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Abstract

We introduce a method for approximate smoothed inference ina class of switching
linear dynamical systems, based on a novel form of Gaussian Sum smoother. This
class includes the switching Kalman Filter and the more general case of switch
transitions dependent on the continuous latent state. The method improves on the
standard Kim smoothing approach by dispensing with one of the key approxima-
tions, thus making fuller use of the available future information. Whilst the only
central assumption required is projection to a mixture of Gaussians, we show that
an additional conditional independence assumption results in a simpler but accu-
rate alternative. Unlike the alternative Expectation Propagation procedure, our
method consists only of a single forward and backward pass and is reminiscent
of the standard smoothing ‘correction’ recursions in the simpler linear dynamical
system. The algorithm performs well on both toy experimentsand in a large scale
application to noise robust speech recognition.

1 Switching Linear Dynamical System

The Linear Dynamical System (LDS) [1] is a key temporal modelin which a latent linear process
generates the observed series. For complex time-series which are not well described globally by a
single LDS, we may break the time-series into segments, eachmodeled by a potentially different
LDS. This is the basis for the Switching LDS (SLDS) [2, 3, 4, 5]where, for each timet, a switch
variablest ∈ 1, . . . , S describes which of the LDSs is to be used. The observation (or‘visible’)
vt ∈ RV is linearly related to the hidden stateht ∈ RH with additive noiseη by

vt = B(st)ht + ηv(st) ≡ p(vt|ht, st) = N (B(st)ht, Σ
v(st)) (1)

whereN (µ, Σ) denotes a Gaussian distribution with meanµ and covarianceΣ. The transition
dynamics of the continuous hidden stateht is linear,

ht = A(st)ht−1 + ηh(st), ≡ p(ht|ht−1, st) = N
(

A(st)ht−1, Σ
h(st)

)

(2)

The switchst may depend on both the previousst−1 and ht−1. This is an augmented SLDS
(aSLDS), and defines the model

p(v1:T , h1:T , s1:T ) =

T
∏

t=1

p(vt|ht, st)p(ht|ht−1, st)p(st|ht−1, st−1)

The standard SLDS[4] considers only switch transitionsp(st|st−1). At time t = 1, p(s1|h0, s0)
simply denotes the priorp(s1), andp(h1|h0, s1) denotesp(h1|s1).

The aim of this article is to address how to perform inferencein the aSLDS. In particular we desire
the filtered estimatep(ht, st|v1:t) and thesmoothedestimatep(ht, st|v1:T ), for any1 ≤ t ≤ T .
Both filtered and smoothed inference in the SLDS is intractable, scaling exponentially with time [4].

∗Version to appear in NIPS 2006



s1 s2 s3 s4

h1 h2 h3 h4

v1 v2 v3 v4

Figure 1: The independence structure of the aSLDS. Square nodes denote discrete variables, round
nodes continuous variables. In the SLDS links fromh to s are not normally considered.

2 Expectation Correction

Our approach to approximatep(ht, st|v1:T ) mirrors the Rauch-Tung-Striebel ‘correction’ smoother
for the simpler LDS [1].The method consists of a single forward pass to recursively find the filtered
posteriorp(ht, st|v1:t), followed by a single backward pass to correct this into a smoothed posterior
p(ht, st|v1:T ). The forward pass we use is equivalent to standard Assumed Density Filtering (ADF)
[6]. The main contribution of this paper is a novel form of backward pass, based only on collapsing
the smoothed posterior to a mixture of Gaussians. Together with the ADF forward pass, we call the
method Expectation Correction, since it corrects the moments found from the forward pass. A more
detailed description of the method, including pseudocode,is given in [7].

2.1 Forward Pass (Filtering)

Readers familiar with ADF may wish to continue directly to Section (2.2). Our aim is to form a
recursion forp(st, ht|v1:t), based on a Gaussian mixture approximation ofp(ht|st, v1:t). Without
loss of generality, we may decompose the filtered posterior as

p(ht, st|v1:t) = p(ht|st, v1:t)p(st|v1:t) (3)

