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7 Neural Network Applications 198 Summary and Outlook 221 What are neural networks?The �eld of neural networks covers a large area ranging from theoretical neurobiology tostatistical physics and machine learning. Covering in depth such a wide range of topicswould be beyond the scope of this article, in which we prefer to give instead some insightsinto issues related to the history of the �eld, theoretical concepts that underpin the �eld,and then give an overview of more practical applications. There are many good textbooksavailable, covering much of the material in this review, see the references for details.What is it that ties such seemingly disparate areas of research together? In all these areasthere is a common interest in the properties of a (possibly very large) number of relativelysimple processing units (neurons/spin-particles/elementary computing units) when theyare coupled together. It is the belief that the emergent phenomenon when such simpleunits are coupled together is capable of explaining such complex e�ects as intelligence,memory, magnetism and can provide a useful basis for machine learning and computation.In such an interdisciplinary �eld, neural networks can take on somewhat di�erent mean-ings, and the demands or emphasis of the research are correspondingly di�erent. FollowingChurchland and Sejnowski, we can loosely categorise the demand/complaint pairs of dif-ferent researchers, based on this underlying neural-network research as1The Neuroscientist. Show me results of neuromodeling that help explain or predictexperimental results.Non neuroscientists do not know anything much about neuroscience even though theyare doing \neural modeling".The Psychologist. Show me results of neuromodeling that help explain or predict psy-chological functions and behaviour.Non psychologists do not know anything much about the results from psychophysicsand psychology even though they are modeling psychological capacities and perfor-mance.The Computer Scientist. Show me results of neuromodeling that help understand thenature of computation and representation or that yield new ideas about these things.Non computer scientists do not know anything much about electrical circuits, math-ematical analyses, or existing theories of computation.The Philosopher. Show me results of neuromodeling that are relevant to philosophicalproblems concerning the nature of knowledge, the self and the mind.Non philosophers do not understand some of the useful, time saving, and agony-saving contributions of philosophers in constraining questions about how the mindworks.The Physicist. Show me results and insights from neuromodeling that demonstrate howthe macroscopic behaviour of complex systems can be understood to be dependent1The \Physicist" viewpoint is in addition to those found in (Churchland and Sejnowski 1992).2



on a compact description of the system.Non physicists do not know anything much about statistical mechanics and how tobridge the gap between a microscopic description and understanding the resultingmacroscopic behaviour.We do not proceed here to attempt to unify these di�ering viewpoints. Indeed, this di-versity of viewpoints is, in our opinion, a healthy feature. Our own work has been mostclosely associated with the \computer scientist" and \physicist" viewpoints. As we seeit, the problem of making arti�cial machines endowed with some of the functionality ofbiological organisms (e.g.,visual processing of information) is so complex, and the a priorispace in which to search for possible solutions so vast, that we must turn to those biologicalorganisms and their speci�c functionality if we are to succeed in our goal. In so doing, weneed to familiarise ourselves with relevant mathematical frameworks since, ultimately, wewish to �nd a mathematical description of the procedure. In spirit this is similar to DavidMarr's view of arti�cial intelligence, which relates arti�cial intelligence to coding speci�cbiological functions. (See his article in Boden's Book and others therein for an introduc-tion to di�erent viewpoints on arti�cial intelligence and related philosophical issues). Inconcentrating on making an \arti�cial neural network" which is capable of informationprocessing in a manner similar to the brain, there are some observations about the brainwhich highlight some of the di�erences to conventional computation (see Hertz, etal):� It is robust and fault tolerant. Nerve cells die every day without a�ecting its perfor-mance signi�cantly.� It is 
exible. It can easily adjust to a new environment by \learning" { it does nothave to be programmed in a standard computer language.� It can deal with information that is fuzzy, probabilistic, noisy, or inconsistent.� It is highly parallel.� It is small, compact, and dissipates very little power.Ultimately, we would like to be able to make a machine that can perform certain informationprocessing tasks such as face or speech recognition that humans can do with consummateease. The starting point here is that conventional approaches based on Arti�cial Intelligencehave reached an impasse, since the task of formally specifying a task such as face recognitionis either unclear or too complex to be handled in a conventional way.We split our review into the following main sections. The �rst, section (2) deals withthe neural biological background that ultimately motivated the �eld. We then show howthis motivated some of the earliest arti�cial neural network models in section (3).) Thegeneralisation of such early models leads us into the realm of statistical physics in section(4). This sub�eld of neural networks focuses on the emergence of macroscopic behaviourfrom the detailed microscopic desciptions of neural networks. A particularly useful areaof research has been the development of neural networks as advanced statistical models.In section (5) we review some of the progress that has been made in the machine learningcommunity under the general banner of neural networks and in particular those develop-ments in learning non-linear mappings parameterised as perceptrons. This section containsmore immediate practical issues of neural networks and related methods. There is a wealth3



of material on this topic, and an introduction can be found in the references. More generaland recent discussions on how to train models such as neural networks are treated in section(6), where we compare frequentist and Bayesian approaches. How neural networks havefound commercial success in applications is outlined in section (7). Finally, we concludein section (8) with a summary and outlook on where arti�cial neural networks might beheading in the near future.2 Neurobiology2.1 NeuronsNeurons are the basic structural components of the brain2. A neuron is an individual cell,specialised by architectural features that enable fast voltage changes across its membraneas well as voltage changes across neighbouring membranes. Brains are assemblies of suchcells, and while an individual neuron does not see or reason or remember, brains do.How can we get from ion movement across cell membranes to memory or perception inbrains. What is the nature of neuron-neuron connectivity and interactivity? What makesa clump of neurons a nervous system?Two ground-breaking discoveries in the nineteenthcentury established the foundations for a science of nervous systems. (1) Macro e�ects

