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Abstract

We introduce a method for approximate smoothed inferenaelass of switching
linear dynamical systems, based on a novel form of Gaussiansthoother. This
class includes the switching Kalman Filter and the more gdrease of switch
transitions dependent on the continuous latent state. Htlead improves on the
standard Kim smoothing approach by dispensing with oneek#y approxima-
tions, thus making fuller use of the available future infation. Whilst the only
central assumption required is projection to a mixture afi$séans, we show that
an additional conditional independence assumption ie8uli simpler but accu-
rate alternative. Unlike the alternative Expectation Rggtion procedure, our
method consists only of a single forward and backward padssareminiscent
of the standard smoothing ‘correction’ recursions in tmegder linear dynamical
system. The algorithm performs well on both toy experimantsin a large scale
application to noise robust speech recognition.

1 Switching Linear Dynamical System

The Linear Dynamical System (LDS) [1] is a key temporal mddekhich a latent linear process
generates the observed series. For complex time-seriehahe not well described globally by a
single LDS, we may break the time-series into segments, emcteled by a potentially different
LDS. This is the basis for the Switching LDS (SLDS) [2, 3, 4v8]ere, for each time, a switch
variables; € 1,...,S describes which of the LDSs is to be used. The observatiotvigble’)

vy € RY is linearly related to the hidden state € R with additive noise; by

vy = B(s¢)hy +1°(st) = p(vlhe, st) = N (B(se)he, 2¥(st)) Q)

whereN (i, ) denotes a Gaussian distribution with megamnd covarianc&. The transition
dynamics of the continuous hidden statss linear,

he = A(s)he—1 +0"(st), = plhelhe—1,s¢) = N (A(s)he—1, 5" (51)) (2

The switchs, may depend on both the previods ; and h;_;. This is an augmented SLDS
(aSLDS), and defines the model

T
prer, i, sir) = [ [ p(olhe, sop(alhu 1, s0)p(selhe—1, s6-1)
=1

The standard SLDS[4] considers only switch transitiptg|s;—1). Attime¢ = 1, p(s1|ho, So0)
simply denotes the prigr(s;), andp(h1|ho, s1) denotep(h]s1).

The aim of this article is to address how to perform infereéndbe aSLDS. In particular we desire
the filtered estimatep(h¢, s¢|v1.:) and thesmoothedestimatep(hy, s¢|v1.7), foranyl < ¢ < T.
Both filtered and smoothed inference in the SLDS is intrdetatzaling exponentially with time [4].

*Version to appear in NIPS 2006



Figure 1: The independence structure of the aSLDS. Squalesmtenote discrete variables, round
nodes continuous variables. In the SLDS links frbito s are not normally considered.

2 Expectation Correction

Our approach to approximapéh;, s;|v1.7) mirrors the Rauch-Tung-Striebel ‘correction’ smoother
for the simpler LDS [1]. The method consists of a single fadyaass to recursively find the filtered
posteriomp(he, s¢|v1.+), followed by a single backward pass to correct this into actimed posterior
p(he, s¢lv1.7). The forward pass we use is equivalent to standard Assumesitp&iltering (ADF)
[6]. The main contribution of this paper is a novel form of kaard pass, based only on collapsing
the smoothed posterior to a mixture of Gaussians. Togethietie ADF forward pass, we call the
method Expectation Correction, since it corrects the mdasfennd from the forward pass. A more
detailed description of the method, including pseudoctsigiyen in [7].

2.1 Forward Pass (Filtering)

Readers familiar with ADF may wish to continue directly tocBen (2.2). Our aim is to form a
recursion forp(s, he|v1.¢), based on a Gaussian mixture approximatiop(@f;|s;, v1.;). Without
loss of generality, we may decompose the filtered postesior a

p(ht, s¢|v1:e) = p(he|se, v1:6)p(se|v1:e) (3)

The exact representation pfh:|s;, v1.¢) is a mixture withO(S*) components. We therefore ap-
proximate this with a smallef-component mixture

p(ht|se, v1:e) = ZP helit, st, v1:¢)p(ie|se, viit)

=1

wherep(h¢|iz, s¢, v1.+) is @ Gaussian parameterised with mgéf, s;) and covariancé’(iy, s;). To
find a recursion for these parameters, consider

plhealsernsvrern) = D p(hesilse, it ser1, 0nee)p(se, ielsern, viesn) (4)
St,it
Evaluating p(ht+1 |St, it, St41, 'Ul:t—i-l)