The exact representation ofp(ht|st, v1:t) is a mixture withO(St) components. We therefore ap-
proximate this with a smallerI-component mixture

p(ht|st, v1:t) ≈
I

∑

it=1

p(ht|it, st, v1:t)p(it|st, v1:t)

wherep(ht|it, st, v1:t) is a Gaussian parameterised with meanf(it, st) and covarianceF (it, st). To
find a recursion for these parameters, consider

p(ht+1|st+1, v1:t+1) =
∑

st,it

p(ht+1|st, it, st+1, v1:t+1)p(st, it|st+1, v1:t+1) (4)

Evaluating p(ht+1|st, it, st+1, v1:t+1)

We findp(ht+1|st, it, st+1, v1:t+1) from the joint distributionp(ht+1, vt+1|st, it, st+1, v1:t), which
is a Gaussian with covariance and mean elements:

Σhh = A(st+1)F (it, st)A
T(st+1) + Σh(st+1), Σvv = B(st+1)ΣhhBT(st+1) + Σv(st+1)

Σvh = B(st+1)F (it, st), µv = B(st+1)A(st+1)f(it, st), µh = A(st+1)f(it, st) (5)

To find p(ht+1|st, it, st+1, v1:t+1) we may then conditionp(ht+1, vt+1|st, it, st+1, v1:t) on vt+1

using conditioning1. For the caseS = 1, this forms the usual Kalman Filter recursions[1].

Evaluating p(st, it|st+1, v1:t+1)

The mixture weight in (4) can be found from the decomposition

p(st, it|st+1, v1:t+1) ∝ p(vt+1|it, st, st+1, v1:t)p(st+1|it, st, v1:t)p(it|st, v1:t)p(st|v1:t) (6)

1p(x|y) is a Gaussian with meanµx + ΣxyΣ−1

yy (y − µy) and covarianceΣxx − ΣxyΣ−1

yy Σyx.



The first factor in (6),p(vt+1|it, st, st+1, v1:t) is given as a Gaussian with meanµv and covariance
Σvv, as given in (5). The last two factorsp(it|st, v1:t) andp(st|v1:t) are given from the previous
iteration. Finally,p(st+1|it, st, v1:t) is found from

p(st+1|it, st, v1:t) = 〈p(st+1|ht, st)〉p(ht|it,st,v1:t)
(7)

where〈·〉p denotes expectation with respect top. In the SLDS, (7) is replaced by the Markov
transitionp(st+1|st). In the aSLDS, however, (7) will generally need to be computed numerically.

Closing the recursion

We are now in a position to calculate (4). For each setting of the variablest+1, we have a mixture
of I × S Gaussians which we numerically collapse back toI Gaussians to form

p(ht+1|st+1, v1:t+1) ≈
I

∑

it+1=1

p(ht+1|it+1, st+1, v1:t+1)p(it+1|st+1, v1:t+1)

Any method of choice may be supplied to collapse a mixture to asmaller mixture; our code
simply repeatedly merges low-weight components. In this way the new mixture coefficients
p(it+1|st+1, v1:t+1), it+1 ∈ 1, . . . , I are defined, completing the description of how to form a
recursion forp(ht+1|st+1, v1:t+1) in (3). A recursion for the switch variable is given by

p(st+1|v1:t+1) ∝
∑

st,it

p(vt+1|st+1, it, st, v1:t)p(st+1|it, st, v1:t)p(it|st, v1:t)p(st|v1:t)

where all terms have been computed during the recursion forp(ht+1|st+1, v1:t+1).

The likelihoodp(v1:T ) may be found by recursingp(v1:t+1) = p(vt+1|v1:t)p(v1:t), where

p(vt+1|vt) =
∑

it,st,st+1

p(vt+1|it, st, st+1, v1:t)p(st+1|it, st, v1:t)p(it|st, v1:t)p(st|v1:t)

2.2 Backward Pass (Smoothing)

The main contribution of this paper is to find a suitable way to‘correct’ the filtered posterior
p(st, ht|v1:t) obtained from the forward pass into a smoothed posteriorp(st, ht|v1:T ). We derive
this for the case of a single Gaussian representation. The extension to the mixture case is straightfor-
ward and is presented in [7]. We approximate the smoothed posteriorp(ht|st, v1:T ) by a Gaussian
with meang(st) and covarianceG(st), and our aim is to find a recursion for these parameters. A
useful starting point for a recursion is:

p(ht, st|v1:T ) =
∑

st+1

p(st+1|v1:T )p(ht|st, st+1, v1:T )p(st|st+1, v1:T )