Figure 1: A schematic representation of two neuronsand their connection point at the synaptic junction.The cell body receives (electrical) input along its den-drites. Provided that this combined input is highenough, a spike or pulse is transmitted along the axon,branching out to many (typically of the order of athousand) synaptic junctions. These signals are thenreceived by an a�erent neuron along its dendrite.

displayed by the nervous systemsdepend on individual cells, whoseparadigm anatomical structure in-clude both long tails (axons) forsending signals and treelike pro-liferation (dendrites) for receiv-ing signals, see �g (1). (2)These cells are essentially elec-trical devices; their basic busi-ness is to receive and transmitsignals by causing and respond-ing to electric current. Withinthe last few decades, an enor-mous amount has been learnedabout neurons: about their elec-trophysiology, microanatomy, con-nectivity and development. If weknow so much about the funda-mental microscopic aspects of thebrain, neurons, surely we also havea good understanding of macro-scopic aspects such as how the vi-sual or motor system works. Infact, we do not. It could be thatwe simply do not yet understand2Much of this overview of neurobiology is taken from (Churchland and Sejnowski 1992) and (Hertz,Krogh, and Palmer 1991). 4



in enough detail how neurons work { ultimately, proponents of this bottom-up researchapproach contest that we will be able to understand large scale phenomena in the brain.However, the main argument of some theoretical neurobiologists is that, no matter whatlevel of detail the individual neuronal aspects of the brain are understood, this is not suf-�cient to explain the complex large scale properties of the brain, such as visual awareness.Such researchers contend that such complex behaviours can only be realised when suchneurons and coupled together, producing a dynamic, highly non-linear information pro-cessing system, the power and properties of which cannot be understood merely by thestudy of neurons in isolation. This approach is central to the �eld of computational neuro-science. This �eld aims for biological realism in computational models of neural networkswhich may, however, study at times relatively simple models to see if they are suÆcient atqualitatively explaining emergent biological phenomena.2.2 Simple Neuron ModelsThe brain is composed of about 1011 neurons of many di�erent types, a common class ofwhich has the form depicted in �g (1). Tree like networks of nerve �bre called dendrites areconnected to the cell body or soma, where the cell nucleus is located. Extending from thecell body is a single long �bre called the axon, which branches into strands and substrands.At the ends of these are the transmitting ends of the synaptic junctions, or synapses toother neurons. The receiving ends of these junctions on other cells can be found both onthe dendrites and on the cell bodies themselves. The axon of a typical neuron makes a fewthousand synapses with other neurons.The transmission of a signal from one cell to another at a synapse is a complex chem-ical process in which speci�c transmitter substances are released from the sending sideof the junction. The e�ect is to raise or lower the electrical potential inside the body ofthe receiving cell. If the cell body potential of a neuron (after receiving inputs from itsneighbours) reaches a threshold, a pulse or action potential of �xed strength and durationis �red, which is propagated along the axonal arborization to synaptic junctions of othercells. After �ring, the cell has to wait for a time called the refractory period before it can�re again.McCulloch and Pitts in 1943 proposed a simple model of a neuron as a binary thresholdunit. Speci�cally, the model neuron computes a weighted sum of its inputs from otherunits, and outputs a one or a zero according to whether this sum is above or below acertain threshold:ni(t+ 1) = �0@Xj wijnj(t)� �i1A :Here ni is either 1 or 0, and represents the state of neuron i �ring or no �ring respectivelyat time t. � is the step function, � (x) = 1 if x � 0 and � (x) = 0 otherwise.The weight wij represents the strength of the synapse connecting neuron j to neuroni. It can be positive or negative corresponding to an excitatory or inhibitory synapserespectively.Though individually simple, a collection of McCulloch-Pitts neurons forms a computation-ally powerful device. Indeed, a synchronous assembly of (suÆciently many) such neuronsis capable of universal computation, programmable by choosing weights wij, and can thusperform any computation that an ordinary digital computer can do.This simple description di�ers from real neurons in some fundamental ways.5



� Real neurons respond to their input in a continuous way. However, the non-linearrelationship between the input and the output is a universal feature. A workinghypothesis is that nonlinearity is essential, though not its speci�c form.� Real neurons perform a nonlinear summation of their inputs.� A real neuron produces a sequence of pulses, not a simple output level. Representingthe �ring rate by a single number ni, even if continuous, ignores the possibility thatpulse phase, the timing of individual \spikes", not just the rate, encodes a signi�cantamount of relevant information.� The amount of transmitter substance released at a synapse may vary unpredictably.A simple generalisation of the McCulloch-Pitts neuron which includes some of these featuresis ni(t+ 1) = g0@Xj wijnj(t)� �i1Awhere g is a continuous function. To take into account some of the stochastic e�ects, wecould alternatively considerp(ni(t+ 1) = 1) = g0@Xj wijnj(t)� �i1A (1)where g is a function between 0 and 1, so that (1) represents the probability that neuroni �res in a unit time interval.In most applications of (classical) neural networks, the former interpretation of neuronsis applied. That is, the output of each network is a deterministic (nonlinear) functionof its inputs. This is then fed successively into other neurons, and the process repeated.We shall mainly deal with this approach in section (5). The stochastic case, in which weconsider the output as representing the probability that the neuron �res, is more closelyrelated to systems in statistical physics, and we shall deal with this more closely in section(4). The tools of statistical mechanics may be applied to analysing the properties of bothkinds of deterministic and non-deterministic systems. Interestingly, the stochastic modelof neurons is a special case of a wider class of statistical models known as graphical models.Graphical models were introduced in response to the failure of traditional expert systemsto cope with uncertainty, and is currently a hot research area.3 The Hop�eld NetworkHop�eld networks are early models based on the simple McCulloch-Pitts type neuron. Itis conventional here to deal rather with +1 (�ring) or �1 (quiescent) variables, rather thanthe original 0=1 variables, so that explicitly, the model is3si = sgn0@Xj wijsj1A (2)3More generally, we can consider the case of thresholds si = sgn�Pj wijsj � �i�. For expositionalclarity, however, we neglect thresholds here. 6