We findp(hty1|8t, i, St41, v1:4+1) from the joint distributionp(hsy1, vy 1|8t, 4, St+1, v1:¢), Which
is a Gaussian with covariance and mean elements:

Shn = A(se41)F(iv, 50) AT (51401) + S (se41),  Sow = B(s141)San BT (5141) + S¥(8141)
Yon = B(st41)F(it,8t),  po = B(sex1)A(ser1) (e, 50),  pn = A(5e41) (i, 5¢) %)

To find p(hes1[se, it Se41, vie41) we may then conditiom(hyr1, viy|se, it Se41,v1:¢) ON vy
using conditioning. For the case& = 1, this forms the usual Kalman Filter recursions[1].

Evaluating p(s, is|Si41, V1:¢+1)
The mixture weight in (4) can be found from the decomposition

P(St, 1| St41, Vit41) O P(Vsy1|it, Sty Stq1, V1:6)D(Se41ie, St 01:)D(2e] St, V1:6)P(5¢|v1:¢) (6)

'p(z|y) is a Gaussian with meam, + S.,%,, (y — uy) and covaranc&es — Say Xy Sy



The first factor in (6) p(vit1is, ¢, St+1, v1.¢) IS given as a Gaussian with mean and covariance
v, @s given in (5). The last two factorgi|s:, v1..) andp(s|vi.;) are given from the previous
iteration. Finally,p(s;+1it, st, v1.¢) is found from

P(seg1lic, s, v1:) = (P(se41lhes $0)) p(nefiv,s o1 (7)

where<->p denotes expectation with respectjio In the SLDS, (7) is replaced by the Markov
transitionp(s;+1]|s:). In the aSLDS, however, (7) will generally need to be comgutemerically.

Closing therecursion

We are now in a position to calculate (4). For each settindgnefariables;;, we have a mixture
of I x S Gaussians which we numerically collapse back ®aussians to form

I
P(hesalsern, viern) & D plhugalivsr, sen, viepn)plivga s, v1eg)
it+1:1

Any method of choice may be supplied to collapse a mixture tmaller mixture; our code
simply repeatedly merges low-weight components. In thiy wee new mixture coefficients
pits1|St+1,v1:041)s Ge41 € 1,...,1 are defined, completing the description of how to form a
recursion fop(hyy1|st+1, v1:e4+1) in (3). A recursion for the switch variable is given by

Pstt1|viien) o Z P(uerlsirry e, 56, v1:0)p(setalie st via)piclse, via)p(si|vie)

St,lt
where all terms have been computed during the recursion(fQr. 1 |s¢11, v1.¢41)-

The likelihoodp(v1.7) may be found by recursingvi.;+1) = p(vit1|v1.4)p(v1.), where

p(vit1lvr) = Z P(Uet1[its Sty Stq1, V1) P(Seglie, S, v1)P(ie]se, V1) P(selv1:e)

1t ,St,St+1

2.2 Backward Pass (Smoothing)

The main contribution of this paper is to find a suitable waydorrect’ the filtered posterior
p(st, hi|v1.) obtained from the forward pass into a smoothed postexier, h:|v1.7). We derive
this for the case of a single Gaussian representation. Tteasirn to the mixture case is straightfor-
ward and is presented in [7]. We approximate the smoothe@posp(h.|s;, v1.7) by a Gaussian
with meang(s;) and covariancé(s;), and our aim is to find a recursion for these parameters. A
useful starting point for a recursion is:

p(he, selvrr) =Y p(sega|vrr)p(halse, ser1, vir)p(selsipr, vir)

