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as Laplace's method, is to approximate the posterior distribution by a Gaussian,centred at a mode of p(wjD), in which the covariance of the Gaussian is deter-mined by the local curvature of the posterior distribution (MacKay 1992). Therequired integrations can then be performed analytically. More recent approachesinvolve Markov chain Monte Carlo simulations to generate samples from the poste-rior (Neal 1996). However, such techniques can be computationally expensive, andthey also su�er from the lack of a suitable convergence criterion.A third approach, called ensemble learning, was introduced by Hinton and vanCamp (1993) and again involves �nding a simple, analytically tractable, approxi-mation to the true posterior distribution. Unlike Laplace's method, however, theapproximating distribution is �tted globally, rather than locally, by minimizing aKullback-Leibler divergence. Hinton and van Camp (1993) showed that, in the caseof a Gaussian approximating distribution with a diagonal covariance, a determin-istic learning algorithm could be derived. Although the approximating distributionis no longer constrained to coincide with a mode of the posterior, the assumptionof a diagonal covariance prevents the model from capturing the (often very strong)posterior correlations between the parameters. MacKay (1995) suggested a modi�-cation to the algorithm by including linear preprocessing of the inputs to achieve asomewhat richer class of approximating distributions, although this was not imple-mented. In this paper we show that the ensemble learning approach can be extendedto allow a Gaussian approximating distribution with an general covariance matrix,while still leading to a tractable algorithm.1.1 The Network ModelWe consider a two-layer feed-forward network having a single output whose valueis given by f(x;w) = HXi=1 vi�(ui �x) (1)where w is a k-dimensional vector representing all of the adaptive parameters in themodel, x is the input vector, fuig ; i = 1; : : : ;H are the input-to-hidden weights,and fvig ; i = 1; : : : ;H are the hidden-to-output weights. The extension to multi-ple outputs is straightforward. For reasons of analytic tractability, we choose thesigmoidal hidden-unit activation function �(a) to be given by the error function�(a) =r 2� Z a0 exp ��s2=2�ds (2)which (when appropriately scaled) is quantitatively very similar to the standardlogistic sigmoid. Hidden unit biases are accounted for by appending the inputvector with a node that is always unity. In the current implementation there areno output biases (and the output data is shifted to give zero mean), although theformalism is easily extended to include adaptive output biases (Barber and Bishop1997). The data set consists of N pairs of input vectors and corresponding targetoutput values D = fx�; t�g ; � = 1; : : : ; N . We make the standard assumptionof Gaussian noise on the target values, with variance ��1. The likelihood of thetraining data is then proportional to exp(��ED), where the training error ED isde�ned to be ED(w) = 12X� (f(x� ;w)� t�)2 : (3)The prior distribution over weights is chosen to be a Gaussian of the formp(w) / exp (�Ew(w)) (4)



where Ew(w) = 12wTAw, and A is a matrix of hyperparameters. The treatment of� andA is dealt with in Section 2.1. FromBayes' theorem, the posterior distributionover weights can then be writtenP (wjD) = 1Z exp (��ED(w) �Ew(w)) (5)where Z is a normalizing constant. Network predictions on a novel example aregiven by the posterior average of the network outputhf(x)i = Z f(x;w)p(wjD) dw: (6)This represents an integration over a high-dimensional space, weighted by a pos-terior distribution p(wjD) which is exponentially small except in narrow regionswhose locations are unknown a-priori. The accurate evaluation of such integrals isthus very di�cult.2 Ensemble LearningIntegrals of the form (6) may be tackled by approximating p(wjD) by a simplerdistribution Q(w). In this paper we choose this approximating distribution to bea Gaussian with mean w and covariance C. We determine the values of w and Cby minimizing the Kullback-Leibler divergence between the network posterior andapproximating Gaussian, given byF [Q] = Z Q(w) ln� Q(w)p(wjD)� dw (7)= Z Q(w) lnQ(w)dw � Z Q(w) ln p(wjD) dw: (8)The �rst term in (8) is the negative entropy of a Gaussian distribution, and is easilyevaluated to give 12 ln det (C) + const.From (5) we see that the posterior dependent term in (8) contains two parts thatdepend on the prior and likelihoodZ Q(w)Ew(w)dw + Z Q(w)ED(w)dw: (9)Note that the normalization coe�cient Z�1 in (5) gives rise to a constant additiveterm in the KL divergence and so can be neglected. The prior term Ew(w) isquadratic in w, and integrates to give Tr(CA) + 12wTAw. This leaves the datadependent term in (9) which we write asL = Z Q(w)ED(w)dw = pX�=1 l(x�; t�) (10)where l(x; t) = Z Q(w) (f(x;w))2 dw � 2t Z Q(w)f(x;w) dw + t2: (11)For clarity, we concentrate only on the �rst term in (11), as the calculation of theterm linear in f(x;w) is similar, though simpler. Writing the Gaussian integralover Q as an average, h i, the �rst term of (11) becomesD(f(x;w))2E = HXi;j=1
vivj�(uTi x)�(uTj x)� : (12)