The termp(ht|st, st+1, v1:T ) may be computed as

p(ht|st, st+1, v1:T ) =

∫

ht+1

p(ht|ht+1, st, st+1, v1:t)p(ht+1|st, st+1, v1:T ) (8)

The recursion therefore requiresp(ht+1|st, st+1, v1:T ), which we can write as

p(ht+1|st, st+1, v1:T ) ∝ p(ht+1|st+1, v1:T )p(st|st+1, ht+1, v1:t) (9)

The difficulty here is that the functional form ofp(st|st+1, ht+1, v1:t) is not squared exponential
in ht+1, so thatp(ht+1|st, st+1, v1:T ) will not be Gaussian. One possibility would be to approx-
imate the non-Gaussianp(ht+1|st, st+1, v1:T ) by a Gaussian (or mixture thereof) by minimising
the Kullback-Leilbler divergence between the two, or performing moment matching in the case of
a single Gaussian. A simpler alternative (which forms ‘standard’ EC) is to make the assumption
p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ), wherep(ht+1|st+1, v1:T ) is already known from the
previous backward recursion. Under this assumption, the recursion becomes

p(ht, st|v1:T ) ≈
∑

st+1

p(st+1|v1:T )p(st|st+1, v1:T ) 〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T ) (10)



Evaluating 〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T )

〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T ) is a Gaussian inht, whose statistics we will now com-
pute. First we findp(ht|ht+1, st, st+1, v1:t) which may be obtained from the joint distribution

p(ht, ht+1|st, st+1, v1:t) = p(ht+1|ht, st+1)p(ht|st, v1:t) (11)

which itself can be found from a forward dynamics from the filtered estimatep(ht|st, v1:t). The
statistics for the marginalp(ht|st, st+1, v1:t) are simply those ofp(ht|st, v1:t), sincest+1 carries no
extra information aboutht. The remaining statistics are the mean ofht+1, the covariance ofht+1

and cross-variance betweenht andht+1, which are given by

〈ht+1〉=A(st+1)ft(st), Σt+1,t+1 =A(st+1)Ft(st)A
T(st+1)+Σh(st+1), Σt+1,t =A(st+1)Ft(st)

Given the statistics of (11), we may now condition onht+1 to findp(ht|ht+1, st, st+1, v1:t). Doing
so effectively constitutes a reversal of the dynamics,

ht =
←−
A (st, st+1)ht+1 +←−η (st, st+1)

where
←−
A and ←−η (st, st+1) ∼ N (←−m(st, st+1),

←−
Σ(st, st+1)) are easily found using con-

ditioning. Averaging the above reversed dynamics overp(ht+1|st+1, v1:T ), we find that
〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T ) is a Gaussian with statistics

µt =
←−
A (st, st+1)g(st+1)+

←−m(st, st+1), Σt,t =
←−
A (st, st+1)G(st+1)

←−
A T(st, st+1)+

←−
Σ(st, st+1)

These equations directly mirror the standard RTS backward pass[1].

Evaluating p(st|st+1, v1:T )

The main departure of EC from previous methods is in treatingthe term

p(st|st+1, v1:T ) = 〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) (12)

The termp(st|ht+1, st+1, v1:t) is given by

p(st|ht+1, st+1, v1:t) =
p(ht+1|st+1, st, v1:t)p(st, st+1|v1:t)

∑

s′

t

p(ht+1|st+1, s′t, v1:t)p(s′t, st+1|v1:t)
(13)

Herep(st, st+1|v1:t) = p(st+1|st, v1:t)p(st|v1:t), wherep(st+1|st, v1:t) occurs in the forward pass,
(7). In (13),p(ht+1|st+1, st, v1:t) is found by marginalising (11).

Computing the average of (13) with respect top(ht+1|st+1, v1:T ) may be achieved by any numer-
ical integration method desired. The simplest approximation is to evaluate the integrand at the
mean value of the averaging distributionp(ht+1|st+1, v1:T ). Otherwise, sampling from the Gaus-
sianp(ht+1|st+1, v1:T ) has the advantage that covariance information is used2.