St41

The termp(hy|s¢, si+1,v1.7) May be computed as

p(helst, St41,v1.1) = / p(he|hes1, Sty Se1, Vie)P(higa|Se, Se41, v1T) (8)
htt1

The recursion therefore requirg€i;1|s¢, st+1, v1.7), which we can write as

P(het1st, St41,v1:1) < p(het1|Set1, vir)D(SelSet1, hig1, V1) 9

The difficulty here is that the functional form @fs;|s;+1, hiy1,v1.¢) IS NOt squared exponential
in hty1, SO thatp(heiq]se, str1, v1.7) Will not be Gaussian. One possibility would be to approx-
imate the non-Gaussigr(hi1|st, si+1,v1.7) by @ Gaussian (or mixture thereof) by minimising
the Kullback-Leilbler divergence between the two, or perfmg moment matching in the case of
a single Gaussian. A simpler alternative (which forms ‘d&nd’ EC) is to make the assumption
p(his1]se, st41, v1.17) = p(heg1|Se+1, v1.1), wherep(hei1|si41,v1.7) is already known from the
previous backward recursion. Under this assumption, therséon becomes

p(he, selvrr) ~ Z P(sex1|vrr)p(seserr, vir) (P(Relhigr, Sty 5141, 01:0)) gy 504 0,000) (10)

St+1



Evaluating <p(ht|h,t+1, Sty St41, Ul;t)>P(ht+1|St+1,U1:T)

(p(hi|hts1, Sty St41, ”1¢t)>p(ht+1|st+1,vm) is a Gaussian im., whose statistics we will now com-
pute. First we findb(h¢|hit1, S, St+1, v1:+) Which may be obtained from the joint distribution
P(hey hig1se, Se41,01:0) = D(hgr [P, Se1)D(Pe| e, v1:¢) (11)

which itself can be found from a forward dynamics from theefitd estimate(h;|s;, v1.¢). The
statistics for the marginal(h|s¢, s¢+1,v1.¢) are simply those of(h|s;, v1.¢), Sinces,; carries no
extra information abouk;. The remaining statistics are the mearegf;, the covariance of;;
and cross-variance betweknandh; 1, which are given by

(hi1)=A(se31) fe(50); Stqt,p1 =A(5041)Fi(s0) AT (5041)+5"(8e41), Segr,e=A(s041) Fe(s1)
Given the statistics of (11), we may now conditionfon; to find p(h¢|hti1, St, St+1,v1:¢). DoiNg
so effectively constitutes a reversal of the dynamics,

— —
he = A(st,st41)hev1 + 1 (8¢, 8t41)

where 4 and N (st,8001) ~ N(‘ﬁ(st,stﬂ),g(st,stﬂ)) are easily found using con-
ditioning.  Averaging the above reversed dynamics owéh:i1|s:+1,v1.7), we find that
(p(ht|hty1, Sty St41, vl;t))p( ) is a Gaussian with statistics

hit1lset1,v1:T
—

— — —
e = A(St,5041)9(5041)+M(st, 8e41), See = A(se,8041)G(s041) AT (50, S041)+ 2 (¢, St41)

These equations directly mirror the standard RTS backwasd[f].
Evaluating p(s¢|si+1,v1.7)
The main departure of EC from previous methods is in treatiegerm
p(selst+1,v1.1) = <p(5t|ht+la5t+17vl:t)>p(ht+1‘st+hvl:T) (12)
The termp(s¢|hi41, 5¢41,v1:¢) IS given by

p(ht+1 |5t+17 St, Ul:t)p(st, St+1 |U1:t)
h 4) = 13
p(5t| L S vl't) § st P(ht+1|8t+17 SQ, Ul:t)P(SQa 8t+1|U1:t) ( )

Herep(st, sir1|v1:t) = p(Ser1lse, v1.0)p(se|v1.e), wherep(si11]se, v1.+) occurs in the forward pass,

(7). In (13),p(ht11]8¢+1, t, v1:¢) is found by marginalising (11).

Computing the average of (13) with respecpté1|s:+1,v1.7) may be achieved by any numer-
ical integration method desired. The simplest approxiomais to evaluate the integrand at the

mean value of the averaging distributip(h; 1 |s:y1, v1.7). Otherwise, sampling from the Gaus-
sianp(hsy1|s¢11, v1.7) has the advantage that covariance information isused

Closing the Recursion

We have now computed both the continuous and discrete fautd8), which we wish to use to
write the smoothed estimate in the fogrth, s¢|v1.7) = p(s¢|vi.r)p(he|st, v1.7). The distribution
p(hi|se, v1.7) is readily obtained from the joint (8) by conditioning ento form the mixture

p(he|se, vi:r) = Zp(5t+1|5tavl:T)p(ht|Sta 5141, V1:T)
St+41
which may be collapsed to.Acomponent mixture of Gaussians. The smoothed postefigj:.7)
is given by

p(silorr) =Y plsivaforr) (p(silhist, S0, 010)) e 1 e one) (14)

St41

’This is a form of exact sampling since drawing samples fromaasSian is easy. This should not be
confused with meaning that this use of sampling renders Egjaential Monte-Carlo sampling scheme.