To simplify the notation, we denote the set of input-to-hidden weights (u1; : : : ;uH)by u and the set of hidden-to-output weights, (v1; : : : ; vH) by v. Similarly, wepartition the covariance matrix C into blocks, Cuu, Cvu, Cvv, and Cvu = CTuv. Asthe components of v do not enter the non-linear sigmoid functions, we can directlyintegrate over v, so that each term in the summation (12) givesD��ij + (u� u)T	ij (u� u) +
Tij (u� u)�� �uTxi�� �uTxj�E (13)where �ij = �Cvv �CvuCuu�1Cuv�ij + vivj (14)	ij = Cuu�1Cu;v=iCv=j;uCuu�1; (15)
ij = 2Cuu�1Cu;v=jvi: (16)Although the remaining integration in (13) over u is not analytically tractable, wecan make use of the following result to reduce it to a one-dimensional integrationh� (z�a + a0)� (z�b + b0)iz = *� (zjaj+ a0)�0@ zaTb+ b0jajqjaj2 (1 + jbj2)� (aTb)21A+z(17)where a and b are vectors and a0; b0 are scalar o�sets. The average on the left of(17) is over an isotropic multi-dimensionalGaussian, p(z) / exp(�zTz=2), while theaverage on the right is over the one-dimensional Gaussian p(z) / exp(�z2=2). Thisresult follows from the fact that the vector z only occurs through the scalar productwith a and b, and so we can choose a coordinate system in which the �rst twocomponents of z lie in the plane spanned by a and b. All orthogonal componentsdo not appear elsewhere in the integrand, and therefore integrate to unity.The integral we desire, (13) is only a little more complicated than (17) and can beevaluated by �rst transforming the coordinate system to an isotopic basis z, andthen di�erentiating with respect to elements of the covariance matrix to `pull down'the required linear and quadratic terms in the �-independent pre-factor of (13).These derivatives can then be reduced to a form which requires only the numericalevaluation of (17). We have therefore succeeded in reducing the calculation of theKL divergence to analytic terms together with a single one-dimensional numericalintegration of the form (17), which we compute using Gaussian quadrature1.Similar analytical techniques can be used to evaluate the derivatives of the KLdivergence with respect to both the mean and covariance matrix (Barber and Bishop1997). Together with the KL divergence, these derivatives are then used in a scaledconjugate gradient optimizer to �nd the parameters w and C that represent thebest Gaussian �t.The number of parameters in the covariance matrix scales quadratically with thenumber of weight parameters. We therefore have also implemented a version witha constrained covariance matrixC = diag(d21; : : : ; d2n) + sXi=1 sisTi (18)which is the form of covariance used in factor analysis (Bishop 1997). This reducesthe number of free parameters in the covariance matrix from k(k+ 1)=2 to k(s+1)1Although (17) appears to depend on 4 parameters, it can be expressed in terms of 3independent parameters. An alternative to performing quadrature during training wouldtherefore be to compute a 3-dimensional look-up table in advance.