Closing the Recursion

We have now computed both the continuous and discrete factors in (8), which we wish to use to
write the smoothed estimate in the formp(ht, st|v1:T ) = p(st|v1:T )p(ht|st, v1:T ). The distribution
p(ht|st, v1:T ) is readily obtained from the joint (8) by conditioning onst to form the mixture

p(ht|st, v1:T ) =
∑

st+1

p(st+1|st, v1:T )p(ht|st, st+1, v1:T )

which may be collapsed to aJ-component mixture of Gaussians. The smoothed posteriorp(st|v1:T )
is given by

p(st|v1:T ) =
∑

st+1

p(st+1|v1:T ) 〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) . (14)

2This is a form of exact sampling since drawing samples from a Gaussian is easy. This should not be
confused with meaning that this use of sampling renders EC a sequential Monte-Carlo sampling scheme.



2.3 Relation to other methods

The standard-EC Backpass procedure is closely related to Kim’s method [8]. In both standard-EC
and Kim’s method, the approximationp(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ), is used to form
a numerically simple backward pass. The other ‘approximation’ in EC is to numerically compute
the average in (14). In Kim’s method, however, an update for the discrete variables is formed by
replacing the required term in (14) by

〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) ≈ p(st|st+1, v1:t) (15)

This approximation decouples the discrete backward pass inKim’s method from the continuous
dynamics, sincep(st|st+1, v1:t) ∝ p(st+1|st)p(st|v1:t)/p(st+1|v1:t) can be computed simply from
the filtered results alone. The fundamental difference therefore between EC and Kim’s method is
that the approximation, (15), is not required by EC. The EC backward pass therefore makes fuller
use of the future information, resulting in a recursion which intimately couples the continuous and
discrete variables. Unlike [8] and [4], wheregt, Gt ≡ ft, Ft and only the backward pass mixture
weights are updated from the forward pass, EC actually changes the Gaussian parametersgt, Gt in
a non-trivial way. The resulting effect on the quality of theapproximation can be profound, as we
will see in the experiments.

The Expectation Propagation algorithm makes the central assumption, as in EC, of collapsing the
posteriors to a Gaussian family [5]. However, in EP, collapsing to a mixture of Gaussians is dif-
ficult – indeed, even working with a single Gaussian may be numerically unstable. In contrast,
EC works largely with moment parameterisations of Gaussians, for which relatively few numer-
ical difficulties arise. As explained in the derivation of (10), the conditional independence as-
sumptionp(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ) is not strictly necessary in EC. We motivate
it by computational simplicity, since finding an appropriate moment matching approximation of
p(ht+1|st, st+1, v1:T ) in (9) requires a relatively expensive non-Gaussian integration. The impor-
tant point here is that, if we did treatp(ht+1|st, st+1, v1:T ) more correctly, the only assumption in
EC would be a collapse to a mixture of Gaussians, as in EP. As a point of interest, as in EC, the ex-
act computation requires only a single forward and backwardpass, whilst EP is an ‘open’ procedure
requiring iteration to convergence.

In [9] a related dynamics reversed is proposed. However, thesingularities resulting from incorrectly
treatingp(vt+1:T |ht, st) as a density are heuristically finessed.

In [10] a variational method approximates the joint distribution p(h1:T , s1:T |v1:T ) rather than the
marginal inferencep(ht, st|v1:T ). This is a disadvantage when compared to other methods that
directly approximate the marginal.

Sequential Monte Carlo methods (Particle Filters)[11], are essentially mixture of delta-function ap-
proximations. Whilst potentially powerful, these typically suffer in high-dimensional hidden spaces,
unless techniques such as Rao-Blackwellisation are performed. ADF is generally preferential to
Particle Filtering since in ADF the approximation is a mixture of non-trivial distributions, and is
therefore better at capturing the variability of the posterior.

3 Demonstration

Testing EC in a problem with a reasonably long temporal sequence,T , is important since numerical
instabilities may not be apparent in timeseries of just a fewpoints. To do this, we sequentially
generate hidden and visible states from a given model, here with H = 3, S = 2, V = 1 – see
Figure(2) for full details of the experimental setup. Then,given only the parameters of the model and
the visible observations (but not any of the hidden statesh1:T , s1:T ), the task is to inferp(ht|st, v1:T )
andp(st|v1:T ). Since the exact computation is exponential inT , a simple alternative is to assume
that the original sample statess1:T are the ‘correct’ inferences, and compare how our most probable
posterior smoothed estimatesarg maxst

p(st|v1:T ) compare with the assumed correct samplest. We
chose conditions that, from the viewpoint of classical signal processing, are difficult, with changes
in the switches occurring at a much higher rate than the typical frequencies in the signalvt.