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
(k) (l) (m) (n) (o) (p) (q) (r) (s) (t)Figure 2: (a) to (j) The 10 patterns stored by the Hop�eld network. (k) to (t) Noisecorrupted versions of the patterns successfully recognised by the network. Below eachstored digit is an example of a noisy version of that digit, recognised by the network.That is, when initialised in the noisy state, the Hop�eld Network converged to the correctpattern.where sgn (x) = 1 if x � 0 and sgn (x) = �1 otherwise.An interesting question is whether or not the neurons, under the dynamics (2) converge, orwhether they oscillate in an arbitrary fashion ad in�nitum. Consider the following functionH = �12Xij wijsisj:We claim that under the dynamics (2), this \energy" function decreases in time, providedthat the weights are symmetric, wij = wji and wii = 0.For symmetric connections, we can writeH = C �X(ij) wijsisjwhere (ij) means the sum over all distinct ij pairs. Let s0i be the new value of neuron si.Clearly, if this is the same as the old value si, then the energy function does not change.Otherwise s0i = �si, so that the change in energy isH 0 �H = �Xj 6=iwijs0isj +Xj 6=iwijsisj = 2siXj 6=iwijsj = 2siXj wijsj � 2wii:The �rst term in the above equation is negative from (2), and the second is zero byprescription, so that the energy necessarily decreases.3.1 The Hebb ruleGiven that there exists an energy function (Lyapunov function) which decreases with re-spect to the dynamics, we know that there must be some stable states of this dynamicalsystem. How can we construct the attractors of this system to be patterns u that we wishto recall? In 1949 Donald Hebb suggested that synaptic strengths in the brain change7



proportional to the correlation between the �ring of the pre and post synaptic neurons.The following prescription for the weights is one way to achieve thiswij = 1N PX�=1 u�i u�jwhere � labels the patterns that we wish to store.To show that this gives rise to a stable pattern, consider what happens when the networkis in the state u�i . The pattern is stable if, for all i,sgn0@Xj wiju�j1A = u�i :Using the prescription for the Hebb rule, we getXj wiju�j =Xj X� u�i u�j u�j = u�i + 1N X�6=� u�i Xj u�j u�j :Provided that the second term is small enough, then the pattern will still be stable sincethis does not override the �rst term when we take the sign of this expression. A veryrough argument for randomly generated patterns shows that such patterns will be stable:The second term contains a sum over roughly NP binary variables u�i u�j u�j with mean zeroand variance O(1). The typical magnitude of such a sum is pNP , which is less than Nprovided that P � N . This suggests that as long as the number of patterns is of the orderof the number of neurons in the system, then the patterns will be stable. In fact, a morerigorous analysis shows that the number of patterns that can usefully be stored (that is,with non negligible basins of attraction) is approximately P = 0:138N .An example application of Hop�eld networks is given in �g (2), where noise corruptedversions of digits are recognised correctly by the model. What is interesting about thisapproach is not so much that this task has been solved (since there are many other waysto �nd good solutions to this classi�cation problem), rather that it has been solved in amanner which has some biological relevance, and incorporates some of the desires that weset out for an arti�cial \biological" information processing machine.4 Statistical Physics4.1 The Boltzmann MachineThe Boltzmann machine is an extension of the Hop�eld network in two ways. (1) Itis a stochastic network, in which a probability distribution over the possible states of thenetwork is de�ned. (2) Hidden units are employed to increase the computational complexitythat such machines can perform. Speci�cally, the probability that the neurons (or \nodes")are in state s = (s1; : : : ; sn) isp(s) = 1Z exp0@� 12T Xij wijsisj1A (3)where Z = Pfsi=+1;�1g exp �� 12T Pij wijsisj� is a normalising constant. Equation (3) is ofthe form exp (�H=T ) where H is the Hop�eld energy (albeit with additional hidden states)8



in which T plays the role of \temperature". The lower T is, the more certain it becomesthat the system inhabits only low energy states. If T is high, all states become equallyprobable, and there is no perceived order. The Boltzmann machine is a density estimator,and a relevant question is therefore, what are the typical states that this distributioninhabits? Consider the problem of generating a set of typical states s1; s2; : : : from thedistribution p(s). A simple Monte Carlo sampling algorithm, Gibbs sampling, considersupdating a single neuron, conditional on the other neurons,p (sijs1; : : : si�1; si+1; : : : sn) : (4)In this case, this givesp (sijs1; : : : si�1; si+1; : : : sn) / e� 1T siPj wijsj (5)which can be conveniently written asp (sijs1; : : : si�1; si+1; : : : sn) = �0@siXj wijsj=T1A (6)where the sigmoidal function � (x) = ex= (ex + e�x). In the limit T ! 0, � (x) ! �(x),and the sampling equation (6) becomes the Hop�eld update rule. In this sense, Hop�eldnetworks are a special case of Boltzmann machines.v1 v2h4v3 h1h2h3 v4Figure 3: A Boltzmann machine.The nodes are split into two groups,hidden (light gray), and visible(white). The hidden units in-crease the complexity of the visibleunit distribution through marginali-sation.

