; �; �jD) = p(mjD;�; �)p(�)p(�) : (7)A Bayesian prediction for a new test point x is then given by the posterior averagehf(x;m)ip(m;�;�jD). If the centers are �xed, p(wjD;�; �) is Gaussian and com-puting the posterior average is trivial. However, with adaptive centers,the posteriordistribution is typically highly complex and computing this average is di�cult2. Wedescribe below approaches that approximate the posterior by a simpler distributionwhich can then be used to �nd the Bayesian predictions and error bars analytically.3 Approximating the posterior3.1 Laplace's methodLaplace's method is an approximation to the Bayesian procedure that �ts a Gaussianto the mode m0 of p(m; jD;�; �) by extremizing the exponent in (5)T = �2 jjmjj2 + �ED(m) (8)with respect to m. The mean of the approximating distribution is then set to themode m0, and the covariance is taken to be the inverse Hessian around m0; this isthen used to approximately compute the posterior average. This is a local methodas no account is taken for the �t of the Gaussian away from the mode.3.2 Kullback-Leibler methodThe Kullback-Leibler divergence between the posterior p(m; �; �jD) and an approx-imating distribution q(m; �; �) is de�ned byKL[q] = �Z q(m; �; �) ln�p(m; �; �jD)q(m; �; �) � : (9)KL[q] is zero only if p and q are identical, and is greater than zero otherwise. Sincein (5) ZF is unknown, we can compute the KL divergence only up to an additiveconstant, L[q] = KL[q] � lnZF . We seek then a posterior approximation of theform q(m; �; �) = Q(m)R(�)S(�) where Q(m) is Gaussian and the distributions Rand S are determined by minimization of the functional L[q][5].We �rst consider optimizing L with respect to the mean m and covariance C ofthe Gaussian distribution Q(m) / exp�� 12 (m�m)TC�1(m�m)	. Omitting allconstant terms and integrating out � and �, the Q(m) dependency in L is,L[Q(m)] = �Z Q(m) ����ED(m)� 12 ��jjmjj2 � lnQ(m)� dm+ const : (10)2The �xed and adaptive center Bayesian approaches are contrasted more fully in [2].



where �� = Z �R(�)d� ; �� = Z �S(�)d� (11)are the mean values of the hyperparameters. For Gaussian basis functions, theremaining integration in (10) over Q(m) can be evaluated analytically, giving3L[Q(m)] = 12 ���tr(C) + jjmjj2	+ ��hED(m)iQ � 12 ln(detC) + const: (12)where hED(m)iQ = 12 PX�=1 (y�)2 � 2y� KXl=1 s�l + KXkl=1 s�kl! (13)The analytical formulae fors�l = hwl expf��ljjx� � cljj2giQ (14)s�kl = hwkwl expf��kjjx� � ckjj2g expf��ljjx� � cljj2giQ (15)are straightforward to compute, requiring only Gaussian integration[2]. The valuesfor C and m can then be found by optimizing (12).We now turn to the functional optimisation of (9) with respect to R. Integratingout m and � leaves, up to a constant,L[R] =Z R(�)�� � jjmjj22 + tr(C)2 + 1b�+ �K(N + 1)4 + a� 1� ln�+ lnR(�)� d�(16)As the �rst two terms in (16) constitute the log of a Gamma distribution (6), thefunctional (16) is optimized by choosing a Gamma distribution for �,R(�) / �r�1e��=s (17)with r = K(N + 1)2 + a; 1s = jjmjj22 + 12tr(C) + 1b ; � = rs : (18)The same procedure for S(�) yieldsS(�) / �u�1e��=v (19)with u = P2 + c; 1v = hED(m)iQ + 1d ; � = uv ; (20)where the averaged training error is given by (13). The optimization of the ap-proximating distribution Q(m)R(�)S(�) can then be performed using an iterativeprocedure in which we �rst optimize (12) with respect to m and C for �xed �, �,and then update � and � according to the re-estimation formulae (18,20).After this iterative procedure has converged, we have an approximating distributionof parameters, both for the hidden to output weights and center positions (�gure1(a)). The actual predictions are then given by the posterior average over this distri-bution of networks. The model averaging e�ect inherent in the Bayesian procedureproduces a �nal function potentially much more complex than that achievable by asingle network.A signi�cant advantage of our procedure over the Laplace procedure is that we canlower bound model the likelihood ln p(Djmodel) � � (L+ lnZD + lnZP ). Hence,decreasing L increases p(Djmodel). We can use this bound to rank di�erent models,leading to principled Bayesian model selection.3h: : :iQ denotes R Q(m) : : : dm
