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Abstract. – We complement recent advances in thermodynamic limit analyses of mean on-line
gradient descent learning dynamics in multilayer networks by calculating fluctuations possessed
by finite-dimensional systems. Fluctuations from the mean dynamics are largest at the onset
of specialisation as student hidden unit weight vectors begin to imitate specific teacher vectors,
increasing with the degree of symmetry of the initial conditions. In light of this, we include a
term to stimulate asymmetry in the learning process, which typically also leads to a significant
decrease in training time.

An attractive feature of neural networks is their ability to learn a parametrised rule from
a set of input/output training examples, by which the parameters of the network are adapted
to minimise an error measuring the misfit of the network mapping on the training examples.
Different approaches to the learning process are typically evaluated by the expected error
that the network will make on a randomly presented input example. In on-line learning,
statistical mechanics plays a strong role in calculating this generalisation error (see [1], [2],
[4] and references within) through self-averaging in the thermodynamic limit, for which an
understanding of finite-size effects would benefit further advances. Connections to alternative
finite-dimensional methods (see [3] and references within) will be pointed to in the course of
our analysis.

In on-line learning, the weights parametrising the student network are successively updated
according to the error incurred on a single example from a stream of input/output examples,
{ξµ, τ(ξµ)}, generated by a teacher network τ(·). We assume that the teacher network the
student attempts to learn is a soft committee machine [1], [4] of N inputs, and M hidden
units, this being a one-hidden-layer network with weights connecting each hidden to output
unit set to +1, and with each hidden unit n connected to all input units by Bn(n = 1, . . . ,M).
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Explicitly, for the N -dimensional training input vector ξµ, the output of the teacher is given by

ζµ =
M∑
n=1

g(Bn ·ξµ), (1)

where g(x) is the activation function of the hidden units, and we take g(x) = erf(x/
√

2). The
teacher generates a stream of training examples (ξµ, ζµ), with input components drawn from
a normal distribution of zero mean, unit variance. The student network that attempts to learn
the teacher, by fitting the training examples, is also a soft committee machine, but with K
hidden units. For input ξµ, the student output is

σ(J, ξµ) =
K∑
i=1

g(Ji ·ξµ), (2)

where the student weights J = {Ji} (i = 1, . . . , K) are sequentially modified to reduce the
error that the student makes on an input ξµ,

ε(J, ξµ) =
1
2

(σ(J, ξµ)− ζµ)2 =
1
2

(
K∑
i=1

g(xµi )−
M∑
n=1

g(yµn)

)2

, (3)

where the activations are defined xµi = Ji ·ξµ, and yµn = Bn ·ξµ. Gradient descent on the
error (3) results in an update of the student weight vectors,

Jµ+1 = Jµ − η

N
δµi ξ

µ, (4)

where

δµi = g′(xµi )

 M∑
n=1

g(yµn)−
K∑
j=1

g(xµj )

 , (5)

and g′ is the derivative of the activation function g. The typical performance of the student
on a randomly selected input example is given by the generalisation error, εg = 〈ε(J, ξ)〉,
where 〈. . .〉 represents an average over the Gaussian input distribution. One finds that εg
depends only on the order parameters, Rin = Ji ·Bn, Qij = Ji ·Jj , and Tnm = Bn ·Bm(i, j =
1, . . . ,K;n,m = 1, . . . ,M) [4], for which, using (4), we derive (stochastic) update equations,

Rµ+1
in −Rµin =

η

N
δµi y

µ
n, (6)

Qµ+1
ik −Qµik =

η

N

(
δµi x

µ
j + δµkx

µ
i

)
+

η2

N2
δiδkξ

µ ·ξµ. (7)

We average over the input distribution to obtain deterministic equations for the mean values
of the order parameters, which are self-averaging in the thermodynamic limit, N→∞.

The order parameter approach contrasts with approaches which analyse the dynamics of
the individual weight components, based upon approximate Fokker-Planck equations (see [3]
and references within). The advantage of the order parameter approach is that the system is
modelled exactly in the thermodynamic limit, with only a small number of equations.

