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Abstract. Fluctuations in the test error are important in the learning theory of finite-dimensional
systems as they represent how well the test error matches the average test error. By explicitly
finding the variance of the test error due to randomness present in both the data set and algorithm
for a linear perceptron of dimension », we are able to address such questions as the optimal
fest set size. Where exact results were not tractable, a good approximation is given to the
variance. We find that the optimal test set size possesses a phase transition between linear and
Z power-law scaling in the system size n.

1. Introduction

Learning from examples deals with the question of how to find a network which, after being
trained on a number of input-output example pairs, i.e. instances of an underlying mapping,
is able to generalize well [1]. That is, how to find a network which, given a randomly
selected input, accurately predicts the output corresponding *o this input. Much theoreticai
analysis of networks has concentrated on calculating the rate at which the generalization error
made by the network decays as the number of training examples increases [1,2]. Within
the physics community, such calculations have typically been achieved using tools from
statistical mechanics. for which a corresponding thermodynamic limit {(r — 00) is taken [3].
In this thermodynamic limit, the generalization error is self-averaging, such that fluctuations
induced, for example, by the assumed randomly drawn training sets, are neglected. The
average case scenario is to be contrasted with other approaches such as the vC formalism
f4] which inherently deals with finite variance distributions. The vC formalism deals with
the worst-case scenario, i.e. how many examples are required to guarantee, with a certain
probability, that the error that the network will make will not be greater than some specified
amount. To some extent, the traditional average-case scenario considered in the statistical
mechanics literafure can be moved closer to this worst-case approach by calculating the
variance of the error distribution in addition to the average error. ’

Such results will enable us to address a gquestion of much interest in the practical field of
training neural networks. Namely, given a data set of a finite size, how are we to partition.
the data optimally into a set on which the network is to be trained, and a set on which the
network performance is to be estimated. )

1 E-mail address: D.Barber@ed.ac.uk
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2. Learning from examples

We consider the scenario in which the inputs are represented by n-dimensional real vectors,
x € R®*, and the output is a real variable, y € i. A data ser L is a set of ! input—output
pairs, £ = {{z?, "), p = 1...1}. The inputs 2” are assumed to be drawn independently
and identically from a zero mean, unit covariance matrix Gaussian distribution. The outputs
are y? = y%(x®) 4 o for some teacher function ¥%(), where ¢ is additive noise. For
the purpose of learning from examples, £ is split into two disjoint sets, the training ser,
P = {(=z9y"),0 = 1...p} and the test set, M = {(z*,y*), u = 1,...m}, where
| =p+mi.

The aim is to find, using the information in P, a student function y(x) that matches as
closely as possible the output of a randomly chosen input—output pair. That is, we search
for student functions that generalize well. Clearly, the optimal student is identical to the

"teacher, and we shall assume that this function is accessible to the student, i.e. that the
learning problem is realizable [3].

In this paper, we deal with one of the simplest input—output mappings considered in the
learning from examples literature, namely the linear perceptron {1], for which the output y
is related to the input & by

1
)= —w-x

y(=) Jn
where the weighr vector, w € )", The data set outputs are generated by a ‘noisy’ teacher,
¥y’ = w27 /./n+ o, where w® is the teacher vector, and the noise is drawn from a
Gaussian distribution of mean zero, variance o2, such that (o#c¥%) = 025;;.1-- In addition,
the spherical constraint is assumed on the teacher, namely that it lies on the hypersphere
w® . w® = n,

Student perceptrons that match the outputs of the training set well are found by
minimizing the training energy
r . & )
Ex=)Y_ (3@") —y°@")) =) @ 2" — o)
o=l o=l
where, for convenience, we have defined i@ = ('w - w”) INLE
To prevent the student learning the noise in the training set we add a regularizing term,

Aw?, to the training energy to form an energy function, £ = Ey + Aw? [5,2]. This extra
weight decay term penalizes large weights and prevents overfitting, improving generalization
performance. The gradient descent algorithm ‘descends’ the energy surface E by updating
the student weight components at learning time ¢ according to

ow; aE

—_— = —_—— FI t

ot Bwi + ( )

where F;(t) is white noise such that (F;(z)F;(t)} = 27T6;;8(t — t') and T is the effective
temperature [3]. The equilibrium (¢ — oo} diswribution of students that this algorithm
produces is a Gibbs distribution,