A further departure from the Hop�eld networkcomes in the realisation that \hidden" units sh canbe employed to increase the computational power(complexity of the network distribution) on the \vis-ible" nodes sv. We therefore de�ne a joint distribu-tion p (sh; sv) on both the hidden and visible units(here sh and sv denote sets of nodes). In consid-ering how to �nd appropriate parameters for speci-fying the distribution on the visible units, we needto marginalise this joint distribution over the hiddenunits,p (sv) =Xsh p (sh; sv) : (7)The diÆculty in using the Boltzmann machine stemsfrom the diÆculty in carrying out this summationover the hidden states. This is essential since, if weare to �nd appropriate weights wij to learn a set ofvisible patterns, we need to compare the likelihoodof a (visible) pattern given the current set of weights.For general connections wij, the time taken to com-pute this marginal is typically exponential in thenumber of hidden units. Despite recent advances inapproximations to this summation, this still remainsa diÆcult issue holding back the wider applicationof Boltzmann machines.9



(a) Original Noisy Image (b) Restored ImageFigure 4: Image restoration using a Boltzmann machine. The noise in the original image(a) is cleaned up to to give the restoration, (b).4.2 Statistical Mechanics of Ising SystemsThe Boltzmann machine corresponds to a simple model of a magnetic system, known inthe physics literature as the Ising model. This model has been studied intensively since itsintroduction in 1925. Although the description of the \spin 1/2" atoms in this model isvery simple, the model displays a qualitative behaviour similar to the case of real magneticsystems. In the Ising model, the connection weights wij are non-zero only for nearestneighbour interactions, and their sizes are drawn from a �xed zero mean, unit variancedistribution. When the temperature T is high, the interaction between spins is weak, andtheir is little order apparent { all spins point in random directions. As the temperature goesbelow a critical point, there is a phase transition, and the system can behave as a magnet.What is interesting about this phenomenon is that, despite the microscopic complexity ofthis type of system, the macroscopic behaviour is determined by a small number of variables(order parameters) such as the temperature and the distribution from which the inter-spinconnections are drawn. This indicates that a similar simpli�ed description of neuronalbehaviour may be possible, so that we can describe the macroscopic behaviour of certainbrain functions in terms of a relatively small set of variables. One important di�erence,however, between such simple magnetic models and more realistic models of biological isthat there are invariances in the magnetic system, such as translation invariance, which areunlikely to be present in biological systems. Some caution needs to be maintained then ininterpreting the signi�cance of the connection between analyses of simple physical modelsand their potential applications to more realistic biological systems.4.3 Markov Random FieldsThe Boltzmann machine is an example of a Markov Random Field, which has found appli-cation in image restoration. The strengths of nearest neighbour interactions can be usedto encode our prior beliefs about what kinds of images are likely to occur (just as in theHop�eld model, the weights can be used to store patterns). Given a corrupted image,and an assumption about the corruption process, we can recover an approximation of the10



original image by �nding which visible is the most likely state to have given rise to sucha corrupted observation. In �g (4) we see an example application, in which an original,noisy image, �g(4a) is restored using the Boltzmann machine to the cleaner image �g(4b).5 PerceptronsA particularly fruitful area of research has been in developing neural networks as advancedstatistical models. Hop�eld networks and Boltzmann machines are classi�ed as unsuper-vised learning models. In supervised learning, it is more natural to consider that for each(input) pattern, there is an associated output pattern (speci�ed by the supervisor), andit is this input-output relationship that needs to be learned. There are many instancesof such a learning problem { for example, whether or not a person is suitable for a creditloan. There are many advanced models currently available for such tasks, many of whichhave their roots in simpler models, historically known as perceptrons. Indeed, much ofthe initial publicity was generated as a consequence of the performance of perceptrons onsupervised learning tasks.5.1 The Perceptronx1 x2 x3 x4 x5yFigure 5: A simple perceptron. Weuse square boxes to emphasise thedeterministic nature of the network.
The perceptron is essentially just a single neuron likeunit that computes a non-linear function y of its in-puts x,y = g0@Xj wjxj + �1A (8)where the weights w encode the mapping that thisneuron performs. Graphically, this is represented in�g (5). We can consider the case of several outputsas follows:yi = g0@Xj wijxj + �i1Aso that a perceptron can be used to model an input-output mapping x! y. Coupled withan algorithm for �nding suitable weights, we can use a perceptron for regression. Of course,the possible mappings the perceptron encodes is rather restricted, so we cannot hope tomodel all kinds of complex input-output mappings successfully. For example, consider thecase in which g (x) = � (x) { that is, the output is a binary valued function. In this case,we can use the perceptron for binary classi�cation. With a single output we can thenclassify an input x as belonging to one of two possible classes. Looking at the perceptron,(8), we see that we will classify the input as being in class 1 if Pj wjxj + � � 0, and asin the other class if Pj wjxj + � < 0. Mathematically speaking, the decision boundarythen forms a hyperplane in the x space, and which class we associate with a datapoint xdepends on which side of the hyperplane this datapoint lies, see �g (6). A simple learningrule known as the perceptron learning rule can be used to �nd an appropriate set of weightsw that minimises the number of errors that the perceptron makes on a given set of trainingdatapoints. 11



(a) A linearly separable problem (b) A non-linearly separable problemFigure 6: Linear separability: The data in (a) can be classi�ed correctly using a hyperplaneclassi�er such as the simple perceptron, and the data is termed linearly separable. This isnot the case in (b) so that a simple perceptron cannot correctly learn to classify this datawithout error.5.2 Multilayer Perceptrons x1 xnl1 lrh1 hkm1 msy1 ymFigure 7: A multilayer perceptron (MLP)with multiple hidden layers, modeling the in-put output mapping x ! y. This is a morepowerful model than the single hidden layer,simple perceptron. We used here boxes to de-note the fact that the nodes compute a deter-ministic function of their inputs, as opposedtot the stochastic nature of graphical modelssuch as the Boltzmann machine in �g (3)