2.3 Reation to other methods

The standard-EC Backpass procedure is closely relatedndsknethod [8]. In both standard-EC
and Kim’s method, the approximati@iih;1|s¢, s¢+1, v1.7) =~ p(hit1|St+1,v1.7), IS used to form
a numerically simple backward pass. The other ‘approxiomain EC is to numerically compute
the average in (14). In Kim's method, however, an updateHerdiscrete variables is formed by
replacing the required term in (14) by

(p(st|hes1, 5641, ’Ulzt)>p(ht+1 |seq1,007) P(5t|St41,01:0) (15)

This approximation decouples the discrete backward pagsnirs method from the continuous
dynamics, sinc@(s:|st+1,v1:¢) x p(Se41|8:)p(st|v1:t)/p(st+1]|v1:¢) can be computed simply from
the filtered results alone. The fundamental differenceetioee between EC and Kim’s method is
that the approximation, (15), is not required by EC. The ECkiaard pass therefore makes fuller
use of the future information, resulting in a recursion vbhiatimately couples the continuous and
discrete variables. Unlike [8] and [4], whege G; = f:, F; and only the backward pass mixture
weights are updated from the forward pass, EC actually chatige Gaussian parametgrsG; in

a non-trivial way. The resulting effect on the quality of #ygproximation can be profound, as we
will see in the experiments.

The Expectation Propagation algorithm makes the centgainaption, as in EC, of collapsing the
posteriors to a Gaussian family [5]. However, in EP, coliaggo a mixture of Gaussians is dif-
ficult — indeed, even working with a single Gaussian may be emigally unstable. In contrast,
EC works largely with moment parameterisations of Gaussiér which relatively few numer-
ical difficulties arise. As explained in the derivation of0f1 the conditional independence as-
sumptionp(hi41]st, St+1, v1.17) & p(hit1|se+1,v1.7) IS Not strictly necessary in EC. We motivate
it by computational simplicity, since finding an appropeiaoment matching approximation of
p(het1]st, se+1,v1.7) In (9) requires a relatively expensive non-Gaussian irtiign. The impor-
tant point here is that, if we did tre@th;11]s:, st+1, v1.7) more correctly, the only assumption in
EC would be a collapse to a mixture of Gaussians, as in EP. Aéa@f interest, as in EC, the ex-
act computation requires only a single forward and backyass, whilst EP is an ‘open’ procedure
requiring iteration to convergence.

In [9] a related dynamics reversed is proposed. Howevesitigularities resulting from incorrectly
treatingp(v:+1.7|ht, s¢) @s a density are heuristically finessed.

In [10] a variational method approximates the joint disition p(h1.7, s1.7|v1.7) rather than the
marginal inference(h:, st|vi.r). This is a disadvantage when compared to other methods that
directly approximate the marginal.

Sequential Monte Carlo methods (Particle Filters)[114, @ssentially mixture of delta-function ap-
proximations. Whilst potentially powerful, these typigaduffer in high-dimensional hidden spaces,
unless techniques such as Rao-Blackwellisation are peeidr ADF is generally preferential to
Particle Filtering since in ADF the approximation is a mpgwf non-trivial distributions, and is
therefore better at capturing the variability of the paster

3 Demonstration

Testing EC in a problem with a reasonably long temporal secgid’, is important since numerical
instabilities may not be apparent in timeseries of just a peints. To do this, we sequentially
generate hidden and visible states from a given model, h#heAv = 3, S = 2,V = 1 — see
Figure(2) for full details of the experimental setup. Thgimen only the parameters of the model and
the visible observations (but not any of the hidden states, s1.7), the task is to infep(h¢| s, v1.7)
andp(s¢|v1.7). Since the exact computation is exponentialina simple alternative is to assume
that the original sample states are the ‘correct’ inferences, and compare how our most firieba
posterior smoothed estimatag; max,, p(s:|v1.7) compare with the assumed correct sampléVe
chose conditions that, from the viewpoint of classical aiggrocessing, are difficult, with changes
in the switches occurring at a much higher rate than the &fiequencies in the signaj.