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Figure 1: Regressing a surface from 40 noisy training examples. (a) The KL ap-proximate Bayesian treatment �ts 6 basis functions to the data. The posteriordistribution for the parameters gives rise to a posterior weighted average of a dis-tribution of the 6 Gaussians. We plot here the posterior standard deviation of thecenters (center uctuations) and the mean centers. The widths were �xed a prioriusing Maximum Likelihood. (b) Fixing a basis function on each training point with�xed widths. The hidden-output weights were determined by cross-validation of thepenalised training error.4 Relation to non-Bayesian treatmentsOne non-Bayesian approach to training RBFs is to minimze the training error (3)plus a regularizing term of the form (8) for �xed centers[7, 3, 9]. In �gure 1(b)we �x a center on each training input. For �xed hyperparameters � and �, theoptimal hidden-to-output weights can then be found by minimizing (8). To set thehyperparameters, we iterate this procedure using cross-validation. This results in asingle estimate for the parameters m0 which is then used for predictions f(x;m0).In �gure(1), both the Bayesian adaptive center and the �xed center methods havesimilar performance in terms of test error on this problem. However, the parsimo-nious representiation of the data by the Bayesian adaptive center method may beadvantageous if interpreting the data is important.In principle, in the Bayesian approach, there is no need to carry out a cross-validation type procedure for the regularization parameters �; �. After decidingon a particular Bayesian model with suitable hyperprior constants (here a; b; c; d),our procedure will combine these beliefs about the regularity of the RBF with thedataset in a principled manner, returning a-posteriori probabilities for the values ofthe regularization constants. Error bars on the predictions are easily calculated asthe posterior distribution quanti�es our uncertainty in the parameter estimates.One way of viewing the connection between the CV and Bayesian approaches, is toidentify the a-priori choice of CV regularization coe�cients �i that one wishes toexamine as a uniform prior over the set f�ig. The posterior regularizer distributionis then a delta peak centred at that �� with minimal CV error. This delta peakrepresents a loss of information regarding the performance of all the other networkstrained with �i 6=��. In contrast, in our Bayesian approach we assign a continuousprior distribution on �, which is updated according to the evidence in the data. Anyloss of information then occurs in approximating the resulting posterior distribution.
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(a) Minimum KL
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(c) Regularized (non Bayesian)

Figure 2: Minimal KL Gaussian �t, Laplace Gaussian, and a non-Bayesian proce-dure on regressing with 6 Gaussian basis functions. The training points are labelledby crosses and the target function g is given by the solid lines. For both (a) and (b),the mean prediction is given by the dashed lines, and standard errors are given bythe dots. (a) Approximate Bayesian solution based on Kullback-Leibler divergence.The regularization constant � and inverse noise level � are adapted as describedin the text. (b) Laplace method based on equation (8). Both � and � are set tothe mean of the hyperparameter distributions (6). The mean prediction is givenby averaging over the locally approximated posterior. Note that the error bars aresomewhat large, suggesting that the local posterior mass has been underestimated.(c) The broken line is the Laplace solution without averaging over the posterior,showing much greater variation than the averaged prediction in (b). The dashed linecorresponds to �xing the basis function centers at each data point, and estimatingthe regularization constants � by cross-validation.5 DemonstrationWe apply the above outlined Bayesian framework to a simple one-dimensional re-gression problem. The function to be learned is given byg(x) = (1 + x� 2x2) expf�x2g; (21)and is plotted in �gure(2). The training patterns are sampled uniformly be-tween [�4; 4] and the output is corrupted with additive Gaussian noise of variance�2 = 0:005. The number of basis function is K = 6, giving a reasonably ex-ible model for this problem. In �gure(2), we compare the Bayesian approaches(a),(b) to non-Bayesian approaches(c). In this demonstration, the basis functionwidths were chosen by penalised training error minimization and �xed through-out all experiments. For the Bayesian procedures, we chose hyperprior constants,a = 2; b = 1=4; c = 4; d = 50, corresponding to mean values �� = 0:5 and �� = 200.In (c), we plot a more conventional approach using cross-validation to set the reg-ularization constant.A useful feature of the Bayesian approaches lies in the principled theory for the errorbars. In (c), although we know the test error for each regularization constant in theset of constants we choose to examine, we do not know any principled procedurefor using these values for error bar assessment.
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