1
P(w|P} = — exp(—E/T)

where Z is a normalization constant.

t A = index will refer to a training input, and g to a test input.
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The test error, defined byr

m m
€iest(w| M, w°) = 1 Z(y"‘ - ya") = L Z (b - x* — o )? 2.1

m u=l K u=1
measures how well a student performs on examples from the test set. Ideally, one would
like to know the test or generalization function, i.e. the expected error that a student drawn
from P (w|P) will make on a random test example, eq(w||w®) = (€ (w|M, w®)) ps1. The
generalization function averaged over P(w|P) and all possible training sets 7 is termed

the generalization error, €;.

The test error forms an m sample estimate of the generalization function. According to
the central limit theorem, the generalization function will be distributed in a Gaussian manner
around the test function [6]. It is the central aim of this paper to calculate the variance of this
distribution. The fluctuations due to random training sets for a particular student generated
from the training set P are quantified by {(€ies(w| M, wP) — e{w||w’))?), , and the average
fluctuation of students generated by the training set can be found by averaging this over
P(w,P) = P(w|P)P(F). We then write the average fluctuation for a p-dimensional
training set as}

2 = (M, 0) — e(wle)),, , » = 37 @2)
where (-} r120,p denotes an average over the test set, post training student, and training
set distributions, respectively. ;7 is the variance of the test error calculated for a single
test example. If the vast majority of the data examples are assigned to the training set and
very few to the test set, the confidence in how well the test error matches the generalization
function will generally be small. Indeed, the test error in this case would typically fluctuate
wildly over different test sets, i.e. the vartance, £ would be relatively large, . Thus, we
really want to use the data in a dual manner: to minimize the test error, yet remain confident
that it will be representative of the generalization function. That is, given a data set of size
I, we aim to know how many examples, m, should constitute the test set, assigning the
other p = | — m examples to the training set.

In order to address this, we form the generalization function wpper bound
eun(m|l} = €;(m) + v (m), where T is a confidence parameter to be chosen. We view
€ub(m|I} as an average probabilistic upper bound on the generalization function of students
trained on p examples and tested on m examples. In order to calcuiate the optimal scheme
to satisfy the above dual requirement, we minimize e, (m[{) with respect to m_to find the
optimal test set size, m*. This requires the calculation of the variance, %2

In the following section, we calculate the variance exactly for a restricted reglon of the
space of parameters A, T and o®. In section 4, we give results that hold for all parameter
values, but are valid only for the large-n regime. Using these results, we present the optimal
test set calculations in section 5, concluding with a summary and discussion of our work in
section 6.

3. Exact variances

In the following two sections, we present briefly results of calculations that are exact
in the sense that they hold for all n. These results represent the continuation of work

t Although er(wllaw™) is a function of the teacher, due to isotropy of the teacher space, the results of this paper
depend only on the length of the teacher vector, which is fixed. To simplify the calculation, however, we include
later a teacher average which is implicit in the average over the data set.

1 An average over the noise is implicit in the average over the test and training sets.
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presented elsewhere [7], in which the variance of the noise-free spherical linear perceptron
was calculated under exhaustive leamingt.

The exact calculations, however, were performed by not including a weight decay term
in the energy E. We defer presentation of results including weight decay until a later
section, as these results rely on a large-n approximation.

3.1. Gibbs learning without weight decay (L = 0)

Recently, the generalization error for the finite-n Gibbs learning algorithm, without weight
decay, was given [8]. The calculation of the variance employs these results, and we present
briefly the line of argument.