If the data that we are modeling is not lin-early separable, we have a problem, sincewe certainly cannot model this mapping us-ing the simple perceptron. Similarly, for thecase of regression, the class of function map-pings that our perceptron forms is ratherlimited, and only the simplest regressioninput-output mappings will be able to bemodelled correctly with with a simple per-ceptron. These observations were pointedout in 1969 by Minsky and Papert and de-pressed the research in this area for severalyears. A solution to this perceived problemwas eventually found, which included \hid-den" layers in the perceptron, thus increas-ing the complexity of the mapping. Onesuch example is given in �g (5.1), in whichthe inputs are mapped by a non-linear func-tion into the �rst layer outputs. In turn,these are then fed into subsequent layers,e�ectively forming new inputs for the lay-ers below. Generally, the more layers thatthere are in this process, the complexity ofthe class of functions that such MLPs canmodel increases. However, it can be shown that, provided that there are suÆciently many12



units, a single hidden layer MLP can model an arbitrarily complex input-output regressionfunction.6 Training Neural Networks6.1 Neural Networks as Advanced Statistical Tools6.1.1 Training multi-layered perceptronsTo a statistician, neural networks are a class of non-linear (adaptive basis function) models.This is a very powerful class of models, and neural networks have some nice properties.Speci�cally, multi-layered perceptrons take the form4f(x;w) = KXi=1 vi�(wi �x) (9)where �(h) is a sigmoidal function (a monotonically increasing, bounded function, such as1=(1+eh)), and wi and vi are parameters of the model, the combination of which is denotedw. Training neural networks basically means statistical inference of the parameters w.Let us consider the case of regression, for convenience with a single output variable y. Givena set of input-output pairs, D = fx�; y�g with� = 1 : : : P , how can we �nd appropriateweights w that minimise the error that the network makes in �tting this function? Inneural-network terminology, we would de�ne an an \energy" function that measures theerrors that the network makes, and then try to minimise this function with respect to theweights w. For example, a suitable choice of energy or error function might beE (wjD) =X� (y� � f (x�;w))2 (10)where f (x�;w) is the output of the network for input x�, given that the parametersdescribing the network are w. We can train this network by any standard (non-linear)optimisation algorithm, such as conjugate gradient descent or Levenberg-Marquardt. Incomputing the gradient of the error function, naively it appears that we need of the orderof PW 2 operations (ifW is the number of parameters in the model and P is the number oftraining patterns), since computing the output of the network involves roughly W summa-tions for each of the P patterns, and the gradient is a W -dimensional vector. The essenceof the famous backpropagation procedure is that the gradient can instead by computed inorder PW operations. If the training set is very large, standard computation of the gra-dient over all training patterns is both time-consuming and sensitive to round-o� errors.In that case, \on-line learning", with weight updates based on the gradient for individualpatterns, o�ers an alternative.6.1.2 Statistical inference and over�ttingIn principle, the problem of training neural networks is equivalent to the general statisticalproblem of �tting models to data. It is fair to say that some initial cavalier attitudes4We here consider only a single hidden layer, and biases are neglected since they can be incorporatedmore naturally into the framework by augmenting the input space with an extra dimension, with constant,unit input 13
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Figure 8: Curve �tting. On the left, we see an example of data, and our task is to �t acurve from which we believe that this data has been drawn. The straight line �t on theright is one such plausible �t. However, it is too simple and \under�ts" the data.
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Figure 9: For the same data as in �g (8), we see that we can �t a curve exactly throughthe data using a 10th order polynomial. However, this \over�ts" the data, leading to poorgeneralisation in some regions. The true underlying function from which this data wasgenerated is presented on the right, where the output has been corrupted with additiveGaussian noise of variance 0:22.of neural net practitioners in wielding enormously complex non-linear models have beencorrectly sobered by the statistics community and that, conversely, the application of non-linearity in statistics has been boosted signi�cantly by embracing of neural network liketechniques. Basically, there are two di�erent paradigms for the inference of parameters fromdata: the classical frequentist and the Bayesian approach. The classical approach is mostsimilar to the way early neural-network researchers described training neural networks. TheBayesian approach is becoming more and more popular and may, in the end, appear to bethe most fruitful paradigm. See Loredo's article for an excellent discussion and practicalexamples of the Bayesian versus classical frequentist debate.One of the main problems when �tting complex non-linear models to data is how to prevent\over�tting", or, more generally, how to select the model that not only �ts the data, butalso generalises well to new data. The concept of over�tting is visualized in �g (8) and�g (9). The data, output y versus input x, is shown in �g (8) on the lefthand side. Asimple linear perceptron would yield the �t on the righthand side. A much more complex14



model, e.g.,a 10th order polynomial but also a neural network with a large number ofhidden units, would yield a perfect on the data, as shown in �g (9) on the lefthand side.However, considering the true underlying function displayed on the righthand side, it isclear that the straight line is too simplistic and under�ts the data, whereas the 10th orderpolynomial is too complex and over�ts the data. In the subsequent sections, we will discussthe frequentist and Bayesian approaches to �nd the \right" model.6.2 The Classical Approach6.2.1 Regularisation
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Figure 10: The minimum training error so-lution neural network �t (solid line) to data.The true underlying function is given by thedashed curve.

