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We complement the recent progress in thermodynamic limit analyses of mean
on-line gradient descent learning dynamics in multi-layer networks by calculating
the fluctuations possessed by finite dimensional systems. Fluctuations from
the mean dynamics are largest at the onset of specialisation as student hidden
unit weight vectors begin to imitate specific teacher vectors, and increase with
the degree of symmetry of the initial conditions. Including a term to stimulate
asymmetry in the learning process typically significantly decreases finite size
effects and training time.

Recent advances in the theory of on-line learning have yielded insights into the
training dynamics of multi-layer neural networks. In on-line learning, the weights
parametrizing the student network are updated according to the error on a single
example from a stream of examples, {&", 7(£")}, generated by a teacher network
7(-)[1]. The analysis of the resulting weight dynamics has previously been treated
by assuming an infinite input dimension (thermodynamic limit) such that a mean
dynamics analysis is exact[2]. We present a more realistic treatment by calculat-
ing corrections to the mean dynamics induced by finite dimensional inputs[3].

We assume that the teacher network the student attempts to learn is a soft com-
mittee machine[l] of N inputs, and M hidden units, this being a one hidden layer
network with weights connecting each hidden to output unit set to +1, and with
each hidden unit n connected to all input units by B, (n = 1..M). Explicitly, for
the N dimensional training input vector £, the output of the teacher is given by,

= Zg(Bn-S“), (1)

where g(z) is the activation function of the hidden units, and we take g(z) =
erf(z/+v/2). The teacher generates a stream of training examples (£, ("), with
input components drawn from a normal distribution of zero mean, unit variance.
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The student network that attempts to learn the teacher, by fitting the training
examples, is also a soft committee machine, but with K hidden units. For input
£", the student output is,

U(ngu) = Z_:Q(ngu)v (2)

where the student weights J = {J;}(i = 1..K) are sequentially modified to reduce
the error that the student makes on an input &,

€U@%=§wu@w—wf:%(gﬁun—zpwm), 3)

with the activations defined ¥ = J;-£", and y* = B,-€". Gradient descent on the
error (3) results in an update of the student weight vectors,

utl JH M cngn
JET = -y —6/E", (4)
where,
) [Z: 9(yh) - Zg(wf)] : (5)

and ¢’ is the derivative of the activation function g. The typical performance of
the student on a randomly selected input example is given by the generalisation
error,

= (e(J,€)), (6)
where (..) represents an average over the gaussian input distribution. One finds
that ¢, depends only on the overlap parameters, R;,, = J;-B,, Qi = J;-Jj,
and T, = B, -By(t,7 = 1. K;n,m = 1..M)[2], for which, using (4), we derive
(stochastic) update equations,

REF — RY, = Loty (7)
W“—mzNWW+W0+—M£$‘ (8)

We average over the input distribution to obtain deterministic equations for the
mean values of the overlap parameters, which are self-averaging in the thermody-
namic limit. In this limit we treat /N = a as a continuous variable and form

differential equations for the thermodynamic overlaps, RY ,Q%.,

dR?n
“da = n<6iyn> > (9)
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dQ3y 2
Ja = n{(b;xy + 6rz;) + n° (6;01) . (10)
For given initial overlap conditions, (9,10) are integrated to find the mean dy-
namical behaviour of a student learning a teacher with an arbitrary numbers of
hidden units[2] (see fig.(1a)). Typically, ¢, decays rapidly to a symmeltric phase in
which there is near perfect symmetry between the hidden units. Such phases exist
in learnable scenarios until sufficient examples have been presented to determine
which student hidden unit will mimic which teacher hidden unit. For perfectly
symmetric initial conditions, such specialisation is impossible in a mean dynamics
analysis. The more symmetric the initial conditions are, the longer the trapping
in the symmetric phase (see fig.(2a)). Large deviations from the mean dynamics
can exist in this symmetric phase, as a small perturbation from symmetry can de-
termine which student hidden unit will specialise on which teacher hidden unit[1].
We rewrite (7,8) in the general form

@ — ot = L (F, 4 1Ga), (11)
where F, + nG, is the update rule for a general overlap parameter a. In order to
investigate finite size effects, we make the following ansaetze for the deviations
of the update rules F, (the same form is made for G,) and overlap parameters a
from their thermodynamic values,*

1 7
Fa:F2—|—AFa—|—NFal, a:a°+,/%Aa+ %al, (12)

where (AF,) = (Aa) = 0. The update rule ansatz is motivated by observing that
the activations have variance (1) which, iterated through (11) yield overlap
variances of O (N~1). Terms of the form, Aa represent dynamic corrections that
arise due to the random examples, and a' represent static corrections such that
the mean of the overlap parameter a is given by a° + na'/N - the thermodynamic
average plus a correction. In order to simplify the analysis, we assume a small
learning rate, i, so that the thermodynamic overlaps are governed by,
da®

— 0
da “

(13)

where F? is the update rule F, averaged over the input distribution, and the
rescaled learning rate is given by

a = na. (14)

Substituting (12) in (11) and averaging over the input distribution, we derive a set
of coupled differential equations for the (scaled) covariances (Aa/Ab), and static