The average of the test error, given by (2.1), over the noise distribution, test sets, and
student distribution becomes, after straightforward Gaussian integrations,

(eese(w|M, w°)), , = (@%), +0>. (3.1)
By explicitly evaluating the fizst term of (3.1), we find
(€ese(wlM, w")),, = 3T +0%) ' A7 + 02, (3.2)
Here the covariance matrix is defined as
I & .
A==3 "z @) (3.3)
F o=1

and tr'(-) = tr(-)/n, where tr(-) is the trace. The generalization error is found by taking an
average of t' A~! over the Gaussian inputs of the training set, which we denote by {---}z.
A-1 is distributed according to an inverse Wishart distribution, W=I(l, p) [9, 81, where { is
the identity matrix. In order that the average of the inverse is finite, we require p>n 41,
and have the result, (t'A~")_ = n/(p —n — 1), which gives

n
€g=(%T+UZ)m+O’2. (3.4}

For the variance, we rewrite (2.2) as
£? = (eex(wIM, w°)),, o — (ewlw®)), (3.5)

where, as before, e;(w|uw®) = {€es{w| M, wP)) . After carrying out the average over
M, equation (3.5) gives

o =2(@* 4 2070 + 0¥ . (3.6)

A straightforward Gaussian average over P(w, P) gives

5= 2(%&'1&‘2(7' +202)° + [ A (AT +02) + 02]2> : (3.7)
T
This can be explicitly evaluated for p=># + 3 by employing [9]
2—-n2—
((tr’ A")z) _ (pn+ ne—2nn 3.8)

= (p-mp—n—1(p-n-3)

1 In the exhaustive learning scenario considered in {7], P{a|P) is given by the distribution that is uniform over
those student weights that reproduce the training set exactly and that satisfy the constraint w - w =n,
t For p <n, there are unconstrained directions for the student, which lead to e divergent integral in the average.
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and

2(p —
(U_r A-—Z) _ h (P 1) (39)

e (p—ny(p—n—1D(p-n—3)"

The full expression for £,? is somewhat cumbersome, but simplifies in the large-n limit to

1 /20%+T\* 1 '
2 __ 2 fes s - :
Zy —2( p— ) +o(n) (3.10)

where e = p/n>1. Thus both the generalization error and variance diverge for a—1. As
o increases beyond I, X2 decreases to its asymptotic value 2o*.

3.2. Pseudo-inverse

The pseudo-inverse algorithm is a limiting case of the general Gibbs algorithm in which the
temperature and weight decay both tend to zero such that T/A <« L [S5, 2]. The benefit from
the point of view of the analysis here is that we are able to calculate exactly the variance
for both p<n and p>n, rather than being restricted to essentially p > n in section 3.1.

The generalization error for the pseudo-inverse algorithm for p > n + 1 is given by
employing the T = 0 limit of (3.4) [8]. Similarly, the results for the varance for p>n+3
can readily be obtained from (3.7) by setting T’ = 0. For p <#n, the pseudo-inverse algorithm
is given by w = Pw®, where P is the projection onto the subspace spanned by the training
inputs [1]. Thus P(w]|P) is zero except for the single point, w = XT(XXT)~'Y, where
YT =(!,...,y")and XT = (z',..., zP). This gives ‘

q=1-2+07(1+{B™))

where B = XX7/n. Comparing B with the n X a correlation matrix for p patterns,
A = XTX/n (cf equation (3.3)), we remark that B is also a correlation matrix, distributed
identically to A, but with the roles of p and n reversed. The results from section 3.1
concerning the averages of the correlation matrix can then be employed directly by
interchanging p and n. For p<n — 1, we obtain
p s n—1

gg=1—-=-+4¢" ——0r0

g n + n—p—1
in agreement with known results for n— 0o, & = p/n = constant [5]7.
A straightforward calculation of the variance for p <a — 3 leads to

s =c*[2(B?)_ + (B, +2{'B), +1]
2 fli B-1 n
- —2 - .
+(n — p) [20 (' B~'), + 1)+n+2{ +n . p)]
The results in (3.8) and (3.9) can then be employed to find the variance explicitly. In
figure 1, we plot the generalization error and % /~/2 against @. We remark that the two
curves are very similar, a result which we show in the next section is not coincidental. Note

that both curves possess the characteristic divergence as the training set size p approaches
the system size n. .

1 Note that in [5] the generalization error is calculated for uncorrupted test sets.
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S 5 10 15 20 25 % 35 < Figwel Psoudo-inverse algorithm, T = 0 and A = O:
broken carve, generalization error; full curve, scaled standard
r deviation £1/+2Z. The noise is o2 = 0.2, and n = 20.