In the classical approach, the goal is to �ndthe \optimal" w� that minimises an errorfunction E(w). A typical example of suchan error function is the sum-squared errorin (10). The \best" model given an input xis then the function f(x;w�). An exampleis given in �g (10). Given the data points,the �t found by the neural network seemsquite reasonable.In practice, however, direct optimisation ofneural networks is prone to the over�ttingproblem explained above. The standard,so-called regularisation approach is to adda penalty term to the original error (10),for example, a term which penalises largeweights,Ereg(wjD) = E(wjD) + �w�w: (11)The larger � is, the smoother (more regu-larised) the function will be. The questionhowever is, how do we set �?6.2.2 Model choiceThe setting of regularisation parameters such as � above is an example of the central issueof model choice. A solution to this diÆculty is to (randomly) split the data into a trainingand test set, D = fDtrain; Dtestg. Two values of � (two models), can be used in the �t tothe training data using the (regularized) least squares procedure. The two resulting w�parameters, one for each � value, can be tested on the test data, to give two test errors,E(w�jDtest) = X(x;t)2Dtest (f(x;w�)� t)2 :That model (�) with the lower test error is then preferred. The generic term for this proce-dure is \cross-validation" and is widely used, especially if little is known about the problemat hand, and the only criterion is for a model with a low test error - in other words, good gen-eralisation. For high complexity (here, low �), the training data is over�tted, and the testerror is high. As � is increased, under�tting occurs and again, the test error is high. The15



optimal complexity (�) occurs somewhere in between, see �g (11). This trade-o�, betweenmodel complexity and data �t, is sometimes referred to as the \bias/variance dilemma".6.2.3 Training ensembles of networks
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Figure 11: The training/test error trade-o�. When the model is too 
exible (small�), over�tting occurs (too low trainingerror), and generalisation is poor (hightest error). If model 
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Cross-validation is a typical frequentist proce-dure. It requires the subdivision of the origi-nal data in a training and a test set. In princi-ple, this subdivision is rather arbitrary and usu-ally done at random. But then, one might aswell repeat the procedure and generate di�erentnetworks, each trained on a di�erent subset oftraining data. This idea, to train several net-works instead of just one, has become very pop-ular lately, and reduces the instability of the �-nal solution. A popular frequentist method forsubdividing the data in training and test pat-terns is bootstrapping. Many algorithms havebeen proposed on how to combine the results ofthe separate networks into a single answer andfor computing error bars that indicate the reli-ability of this answer.6.3 The Bayesian Framework6.3.1 The Bayesian philosophyThe Bayesian framework provides an alternativeto the frequentist procedures and is rapidly gain-ing popularity. It is based on a quite di�erentphilosophy.� All models are wrong! However, we cansubjectively quantify our beliefs about which models are, a priori (what we knowabout the model before we have seen the data), more suitable. The statistical problemis then to combine these beliefs with the data in a consistent way to yield, a posteriori(what we know about the model after we have seen the data), beliefs in order thatthe suitability of competing models may be quanti�ed.� It is important to understand if the inadequacies of the method are poor modelassumptions or if there are (computational) diÆculties in applying the statisticalmodel �tting method. If possible, such application diÆculties should be minimised,so that one can concentrate on the model assumptions.� Inference without assumptions is impossible. The Bayesian approach forces the mod-eller to make explicit all assumptions about the model, rather than burying them inan ad hoc procedure. However, this elegant framework may, in some cases, be com-promised by computational diÆculties.16



6.3.2 Prior and posteriorApplied to the task of curve �tting, the Bayesian machinery more or less works as follows.First we need to describe the class of functions (models) that we choose to �t the data.An example could be a neural network with a particular number of hidden units. Thesemodel assumption are usually summarized in the hypothesis H. To �nd a \good" curve, wefurther need beliefs about the smoothness of the \clean" underlying function and the leveland nature of the noise in any possible corruption process. For convenience we consider thecase in which the noise process is known and we only have a parameter � specifying oursmoothness belief. This belief is speci�ed through the prior probability p(wj�;H), i.e.,,p(wj�;H) quanti�es our a priori belief in the appropriateness of the value of the parameterw given (hyper)parameter � and other assumptions H. A typical choice isp(wj�;H) / exp "��2w2# : (12)Our belief in what appropriate parameters w are should change when data D comes in.Exactly how follows from Bayes' rule:p(wjD; �;H) = p(Djw; �;H)p(wj�;H)p(Dj�;H) : (13)p(Djw; �;H) is called the likelihood { given that the function with parameter w (from ourclass of functions H), is the correct underlying function generating the data, what is theprobability that the particular data set is observed? Under the assumption of Gaussiannoise (with unit standard deviation), the probability of a dataset D readsp(Djw; �;H) = p(Djw) /Y� exp ��12(y� � f(x�;w))2� :It is easy to check that, for a particular �, the Bayesian maximum a posteriori solution, themaximum of posterior probability (13), corresponds to the frequentist w� minimizing theregularised error (11). In other words, the frequentists' regularisation can be interpretedas an (approximate) Bayesian approach.6.3.3 Bayesian model selectionThe Bayesian approach to model selection is completely di�erent from the frequentist one.In the Bayesian framework, our belief in a particular model directly follows from the rulesof probability. For example, to compare two parameter settings �1 and �2, we computep(�1jD;H)p(�2jD;H) = p(Dj�1; H)p(�1jH)p(Dj�2; H)p(�2jH)where p(Dj�;H) = Z dwp(Djw)p(wj�;H):p(�jH) is our prior belief in the appropriateness of setting �. We can do this comparisonat the level of the hyperparameters, but also higher levels, for example, to compare twosets of models H1 and H2.For non-linear models, unfortunately, Bayesian model comparison is typically computa-tionally intractable since this involves integrals over high dimensional spaces, and approx-imations need to be introduced. 17
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Figure 12: Mean prediction and one standard deviation error bars for noise level � = 0:7and regularization prior � = 10000 (left) � = 1 (right). It can be seen that larger �encourages smoother functions.6.3.4 An exampleWe illustrate the Bayesian approach on the curve �tting problem in �g (8) and �g (9). Weconsider the so-called generalised linear model f(x;w) = w��(x), where the basis functions�i(x) are �xed Gaussian kernels. The model is linear in the parameters wi, yet non-linearin the inputs x. We assume that the data is generated by a function from this functionclass with additive Gaussian noise with standard deviation �. Our prior on the modelparameters w is of the form (12). Both � and � are part of our model assumption. Theposterior probability given the data follows from Bayes' rule as in (13).Predictions at a new test point are given by the posterior average:�f(x) = Z p(wjD; �; �;H)f(x;w)dw (14)where M summarises �, �, and H. This integral is straightforward to carry out, result-ing in an analytical expression, since it involves only Gaussian integration .An importantadvantage of the Bayesian procedure is that con�dence intervals directly follow from theposterior posterior distribution of the parameters,Æ2f(x) = Z p(wjD;M) �f(w; x)� �f(x)�2 dw: (15)The mean prediction and standard con�dence intervals for two di�erent settings of theregularization parameter are shown in �g (12).6.3.5 Sampling MethodsThe Bayesian framework is directly applicable also to non-linear neural networks. Unfor-tunately, in general, the posterior will not have a simple, Gaussian type form, even if weassume Gaussian noise and a Gaussian parameter prior. As such, averaging over the highdimensional posterior is in general intractable and approximations need to be made.A theorem in statistics states that the posterior distribution of parameters will tend to aGaussian as the number of data points increases (up to identi�able symmetries). A naturalapproximation is simply to a �t a Gaussian locally around a mode of the posterior and usethat to approximate the averages. For smaller numbers of data points, this approximation18