In this work we present a more realistic treatment by calculating the dynamic fluctuations
induced by finite-dimensional random inputs [5].
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In the thermodynamic limit, we treat µ/N = α as a continuous variable and form differential
equations for the thermodynamic overlaps, R0

in, Q
0
ik,

dR0
in

dα
= η 〈δiyn〉 ,

dQ0
ik

dα
= η 〈δixk + δkxi〉+ η2 〈δiδk〉 . (8)

For given initial overlap conditions, (8) can be integrated to find the mean dynamical
behaviour of a student learning a teacher with an arbitrary number of hidden units [4] (see
fig. 1 a)). Typically, εg decays rapidly to a symmetric phase in which there is near perfect
symmetry between the hidden units. Such phases exist in learnable scenarios until sufficient
examples have been presented to determine which student hidden unit will mimic which teacher
hidden unit. For perfectly symmetric initial conditions, such specialisation is impossible in
a mean dynamics analysis. The more symmetric the initial conditions are, the longer the
trapping in the symmetric phase (see fig. 2 a)). Large deviations from the mean dynamics can
exist in the symmetric phase, as a small perturbation from symmetry can determine which
student hidden unit will specialise on which teacher hidden unit [1].

We can rewrite (6), (7) in the general form

aµ+1 − aµ =
η

N
(Fa + ηGa) , (9)

where Fa + ηGa is the update rule for a general overlap parameter a. In order to investigate
finite-size effects, we make the following “small-fluctuations” ansätze(1) [6] for the deviations
of the update rules Fa (the same form is made for Ga) and overlap parameters a from their
thermodynamic values(2),

Fa = F 0
a +4Fa +

1
N
F 1
a , a = a0 +

√
η

N
4a+

η

N
a1, (10)

where 〈4Fa〉 = 〈4a〉 = 0. Terms of the form 4a represent dynamic corrections that arise due
to the random examples. Terms like a1 represent static corrections such that the mean of the
overlap parameter a is given by a0 +ηa1/N—the thermodynamic average plus a correction. In
order to simplify the analysis, we assume a small learning rate, η, so that the thermodynamic
overlaps are governed by

da0

dα̃
= F 0

a , (11)

where F 0
a is the update rule Fa averaged over the input distribution, and the rescaled learning

rate is given by α̃ = ηα. Substituting (10) in (9) and averaging over the input distribution,
we derive a set of coupled differential equations(3) for the (scaled) covariances 〈4a4b〉, and
static corrections a1,

d〈4a4b〉
dα̃

=
∑
c

〈4a4c〉 ∂F
0
a

∂c0
+
∑
c

〈4b4c〉 ∂F
0
b

∂c0
+ 〈4Fa4Fb〉 , (12)

1
2

d2a0

dα̃2
+

da1

dα̃
=
∑
b

b1
∂F 0

a

∂b0
+

1
2

∑
bc

〈4b4c〉 ∂
2F 0

a

∂b0∂c0
+G1

a . (13)

(1) The activations have variance O (1) which, iterated through (9), yield overlap variances

of O
(
N−1

)
.

(2) If the order parameter represented by c is Q11, then c0 = Q0
11, and 4c = 4Q11.

(3) The small-fluctuations ansatz necessarily yields equations of the same form as presented in
[3] for the weight component dynamics—here they are for the order parameter representation of the
system.



154 EUROPHYSICS LETTERS

0 20 40 60 80 100 120 140

-5

0

5

 
0

2

4

6

b)

a)

~�

�10
�3

�10
�3

�
1

g

�
0

g

0 50 100 150 200 250 300
-10

0

10

 
0

2

4

6

b)

a)

~�

�10
�3

�
1

g

�
0

g

Fig. 1. Fig. 2.

Fig. 1. – Two student hidden units, one teacher hidden unit. Non-zero initial parameters: Q11 =
0.2, Q22 = R11 = 0.1. a) Thermodynamic generalisation error, ε0g. b) O

(
N−1

)
correction to the

generalisation error, ε1g. Simulation results for N = 10, η = 0.1 and (half standard deviation) error
bars are drawn.

Fig. 2. – Two student hidden units, one teacher hidden unit. Initially, Q11 = 0.1, with all other
parameters set to zero. a) Thermodynamic generalisation error ε0g. b) O

(
N−1

)
correction to the

generalisation error, ε1g.