For EC we use the mean approximation for the numerical integration of (12). We included the
Particle Filter merely for a point of comparison with ADF, since they are not designed to approximate
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Figure 2: The number of errors in estimatingp(st|v1:T ) for a binary switch (S = 2) over a time
series of lengthT = 100. Hence 50 errors corresponds to random guessing. Plotted are histograms
of the errors are over 1000 experiments. Thex-axes are cut off at 20 errors to improve visualisation
of the results. (PF) Particle Filter. (RBPF) Rao-Blackwellised PF. (EP) Expectation Propagation.
(ADFS) Assumed Density Filtering using a Single Gaussian. (KimS) Kim’s smoother using the
results from ADFS. (ECS) Expectation Correction using a Single Gaussian (I = J = 1). (ADFM)
ADF using a multiple ofI = 4 Gaussians. (KimM) Kim’s smoother using the results from ADFM.
(ECM) Expectation Correction using a mixture withI = J = 4 components.S = 2, V = 1
(scalar observations),T = 100, with zero output bias.A(s) = 0.9999 ∗ orth(randn(H, H)),
B(s) = randn(V, H). H = 3, Σh(s) = IH , Σv(s) = 0.1IV , p(st+1|st) ∝ 1S×S + IS . At time
t = 1, the priors arep1 = uniform, with h1 drawn fromN (10 ∗ randn(H, 1), IH).

the smoothed estimate, for which 1000 particles were used, with Kitagawa resampling. For the Rao-
Blackwellised Particle Filter [11], 500 particles were used, with Kitagawa resampling. We found that
EP3 was numerically unstable and often struggled to converge. To encourage convergence, we used
the damping method in [12], performing 20 iterations with a damping factor of 0.5. Nevertheless, the
disappointing performance of EP is most likely due to conflicts resulting from numerical instabilities
introduced by the frequent conversions between moment and canonical representations.

The best filtered results are given using ADF, since this is better able to represent the variance
in the filtered posterior than the sampling methods. Unlike Kim’s method, EC makes good use
of the future information to clean up the filtered results considerably. One should bear in mind
that both EC and Kim’s method use the same ADF filtered results. These demonstrates that EC
may dramatically improve on Kim’s method, so that the small amount of extra work in making a
numerical approximation ofp(st|st+1, v1:T ), (12), may bring significant benefits. We found similar
conclusions for experiments with an aSLDS[7].

4 Application to Noise Robust ASR

Here we briefly present an application of the SLDS to robust Automatic Speech Recognition (ASR),
for which the intractable inference is performed by EC, and serves to demonstrate how EC scales
well to a large-scale application. Fuller details are givenin [13]. The standard approach to noise
robust ASR is to provide a set of noise-robust features to a standard Hidden Markov Model (HMM)
classifier, which is based on modeling the acoustic feature vector. For example, the method of Un-
supervised Spectral Subtraction (USS) [14] provides state-of-the-art performance in this respect.
Incorporating noise models directly into such feature-based HMM systems is difficult, mainly be-
cause the explicit influence of the noise on the features is poorly understood. An alternative is to
model the raw speech signal directly, such as the SAR-HMM model [15] for which, undercleancon-
ditions, isolated spoken digit recognition performs well.However, the SAR-HMM performs poorly
under noisy conditions, since no explicit noise processes are taken into account by the model.

The approach we take here is to extend the SAR-HMM to include an explicit noise process, so that
the observed signalvt is modeled as a noise corrupted version of a cleanhiddensignalvh

t :

vt = vh
t + η̃t with η̃t ∼ N (0, σ̃2)

3Generalised EP [5], which groups variables together improves on the results, but is still far inferior to the
EC results presented here – Onno Zoeter personal communication.



Noise Variance SNR (dB) HMM SAR-HMM AR-SLDS
0 26.5 100.0% 97.0% 96.8%

10−7 26.3 100.0% 79.8% 96.8%
10−6 25.1 90.9% 56.7% 96.4%
10−5 19.7 86.4% 22.2% 94.8%
10−4 10.6 59.1% 9.7% 84.0%
10−3 0.7 9.1% 9.1% 61.2%

Table 1: Comparison of the recognition accuracy of three models when the test utterances are cor-
rupted by various levels of Gaussian noise.