'Tf the order parameter represented by ¢ is Q11, then ¢® = @9, and Ac = AQ;.
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corrections al,

d(Nab QFD DFY
% = Y (Dalse) T + 3 (AAY T+ (ARAE)  (15)
1d%  da* oF° 1 97 F?
vda T s = L gp T L (B0 gra +Go (16)
b be

Summations are over all overlap parameters, {Q;;, R;n|t,7 = 1...{,n = 1..M}. The
elements (AF,AFy) are found explicitly by calculating the covariance of the up-
date rules F,, and F;. Initially, the fluctuations (AF,AF;) are set to zero, and
equations (13,15) are then integrated to find the evolution of the covariances,
cov(a,b) = (n/N)(Aalb), and the corrections to the thermodynamic average
values, (/N )a'. The average finite size correction to the generalisation error is

given by ,
€ =6+ %6;, (17)
where,
0e? 1 0%€°
a=> ala—ag +3 > (Aalb) 8(1039110' (18)
a ab

These results enable the calculation of finite size effects for an arbitrary learning
scenario. For demonstration, we calculate the finite size effects for a student with
two hidden units learning a teacher with one hidden unit. In this over-realisable
case, one of the student hidden units eventually specialises on the single teacher
hidden unit, while the other student hidden unit decays to zero. In fig.(1), we plot
the thermodynamic limit generalisation error alongside the O (N~!) correction.
In fig.(1a) there is no significant symmetric phase, and the finite size corrections
(fig.(1b)) are small. For a finite size correction of less than 10%, we would require
an input dimension of around N >257. For the more symmetric initial conditions
(fig.(2a)) there is a very definite symmetric phase, for which a finite size correction
of less than 10% (fig.(2b)) would require an input dimension of around N >
50,0007%. As theinitial conditions approach perfect symmetry, the finite size effects
diverge, and the mean dynamical theory becomes inexact. Using the covariances,
we can analyse the way in which the student breaks out of the symmetric phase
by specialising its hidden units. For the isotropic teacher scenario 7},,, = 6,,,,, and
M = K = 2, learning proceeds such that one can approximate, Qa9 = Q11, Roy =
Ry;. By analysing the eigenvalues of the covariance matrix (Aa/Ab), we found
that there is a sharply defined principal direction, the components of which we
show in fig.(3). Initially, all components of the principal direction are similarly
correlated, which corresponds to the symmetric region. Then, around a = 20, as
the symmetry breaks, Ry; and R, become maximally anti-correlated, whilst there
is minimal correlation between the ¢),; and ()5 components. This corresponds
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Fig. 1. - Two student hidden units, one teacher hidden unit. Non zero initial
parameters: Q1; = 0.2,Q4; = Ry = 0.1. (a) Thermodynamic generalisation er-
ror, ). (b) O(N~1) correction to the generalisation error , ¢;. Simulation results
for N =10,7 = 0.1 and (half standard deviation) error bars are drawn.

Fig. 2. - Two student hidden units, one teacher hidden unit. Initially, ¢};; = 0.1,
with all other parameters set to zero. (a) Thermodynamic generalisation error €.
(b) O(N~") correction to the generalisation error, ;.

well with predictions from perturbation analysis[2]. The symmetry breaking is
characterised by a specialisation process in which each student vector increases
its overlap with one particular teacher weight, whilst decreasing its overlap with
other teacher weights. After the specialisation has occured, there is a growth in the
anti-correlation between the student length and its overlap with other students.
The asymptotic values of these correlations are in agreement with the convergence
fixed point, R* = Q = 1.

In light of possible prolonged symmetric phases, we break the symmetry of
the student hidden units by imposing an ordering on the student lengths, @1, >
@22 > ... > Qr, which is enforced in a ‘soft’ manner by including an extra term

to (3),

~

h(Qj+1j+1 - ij) ) (19)

d =

1
2

j

where h(z) approximates the step function,

W)= <1 Ferf (%x)) . (20)

This straightforward modification involves the addition of a gaussian term in the
student weight lengths to the weight update rule (4). In fig.(4), we show the over-
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Fig. 3. - (a) The normalised components of the principal eigenvector for the

isotropic teacher. M = K = 2, (Qa2 = Q11, R22 = Ry1). Non zero initial parame-
ters Qll = 027 QQQ = 01, R11 = 0.001,R22 = 0.001.

Fig. 4. - Two student hidden units, one teacher hidden unit. The initial conditions
are as in fig.(2). (a) Thermodynamic generalisation error, € . (b) O(N~!)
correction to the generalisation error, e;.

lap parameters and their fluctuations for =10, K = 2, M = 1. This graph is to
be compared to fig.(2) for which the initial conditions are the same. There is now
no collapse to an initial symmetric phase from which the student will eventually
specialize. Also, the initial convergence to the optimal values is much faster. As
there is no symmetric phase, the finite size corrections are much reduced and are
largest around the initial value of & where the overlap parameters are most sym-
metric, decreasing rapidly due to the driving force away from this near-symmetric
region. For the case in which the teacher weights are equal, the constraint (19)
prevents the student from converging optimally. A naive scheme to prevent this
is to adapt the steepness, 3, such that it is inversely proportional to the average
of the gradients );;, which decreases as the dynamics converge asymptotically.
We conjecture that such symmetry breaking is potentially of great benefit in the
practical field of neural network training.
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