For EC we use the mean approximation for the numerical iategr of (12). We included the
Particle Filter merely for a point of comparison with ADFse they are not designed to approximate
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Figure 2: The number of errors in estimatip@s;|v1.7) for a binary switch § = 2) over a time
series of lengtl” = 100. Hence 50 errors corresponds to random guessing. Plogdudsiograms
of the errors are over 1000 experiments. Thaxes are cut off at 20 errors to improve visualisation
of the results. (PF) Particle Filter. (RBPF) Rao-Blackigedl PF. (EP) Expectation Propagation.
(ADFS) Assumed Density Filtering using a Single GaussiadkimS) Kim’s smoother using the
results from ADFS. (ECS) Expectation Correction using agi&iiGaussiani(= J = 1). (ADFM)
ADF using a multiple off = 4 Gaussians. (KimM) Kim’s smoother using the results from ADF
(ECM) Expectation Correction using a mixture with= J = 4 components.S = 2,V =1
(scalar observations)) = 100, with zero output bias.A(s) = 0.9999 x orth(randn(H, H)),
B(s) = randn(V,H). H = 3, %"(s) = Iy, ¥(s) = 0.11v, p(si+1]s¢) x lsxs + Is. Attime

t = 1, the priors ar@; = uniform, with i; drawn fromA\/ (10 * randn(H, 1), I5).

the smoothed estimate, for which 1000 particles were usigld Kitagawa resampling. For the Rao-
Blackwellised Particle Filter [11], 500 particles were dseith Kitagawa resampling. We found that
EP® was numerically unstable and often struggled to converg@riEourage convergence, we used
the damping method in [12], performing 20 iterations witheagbing factor of 0.5. Nevertheless, the
disappointing performance of EP is most likely due to cot¥fliesulting from numerical instabilities
introduced by the frequent conversions between momentamainical representations.

The best filtered results are given using ADF, since this isebable to represent the variance
in the filtered posterior than the sampling methods. Unliken' method, EC makes good use
of the future information to clean up the filtered results sidarably. One should bear in mind
that both EC and Kim's method use the same ADF filtered resulteese demonstrates that EC
may dramatically improve on Kim’s method, so that the smalbant of extra work in making a
numerical approximation Qf(s:|s.+1,v1.7), (12), may bring significant benefits. We found similar
conclusions for experiments with an aSLDS[7].

4 Application to Noise Robust ASR

Here we briefly present an application of the SLDS to robugbatic Speech Recognition (ASR),
for which the intractable inference is performed by EC, agveas to demonstrate how EC scales
well to a large-scale application. Fuller details are giiefil3]. The standard approach to noise
robust ASR is to provide a set of noise-robust features taradstrd Hidden Markov Model (HMM)
classifier, which is based on modeling the acoustic feateictov. For example, the method of Un-
supervised Spectral Subtraction (USS) [14] provides sifitbe-art performance in this respect.
Incorporating noise models directly into such featureedaddMM systems is difficult, mainly be-
cause the explicit influence of the noise on the features éslyponderstood. An alternative is to
model the raw speech signal directly, such as the SAR-HMMehjdd] for which, undecleancon-
ditions, isolated spoken digit recognition performs welbwever, the SAR-HMM performs poorly
under noisy conditions, since no explicit noise proceseesaken into account by the model.

The approach we take here is to extend the SAR-HMM to includexplicit noise process, so that
the observed signai, is modeled as a noise corrupted version of a cléddensignalv!:

vy =l +i  with 7, ~ N(0,67)

3Generalised EP [5], which groups variables together imgsan the results, but is still far inferior to the
EC results presented here — Onno Zoeter personal commionicat



Noise Variance| SNR (dB) | HMM SAR-HMM | AR-SLDS
0 26.5 100.0% 97.0% 96.8%

1077 26.3 100.0% 79.8% 96.8%
10~ 25.1 90.9% 56.7% 96.4%
10~° 19.7 86.4% 22.2% 94.8%
1074 10.6 59.1% 9.7% 84.0%
1073 0.7 9.1% 9.1% 61.2%

Table 1: Comparison of the recognition accuracy of threeetwdhen the test utterances are cor-
rupted by various levels of Gaussian noise.