The dynamics of the clean signal is modeled by a switching AR process

vh
t =

R
∑

r=1

cr(st)v
h
t−r + ηh

t (st), ηh
t (st) ∼ N (0, σ2(st))

wherest ∈ {1, . . . , S} denotes which of a set of AR coefficientscr(st) are to be used at timet,
andηh

t (st) is the so-calledinnovationnoise. Whenσ2(st) ≡ 0, this model reproduces the SAR-
HMM of [15], a specially constrained HMM. Hence inference and learning for the SAR-HMM are
tractable and straightforward.

For the caseσ2(st) ≥ 0 the model can be recast as an SLDS. To do this we defineht as a vector
which contains theR most recent clean hidden samples

ht =
[

vh
t . . . vh

t−r+1

]T
(16)

and we setA(st) to be aR×R matrix where the first row contains the AR coefficients−cr(st) and
the rest is a shifted down identity matrix. For example, for athird order (R = 3) AR process,

A(st) =

[

−c1(st) −c2(st) −c3(st)
1 0 0
0 1 0

]

. (17)

The hidden covariance matrixΣh(s) has all elements are zero, except the top-left most which is set
to the innovation variance. To extract the first component ofht we use the (switch independent)
1 × R projection matrixB = [ 1 0 . . . 0 ]. The (switch independent) visible scalar noise
variance is given byΣv ≡ σ2

v.

A well-known issue with raw speech signal models is that the energy of a signal may vary from one
speaker to another or because of a change in recording conditions. For this reason the innovationΣh

is adjusted by maximising the likelihood of an observed sequence with respect to the innovation
covariance, a process calledGain Adaptation[15].

4.1 Training & Evaluation

Following [15], we trained a separate SAR-HMM for each of theeleven digits (0–9 and ‘oh’) from
the TI-DIGITS database [16]. The training set for each digitwas composed of110 single digit
utterances down-sampled to8 kHz, each one pronounced by a male speaker. Each SAR-HMM was
composed of ten states with a left-right transition matrix.Each state was associated with a10th-
order AR process and the model was constrained to stay an integer multiple ofK = 140 time steps
(0.0175 seconds) in the same state. We refer the reader to [15] for a detailed explanation of the
training procedure used with the SAR-HMM.

An AR-SLDS was built for each of the eleven digits by copying the parameters of the corresponding
trained SAR-HMM, i.e., the AR coefficientscr(s) are copied into the first row of the hidden transi-
tion matrixA(s) and the same discrete transition distributionp(st | st−1) is used. The models were
then evaluated on a test set composed of112 corrupted utterances of each of the eleven digits, each
pronounced by different male speakers than those used in thetraining set.

The recognition accuracy obtained by the models on the corrupted test sets is presented in Table 1.
As expected, the performance of the SAR-HMM rapidly decreases with noise. Thanks to USS,



the feature-based HMM has above 90% accuracy as long as the SNR is bigger than20 dB. In
contrast, the AR-SLDS achieves a recognition accuracy of 61.2% at a SNR close to0 dB, while the
performance of the two other methods is equivalent to randomguessing (9.1%).

Whilst other inference methods may also perform well in thiscase, we found that EC performs
admirably, without numerical instabilities, even for time-series with several thousand time-steps.

5 Discussion

We presented a method for approximate smoothed inference inan augmented class of switching
linear dynamical systems. Our approximation is based on theidea that due to the forgetting which
commonly occurs in Markovian models, a finite number of mixture components may provide a
reasonable approximation. Clearly, in systems with very long correlation times our method may
require too many mixture components to produce a satisfactory result, although we are unaware of
other techniques that would be able to cope well in that case.The main benefit of EC over Kim
smoothing is that future information is more accurately dealt with. Whilst EC is not as general
as EP, EC carefully exploits the properties of singly-connected distributions, such as the aSLDS to
provide a relatively numerically stable procedure. The relaxed version of EC makes the same ba-
sic assumptions as EP (in singly-connected distributions), but results only in a single forward and
backward pass, each being based on a stable update procedure. We have successfully applied EC to
a problem in automatic speech recognition where we model a one dimensional speech signal using
a SLDS [13]. The signal consists of many thousands of timepoints, and numerical stability is an
important concern. We hope that the ideas presented here maytherefore help facilitate the practical
application of dynamic hybrid networks. Code for EC is available from *.
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