Summations are over all overlap parameters, {Qij , Rin|i, j = 1, . . . ,K, n = 1, . . . ,M}. The
elements 〈4Fa4Fb〉 are found explicitly by calculating the covariance of the update rules
Fa, and Fb. Initially, the fluctuations 〈4Fa4Fb〉 are set to zero, and eqs. (11)-(13) are
then integrated to find the evolution of the covariances, cov(a, b) = (η/N) 〈4a4b〉, and the
corrections to the thermodynamic average values, (η/N)a1. The average finite-size correction
to the generalisation error is given by εg = ε0g + (η/N)ε1g, where

ε1g =
∑
a

a1
∂e0

g

∂a
+

1
2

∑
ab

〈4a4b〉
∂2ε0g
∂a0∂b0

. (14)

These results enable the calculation of finite-size effects for an arbitrary teacher/student
learning scenario. For demonstration, we calculate the finite-size effects for a student with two
hidden units learning a teacher with one hidden unit. In this over-realisable case, one of the
student hidden units eventually specialises to the single teacher hidden unit, while the other
student hidden unit decays to zero. In fig. 1, we plot the thermodynamic limit generalisation
error alongside the O

(
N−1

)
correction. In fig. 1 a) there is no significant symmetric phase,

and the finite-size corrections (fig. 1 b)) are small. For a finite-size correction of less than
10%, we would require an input dimension of around N > 25η. For the more symmetric
initial conditions (fig. 2 a)) there is a very definite symmetric phase, for which a finite-size
correction of less than 10% (fig. 2 b)) would require an input dimension of around N>50 000η.
As the initial conditions approach perfect symmetry, the finite-size effects diverge, and the
mean dynamical theory becomes inexact. Using the covariances, we can analyse the way in
which the student breaks out of the symmetric phase by hidden-unit specialisation. For the
isotropic teacher scenario Tnm = δnm, and M = K = 2, learning proceeds such that one can
approximate, Q22 = Q11, R22 = R11. By analysing the eigenvalues of the covariance matrix
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Fig. 3. Fig. 4.

Fig. 3. – a) The normalised components of the principal eigenvector for an isotropic teacher.
M = K = 2 (Q22 = Q11, R22 = R11). Non-zero initial parameters Q11 = 0.2, Q22 = 0.1, R11 = 0.001,
R22 = 0.001.

Fig. 4. – Two student hidden units, one teacher hidden unit. The initial conditions are as in fig. 2.
a) Thermodynamic generalisation error, ε0g. b) O

(
N−1

)
correction to the generalisation error, ε1g.

〈4a4b〉, we found a sharply defined principal direction, the components of which we show
in fig. 3. Initially, all components of the principal direction are similarly correlated, which
corresponds to the symmetric region. Then, around α̃ = 20, as the symmetry breaks, R11 and
R21 become maximally anticorrelated, whilst there is minimal correlation between the Q11

and Q12 components, which corresponds with predictions from perturbation analysis [4]. The
symmetry breaking is characterised by a specialisation process in which each student vector
increases its overlap with one particular teacher weight, whilst decreasing its overlap with
other teacher weights. After specialisation, there is a growth in the anticorrelation between the
student length and its overlap with other students. The asymptotic values of these correlations
are in agreement with the convergence fixed point, R2 = Q = 1 [4].

In light of possible prolonged symmetric phases, we break the symmetry of the student
hidden units by ordering the student lengths, Q11 ≥ Q22 ≥ . . . ≥ QKK . This constraint is
enforced in a “soft” manner by including an extra term to (3),

ε† =
1
2

K−1∑
j=1

h (Qj+1j+1 −Qjj) , (15)

where h(x) approximates the step function, h(x) =
(
1 + erf

(
βx/
√

2
))
/2. This modification

simply adds a Gaussian term in the student weight lengths to the weight update rule (cf.(4)).
In fig. 4, we show the overlap parameters and their fluctuations for β = 10, K = 2, M = 1.
This graph is to be compared to fig. 2 for which the initial conditions are the same. There is
now no collapse to an initial symmetric phase from which the student will eventually specialise,
and the initial convergence to the optimal values is much faster. The finite-size corrections are
much reduced and are now largest around the initial value of α̃ where the overlap parameters
are very symmetric, becoming rapidly smaller due to the large driving force away from this
near-symmetric region. For the case in which the teacher weights are equal, the constraint (15)
will prevent the student from converging optimally, necessitating an adaptive soft constraint.
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A naive scheme is to adapt the steepness, β, such that it is inversely proportional to the
average of the gradients Qii, which decreases as the dynamics converge asymptotically.

In this work we have complemented the recent significant advances in the theory of on-line
learning of multilayer networks by examining the conditions under which thermodynamic limit
calculations are representative of real learning scenarios. Additionally, breaking the internal
symmetries of the network reduces both finite-size effects and training time. We conjecture that
such symmetry breaking is potentially of great benefit in the practical field of neural-network
training. For extensions of thermodynamic limit analyses to the case of a limited number of
adaptive hidden units to output unit weights, an understanding of finite-size effects will be of
central importance.
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