4. Weight decay

In this section we present results for the gemeral Gibbs learning algorithm for arbitrary
temperature, weight decay, and noise. We proceed to calculate the variance as before, but
with the inclusion of a weight decay term.

After carrying out the Gaussian integrations over the noise and test set inputs, the
resulting generalization error and variance are necessarily of the same form as (3.1) and
(3.6), respectively. The only difference is the distribution £ (w|P) which now includes a
weight decay term. By continuing the Gaussian integrations required for the average over
P{w|P), we obtain,

=0+ (3T + o} {'M™F)_+21(r—0o?) (' M~2) 4.1
where
M=A+Axl.

Here A is the correlation matrix defined earlier in (3.3). The difficulty arises in the
calculation of the averages of inverse powers of the matrix M. t'M~' is termed the
response function, G, which can be shown to be self-averaging in the tbermodynamic limit,
with ((G — GY)g = O(1/n?), where G = {G), [10]. Moreover, Sollich [10] obtained the
first-order corrections to the average of the finite-n response function. These results give
explicitly that

G = Go+ Gi/n+0O(1/n?)

where Gy is the averaged response function in the thermodynamic limit, and has the value

! 2
Gy = 7 (1 o l-{—\/(l @ —A) +4JL) .
G, is related to G by the equation, G1 = G2 (1 — AGy) / (1 + AG2)’. Using these results,
the first-order approximation to the average {t’ M—'), can readily be found, Similarly,
(t M2}, can be found by using {tr' M~2); = — (3/3A) (t M~} M.

At this point, however, we note that for the linear perceptron under consideration, we
can rewrite the equation for the variance as

354% = €2 + var(@®)y (4.2)

where var(ib®)y, p is the variance of @ - @ over the distribution P(w,P) and @ =
(w — w%//m . By straightforward Gaussian integration, one finds that this variance
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is a function of the average of terms irivolving oM™, i = 1...4. Furthermore, the
resulting expression is O(1/n), such that any finite-size corrections to t' M~ will be
0(1/n%) corrections to Ef. Whilst these corrections are straightforward to obtain, the
resulting lengthy expressions do not merit inclusion here. To a very good approximation,
therefore, the standard deviation of the test error scales linearly with the generalization error.
Indced Iooking back at (3.10), we note that the large—n expansion of the variance satisfies
26 +0(1/n).
Evaluaung (4.1) and expanding for small A, T gives

12020+ T oA T +40? (1)

2 a-1 2 {-1)7 @.3)

Egz

where ¢ > 1 and T € A < 1 (a similar expansion holds for & < 1). We see here that
a weight decay is advantageous in reducing the generalization error and hence also the
variance.

So far we have considered an isotropic input distribution. More general input
distributions can be considered in which the inputs are in some way correlated (see,
for example, [10,11]). For the case in which the inputs are ‘spatially’ correlated,
P(x) x exp(—2TI''x/2), equation (4.2) still holds for the modified input distribution
on replacing @ with I''/2¢b. The variance of a single test example can then be well
approximated as before by twice the square of the generalization error under the new input
distribution.

5. Optimal test set size

Now that the variance has been calculated, we can proceed to establish the optimal test set
size.

A data set £, consisting of [ elements, is split into the two disjoint subsets, P and
M. As before, P is the training set consisting of p examples, and A1 is the test set of m ~
examples, such that £ =P UM, and ! =p 4 m. Given a data set of / elements, we can
then set p = { — m in the equations for the variance and generalization error, and let m
vary between 1 and [/ — 1.

For small m, the standard deviation is relatively large and the generalization error is
small, as the perceptron has been trained on a relatively large number of examples and
tested on only a few. This situation reverses as m is increased. The resulting competition
between the generalization error and standard deviation leads to the following definition:

e The probabilistic upper bound on the generalization function is defined by ewi(m)) =
€: + tZ, where 7 is a confidence parameter.

From the central limit theorem, the generalization function will be distributed in' a
Gaussian manner around the test error [6]. On average, the generalization function will
be distributed similarly around the generalization error. Setting v = 1, we will be 84%
confident that the generalization function will lie below ey, (m|i). Similarly, for 7 = 2, we
will be 98% confident}. For convenience, we set T = 1 throughout.