is not suÆciently accurate. An alternative is then to approximate the integral by a �nitesample from the posterior:Z p(wjD)f(x;w)dw � 1LXi f(x;wi)where fwi; i = 1 : : : Lg are samples from the posterior p(wjD).
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In principle, this approach is exactin the limit of an in�nite number ofsamples. Indeed, the number of sam-ples required for an accurate evalu-ation can be very small (and is in-dependent of the input dimension).However, generating these samplesremains generally extremely diÆcultand sampling techniques are a sub-ject of much current research, bothin physics, statistics and neural net-works.Each of the samples wi correspondsto a particular function, so that wecan think of sampled functions fromthe posterior. For example, �g (13)shows some (function) samples fromthe posterior distribution. Althoughfundamentally di�erent, the results ofBayesian sampling techniques can bequite similar to the frequentists' ensembles described in section (6.2.3).7 Neural Network Applications7.1 General considerationsMost neural network applications derive from their learning capabilities. Mainly used arestandard feedforward neural networks, either for classi�cation or for regression. In theseapplications, the neural network serves as an alternative to standard statistical solutions.The underlying idea is that due their inherent nonlinearity, neural networks are better inmodeling complex relationships than classical statistical methods. In the end, this neednot always be the case. One of the reasons for the popularity of neural networks is that,using standard tools, a reasonable solution can be obtained in a reasonable amount of time.This gave neural networks the image of \second best" solutions.This viewpoint is understandable when we consider standard neural packages, i.e., stand-alone software for horizontal applications across di�erent domains. As explained before, a(feedforward) neural network is not principally di�erent from standard statistical models.However, many of the available software packages do not treat neural networks as such.On the contrary, the thoroughness that surrounds classical statistical models (tools forcomputing con�dence intervals, model and feature selection, outlier detection, and so on)is replaced with sloppiness under the presumption that neural networks are so powerful19



that they can do without. Furthermore, the standard packages are often not 
exibleenough to handle all peculiarities of the problem to be solved. So, indeed, it is relativelystraightforward to build simple neural applications with standard packages, but these areeasily outperformed when more e�ort is put in.An alternative, rapidly gaining ground, are neural toolboxes for statistical packages likeSPSS, SAS, and Matlab. The threshold for usage is somewhat higher, the user has to buyand become acquainted with the statistical engine supporting the neural algorithms. Theadvantages over stand-alone neural packages are increasing 
exibility and easy integrationwith statistical tools. This makes them very well suited for building tailored neural appli-cations, examples of which will be given below. In these tailored applications, the neuralmachinery often only takes up a small but essential piece of the total solution.Somewhere in between commercial stand-alone packages and toolboxes are the non-commercialneural packages mainly provided by research groups from universities. These often betterrepresent the state-of-the-art with regard to learning algorithms and statistical embed-ding and, with availability of the source codes, are in principle adaptable. However, lackof documentation and support and obvious emphasis on the interests of the researchersthemselves, often oppose user-friendliness.7.2 Example applicationsApplications of neural networks can be found in any domain where data is available tosupport decisions. The general term in this context is \data mining", also referred to as\knowledge discovery in databases". Neural networks are often quoted as the technology tobe used, others being machine learning, clustering, statistics, and visualization techniques.Here we will give a short overview of neural data mining applications.Marketing. Customer credit, billing, and purchases were some of the �rst business trans-actions to be automated with computers, yielding huge amounts of data available formining in search for knowledge that can improve marketing results or lower market-ing costs. A typical example is direct mailing. A test mailing is made to a smallsubset of customer. A feedforward neural network is used to model the response asa function of the characteristics of the customer. This model can then be used todetermine who should be included in the subsequent mass mailing and which o�ersshould be included. Other examples can be found in customer relationship manage-ment (enhance the revenues of existing customers by tuning marketing messages)and preventing customer retention (identifying customers who are likely to switch tocompetitors).Retail and logistics. Neural networks are used for demand forecasting. In principle,these are standard time-series prediction problems in which neural networks haveto compete with standard tools such as Box-Jenkins and ARMA. A nontrivial ap-plication has been developed for the prediction of single-copy newspaper sales. Inthis setting, predictions are needed on a daily basis for a huge set of individual out-lets. By combining all outlets in a single neural network, the outlets can \learn fromeach other", e.g., by extracting typical demand features. In this setting, the neu-ral architecture yields a clear bene�t over standard approaches that treat all outletsindividually. 20