Posterior Laplace fit Minimum KL fitMinimum KLD fit

Figure 1: Laplace and minimum Kullback-Leibler Gaussian �ts to the posterior.The Laplace method underestimates the local posterior mass by basing the covari-ance matrix on the mode alone, and has KL value 41. The minimum Kullback-Leibler Gaussian �t with a diagonal covariance matrix (KLD) gives a KL valueof 4.6, while the minimum Kullback-Leibler Gaussian with full covariance matrixachieves a value of 3.9.(representing k(s + 1) � s(s � 1)=2 independent degrees of freedom) which is nowlinear in k. Thus, the number of parameters can be controlled by changing s and,unlike a diagonal covariance matrix, this model can still capture the strongest ofthe posterior correlations. The value of s should be as large as possible, subjectonly to computational cost limitations. There is no `over-�tting' as s is increasedsince more exible distributions Q(w) simply give better approximations to the trueposterior.We illustrate the optimization of the KL divergence using a toy problem involvingthe posterior distribution for a two-parameter regression problem. Figure 1 showsthe true posterior together with approximations obtained from Laplace's method,ensemble learning with a diagonal covariance Gaussian, and ensemble learning usingan unconstrained Gaussian.2.1 Hyperparameter AdaptationSo far, we have treated the hyperparameters as �xed. We now extend the ensemblelearning formalism to include hyperparameters within the Bayesian framework. Forsimplicity, we consider a standard isotropic prior covariance matrix of the formA = �I, and introduce hyperpriors given by Gamma distributionslnp (�) = lnn�a�1 exp���b �o+ const (19)lnp (�) = ln��c�1 exp���d�� + const (20)where a; b; c; d are constants. The joint posterior distribution of the weights andhyperparameters is given byp (w; �; �jD) / p (Djw; �) p (wj�) p (�)p (�) (21)in which ln p (Djw; �) = ��ED + N2 ln� + const (22)



ln p (wj�) = ��jwj2 + k2 ln�+ const (23)We follow MacKay (1995, MacKay (1996) by modelling the joint posteriorp (w; �; �jD) by a factorized approximating distribution of the formQ(w)R(�)S(�) (24)where Q(w) is a Gaussian distribution as before, and the functional forms of R andS are left unspeci�ed. We then minimize the KL divergenceF [Q;R; S] = Z Q(w)R(�)S(�) ln�Q(w)R(�)S(�)p(w; �; �jD) � dw d� d�: (25)Consider �rst the dependence of (25) on Q(w)F [Q] = � Z Q(w)R(�)S(�)n��ED(w) � �2 jwj2 � lnQ(w)o+ const (26)= � Z Q(w)���ED(w) � �2 jwj2 � lnQ(w)� + const (27)where � = R R(�)�d� and � = R S(�)�d�. We see that (27) takes the sameform as (8), except that the �xed hyperparameters are now replaced with theiraverage values. To calculate these averages, we next consider the dependence of thefunctional F on R(�)F [R] = � Z Q(w)R(�)S(�)���2 jwj2 + k2 ln�+ (a� 1) ln�� �b � dw d�d�= � Z R(�)n�s + (r � 1) ln�� lnR(�)o d�+ const (28)where r = k2 +a and 1=s = 12 jwj2+ 12TrC+1=b. We recognise (28) as the Kullback-Leibler divergence between R(�) and the log of a Gamma distribution. Thus theoptimum R(�) is also Gamma distributedR(�) / �r�1 exp���s � : (29)We therefore obtain � = rs.A similar procedure for S(�) gives � = uv, where u = N2 + c and 1=v = hEDi+1=d,in which hEDi has already been calculated during the optimization of Q(w).This de�nes an iterative procedure in which we start by initializing the hyperparam-eters (using the mean of the hyperprior distributions) and then alternately optimizethe KL divergence over Q(w) and re-estimate � and �.3 Results and DiscussionAs a preliminary test of our method on a standard benchmark problem, we appliedthe minimum KL procedure to the Boston Housing dataset. This is a one dimen-sional regression problem, with 13 inputs, in which the data was obtained from theDELVE archive2. We trained a network of four hidden units, with covariance ma-trix given by (18) with s = 1, and speci�ed broad hyperpriors on � and � (a = 0:25,b = 400, c = 0:05, and d = 2000). Predictions are made by evaluating the integral2See http://www.cs.utoronto.ca/�delve/
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