In figure 2, we plot the generalization error and upper bound function for two values of
the weight decay for n = 100, [ =200, 62 = 0.2 and T = 0. We note that the two graphs

i Here we have quoted the percentage of the normal curve less than a certain number of standard deviations from
the mean [6]. -
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Figure 2. Full curves, upper bounds for A = 0.01 (upper
curve), and 0.05. The broken curve is the generalization error.

00 05 o . 20 The noise is o =02, n = 100, £ = 200, T = 0. The global
minimam in each upper bound represents the optimal test set
min size.
05
15+
0.4
Clinear C2/3
N 10
0.2
0.1+ 5
0.9 7 T T 7 T
00 a.05 0.1 0.15 02 . 0.25 0.3
A A

Figure 3. Scaling Iaw prefactors for the optimal test set size for a data set of size [ = 0.6x, o2 =
08, and T =0.

are qualitatively similar, differing maximally for small m. This can be explained by using
the approximation to the variance, and writing the upper bound as

p(m|l) = (1 +‘/g)eg+o (Jjﬂ) _ (5.1)

We see from figure 2 that the optimal test set size, m*, for both weight decays is m* &~ 24i. If
we then increase the system size, n, we find that m* scales like n?3, Further observations
lead to the conclusion that, in general, there exist two scaling laws for m*. One is the
aforementioned % scaling, and the other is linear. These scaling phases occur due to the
existence of two competing local minima in the upper bound function. % scaling implies a
relatively small test set compared with linear scaling. We would expect that, for small noise
levels, or large weight decay, the optimal test set size, m*, would be minimal, and that as
we increase the noise, m* grows. This conjecture is borne out in figure 3, where we plot the
prefactors of the linear and % scaling laws for ! = 0.6n, 02 = 0.8, T =0. For A <0.15,
the scaling is linear {(m* large), and the prefactor reduces quickly as A tends to 0.15. There
is then a transition to % scaling (m™ small} as A increases beyond this transition point.
Initially, the prefactor for the %- scaling is large, reducing as A increases.

1 Equation (5.}) also holds for (spatially) correlated inputs on replacing €, with the generalization error caiculated
for comrelated inputs, from which the modified optimal test set size can be calculated accordingly.



Test error fluctuations 1333

00 05 10 1'5 zfu 2!5 3g  Figure 4. Phase diagram for the psendo-inverse algorithm.

In each region, the optimal test set size scales either iinearly
T=in with n, or like n2/3,

In general, isolating the phase boundaries involves the solution of a rather complicated
expression and, as such, the boundary needs to be found numerically. For the pseudo-inverse
algorithm, however, analytical expressions for the the large-n limit are readily found. In
figure 4 we plot the phase diagram for the pseudo-inverse rule (2 3> 1). The values of the
prefactors in the regions (a), (b), and (c) are, respectively,

1 [l(moz — 1)(o? + (2o — 1))
2173 % — (o — 1)?
where g = I/n.

For large n, the variance is essentially zero, and the transition regions are simply given
by consideration of the generalization error. If this is a monotonically decreasing function
of w, such phase transitions will not exist as the ‘optimal’ scheme in this sense is to simply
take the smallest test set. For a large enough value of A, the generalization error will
necessarily be monotonic, and we will have % scaling. Thus, small test sets are reasonable
for a large weight decay or small noise levels, in that the test error will be a good estimate
of the generalization function.

2/3 1
:| & oy — 1 5173 [otroe{tior — 1)]2/3

6. Summary and ouflook

‘We have calculated the variance in the test error of the linear perceptren due to randomness
present in both the data set and algorithm. ‘Where an exact calculation was not tractable, we
showed that the variance can be very well approximated by a simple scaling of the square
of the generalization error. We applied these results to address the question of the best
assignment of a data set into a test and training set. We found that essentially there exist
two different regions for the scaling of the optimal test set size with the system dimension:
one linear, which operates for example for relatively large noise, and one % scaling. That
the variance is essentially trivial to approximate for the linear perceptron is undoubtably
due to the simple mapping that it performs. Of future interest is the determination of the
variance for nonlinear systems.
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