Finance. Finance is the domain for success stories of the type \neural networks predictstock returns". Despite the fact that there may be successful solutions that tem-porarily work, including neural ones, the general feeling is that anything can belucky. There are other problems in the �nancial domain that are better suited for aneural approach. Examples are the detection of fraudulent transactions with creditcards, portfolio optimization, predicting bankruptcies, and credit risk assessment. Inmost of these applications, neural networks are either used for time-series predictionor classi�cation, their bene�t over other tools being the capability of dealing withnonlinearities.Manufacturing. The quality of a manufactured product often depends on the settings ofmany parameters. The exact relationship between these settings and the quality areoften not well understood and too complex to describe with a physical or chemicalmodel. Trained on examples yielding good and bad qualities, neural networks canprovide a solution. Other applications of neural networks are in job shop schedulingand automatic inspection. In these control applications, neural networks are mainlyused for function �tting to model (part of) the process one needs to control.Health and medicine. Some of the applications in health and medicine resemble thosein marketing and �nance: detection of fraudulent insurance claims, risk assessmentof clients, and so on. Other application relate to automatic diagnosis of diseases. Itshould be mentioned that in many medical applications, the surplus value of usingneural networks over standard tools such as Cox survival analysis is often rathersmall. In many cases the databases are too small and too noisy to provide evidenceof very complex relationships that would bene�t from a neural approach.Energy and utility. Prediction of energy demand is very relevant, both for large con-sumers who are often charged based on their peak energy usage, and for providersthat have to anticipate upon extreme demands. In this context neural networks areused as nonlinear time-series predictors. A quite di�erent kind of application in thisarea involves the detection of likely sites for gas and oil deposits. Based on all kindsof measurements at test drilling sites, neural networks are used to predict changes inthe strata of rock, which relates to the presence of mineral deposits.Summarising, there are indeed many (potential) applications of neural networks. Oftenit is not so much the technique that matters, but more the insight that appropriate useof available data can help to solve the problem. The exact technique becomes importantfor large-scale problems, where small improvements have major consequences. In general,neural machinery is most promising if there are nonlinear relationships between explanatoryand response variables and suÆcient data to �nd these. Especially the latter condition neednot always be ful�lled, in which case the surplus value of neural networks over simplertechniques is limited. The trends are vertical applications, embedding in other statisticaltechniques, and combination of knowledge about the domain and available data. Mostapplications are based on classical frequentist statistics, although those using Bayesianmethodology appear more and more.
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8 Summary and OutlookThe �eld of neural networks has contributions from and makes contributions to many dif-ferent areas. Although, ultimately, the motivation for much research has been biological,there are many areas in which arti�cial neural networks can and have been used successfully.More speci�cally, these include areas where the underlying process behind data generationis highly non-linear, and there now exists techniques that are able to give some con�denceand insight into the performance of such models.Two features of arti�cial neural networks stand out as being of particular importance {their non-linearity, and stochasticity (although this latter aspect is not always exploitedin many applications). These properties can be used to de�ne local computation unitswhich, when coupled together suitably, can combine to produce extremely rich patternsof behaviour, whether these be dynamic, or static input-output relationships. One of themost import consequences of neural network research has been to bring the techniques andknowledge of arti�cial intelligence and statistics much closer together. Typically it wasthe case that problems in arti�cial intelligence were tackled from a formal speci�cationaspect. On the other hand, statistics makes very loose formal speci�cations, and lets thedata try to complete the model. Neural networks can be seen as a statistical approach toaddressing problems in arti�cial intelligence, obfuscating the need for formal speci�cationsof how the program works { just learn how to do it from looking at examples. For example,rather then formally specifying what constitutes the �gure \2", a neural network can learnthe (statistical) structure of \2"s by being asked to learn (�nd appropriate weights for)how to di�erentiate between \2"s and non-"2"s. This idea is especially powerful in themany human computer interaction applications where formally specifying, for example,what constitutes an individuals facial characteristics that di�erentiate them from others,is extremely diÆcult.Recently graphical models have been popular and are, in a sense, a generalisation of stochas-tic neural networks. However, computing with these models is typically formally intractable(as in the Boltzmann machine), and researchers are currently looking into ways to �ndgood approximation techniques, many derived from statistical mechanics and disorderedsystems.Other more recent approaches that aim to �nd good statistical methods in arti�cial intel-ligence applications are support vector machines and Gaussian processes, although neitherof these approaches retain many of the properties desirable of an arti�cial biologically in-spired system.Neurobiology continues to yield fascinating insights into the workings of biological brains,and it will be interesting to see how such developments impact on the problem of makingarti�cial machines capable of tasks such as visual awareness. Whilst the current state-of-the-arti�cial-art in this respect remains primitive, we believe that the fusion of disciplinesthat neural networks encourage, will ultimately lead to a satisfactory result.
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