The dynamics of the clean signal is modeled by a switching AdRgss

R
vf =D erlsvi, + ! (s0), 0 (se) ~ N(0,0%(s1))
r=1

wheres; € {1,...,S} denotes which of a set of AR coefficients(s,) are to be used at time
andn!(s;) is the so-callednnovationnoise. Whernv?(s;) = 0, this model reproduces the SAR-
HMM of [15], a specially constrained HMM. Hence inferenceldearning for the SAR-HMM are
tractable and straightforward.

For the case?(s;) > 0 the model can be recast as an SLDS. To do this we défirees a vector
which contains the&k most recent clean hidden samples

he=[or . owh ] (16)

and we setd(s;) to be aR x R matrix where the first row contains the AR coefficients.(s;) and
the rest is a shifted down identity matrix. For example, ftinied order ® = 3) AR process,

—ci(st) —ca(sy) —cs(se)
As)=| L0 0 0
0 1 0

The hidden covariance matri, (s) has all elements are zero, except the top-left most whicétis s
to the innovation variance. To extract the first componeni,ofve use the (switch independent)

1 x R projection matrixB = [ 1 0 ... 0 ]. The (switch independent) visible scalar noise
2

variance is given by, = 0.
A well-known issue with raw speech signal models is that tihergy of a signal may vary from one
speaker to another or because of a change in recording moradiEor this reason the innovatitp

is adjusted by maximising the likelihood of an observed sege with respect to the innovation
covariance, a process call&hin Adaptatior15].

4.1 Training & Evaluation

Following [15], we trained a separate SAR-HMM for each of #heven digits (—9 and ‘oh’) from

the TI-DIGITS database [16]. The training set for each diggts composed of10 single digit
utterances down-sampled&dHz, each one pronounced by a male speaker. Each SAR-HMM was
composed of ten states with a left-right transition matiach state was associated with @h-
order AR process and the model was constrained to stay ayeimeultiple of K = 140 time steps
(0.0175 seconds) in the same state. We refer the reader to [15] fota@letk explanation of the
training procedure used with the SAR-HMM.

An AR-SLDS was built for each of the eleven digits by copyihg parameters of the corresponding
trained SAR-HMM, i.e., the AR coefficients (s) are copied into the first row of the hidden transi-
tion matrix A(s) and the same discrete transition distributigs; | s;—1) is used. The models were
then evaluated on a test set composedl@fcorrupted utterances of each of the eleven digits, each
pronounced by different male speakers than those used traihéng set.

The recognition accuracy obtained by the models on the ptedutest sets is presented in Table 1.
As expected, the performance of the SAR-HMM rapidly deasasith noise. Thanks to USS,



the feature-based HMM has above 90% accuracy as long as tReisShigger thar20dB. In
contrast, the AR-SLDS achieves a recognition accuracy &%kt a SNR close todB, while the
performance of the two other methods is equivalent to rangioessing ¢.1%).

Whilst other inference methods may also perform well in tase, we found that EC performs
admirably, without numerical instabilities, even for tiraeries with several thousand time-steps.

5 Discussion

We presented a method for approximate smoothed inferenaa smugmented class of switching
linear dynamical systems. Our approximation is based oindeethat due to the forgetting which
commonly occurs in Markovian models, a finite number of migtaomponents may provide a
reasonable approximation. Clearly, in systems with vengloorrelation times our method may
require too many mixture components to produce a satisfactsult, although we are unaware of
other techniques that would be able to cope well in that ca$® main benefit of EC over Kim
smoothing is that future information is more accuratelylde@h. Whilst EC is not as general
as EP, EC carefully exploits the properties of singly-caneeé distributions, such as the aSLDS to
provide a relatively numerically stable procedure. Theaxetl version of EC makes the same ba-
sic assumptions as EP (in singly-connected distributidng) results only in a single forward and
backward pass, each being based on a stable update pracékunave successfully applied EC to
a problem in automatic speech recognition where we modekalonensional speech signal using
a SLDS [13]. The signal consists of many thousands of tim#gppand numerical stability is an
important concern. We hope that the ideas presented her¢hmigfore help facilitate the practical
application of dynamic hybrid networks. Code for EC is aaflé from *.
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