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Bayesian Model Comparisonby Monte Carlo ChainingDavid Barber Christopher M. BishopD.Barber@aston.ac.uk C.M.Bishop@aston.ac.ukNeural Computing Research GroupAston University, Birmingham, B4 7ET, U.K.http://www.ncrg.aston.ac.uk/AbstractThe techniques of Bayesian inference have been applied with greatsuccess to many problems in neural computing including evaluationof regression functions, determination of error bars on predictions,and the treatment of hyper-parameters. However, the problem ofmodel comparison is a much more challenging one for which currenttechniques have signi�cant limitations. In this paper we show howan extended form of Markov chain Monte Carlo, called chaining,is able to provide e�ective estimates of the relative probabilities ofdi�erent models. We present results from the robot arm problemand compare them with the corresponding results obtained usingthe standard Gaussian approximation framework.1 Bayesian Model ComparisonIn a Bayesian treatment of statistical inference, our state of knowledge of the valuesof the parameters w in a modelM is described in terms of a probability distributionfunction. Initially this is chosen to be some prior distribution p(wjM), which canbe combined with a likelihood function p(Djw;M) using Bayes' theorem to give aposterior distribution p(wjD;M) in the formp(wjD;M) = p(Djw;M)p(wjM)p(DjM) (1)where D is the data set. Predictions of the model are obtained by performingintegrations weighted by the posterior distribution.



The comparison of di�erent modelsMi is based on their relative probabilities, whichcan be expressed, again using Bayes' theorem, in terms of prior probabilities p(Mi)to give p(MijD)p(Mj jD) = p(DjMi)p(Mi)p(DjMj)p(Mj) (2)and so requires that we be able to evaluate the model evidence p(DjMi), whichcorresponds to the denominator in (1). The relative probabilities of di�erent modelscan be used to select the single most probable model, or to form a committee ofmodels, weighed by their probabilities.It is convenient to write the numerator of (1) in the form expf�E(w)g, where E(w)is an error function. Normalization of the posterior distribution then requires thatp(DjM) = Z expf�E(w)g dw: (3)Generally, it is straightforward to evaluate E(w) for a given value of w, althoughit is extremely di�cult to evaluate the corresponding model evidence using (3)since the posterior distribution is typically very small except in narrow regionsof the high-dimensional parameter space, which are unknown a-priori. Standardnumerical integration techniques are therefore inapplicable.One approach is based on a local Gaussian approximation around a mode of theposterior (MacKay, 1992). Unfortunately, this approximation is expected to beaccurate only when the number of data points is large in relation to the number ofparameters in the model. In fact it is for relatively complex models, or problems forwhich data is scarce, that Bayesian methods have the most to o�er. Indeed, Neal, R.M. (1996) has argued that, from a Bayesian perspective, there is no reason to limitthe number of parameters in a model, other than for computational reasons. Wetherefore consider an approach to the evaluation of model evidence which overcomesthe limitations of the Gaussian framework. For additional techniques and referencesto Bayesian model comparison, see Gilks et al. (1995) and Kass and Raftery (1995).2 ChainingSuppose we have a simple model M0 for which we can evaluate the evidence an-alytically, and for which we can easily generate a sample wl (where l = 1; : : : ; L)from the corresponding distribution p(wjD;M0). Then the evidence for some othermodel M can be expressed in the formp(DjM)p(DjM0) = Z expf�E(w) +E0(w)gp(wjD;M0) dw' 1L LXl=1 expf�E(wl) +E0(wl)g: (4)Unfortunately, the Monte Carlo approximation in (4) will be poor if the two errorfunctions are signi�cantly di�erent, since the exponent is dominated by regionswhere E is relatively small, for which there will be few samples unlessE0 is also smallin those regions. A simple Monte Carlo approach will therefore yield poor results.This problem is equivalent to the evaluation of free energies in statistical physics,



which is known to be a challenging problem, and where a number of approacheshave been developed Neal (1993).Here we discuss one such approach to this problem based on a chain of K successivemodels Mi which interpolate between M0 and M, so that the required evidencecan be written asp(DjM) = p(DjM0)p(DjM1)p(DjM0) p(DjM2)p(DjM1) : : : p(DjM)p(DjMK) : (5)Each of the ratios in (5) can be evaluated using (4). The goal is to devise a chainof models such that each successive pair of models has probability distributionswhich are reasonably close, so that each of the ratios in (5) can be evaluated accu-rately, while keeping the total number of links in the chain fairly small to limit thecomputational costs.We have chosen the technique of hybrid Monte Carlo (Duane et al., 1987; Neal,1993) to sample from the various distributions, since this has been shown to bee�ective for sampling from the complex distributions arising with neural networkmodels (Neal, R. M., 1996). This involves introducing Hamiltonian equations ofmotion in which the parameters w are augmented by a set of �ctitious `momentum'variables, which are then integrated using the leapfrog method. At the end of eachtrajectory the new parameter vector is accepted with a probability governed by theMetropolis criterion, and the momenta are replaced using Gibbs sampling. As acheck on our software implementation of chaining, we have evaluated the evidencefor a mixture of two non-isotropic Gaussian distributions, and obtained a resultwhich was within 10% of the analytical solution.3 Application to Neural NetworksWe now consider the application of the chaining method to regression problemsinvolving neural network models. The network corresponds to a function y(x;w),and the data set consists of N pairs of input vectors xn and corresponding targetstn where n = 1; : : : ; N . Assuming Gaussian noise on the target data, the likelihoodfunction takes the formp(Djw;M) = � �2��N=2 exp(��2 NXn=1 ky(xn;w)� tnk2) (6)where � is a hyper-parameter representing the inverse of the noise variance. Weconsider networks with a single hidden layer of `tanh' units, and linear output units.Following Neal, R. M. (1996) we use a diagonal Gaussian prior in which the weightsare divided into groups wk, where k = 1; : : : ; 4 corresponding to input-to-hiddenweights, hidden-unit biases, hidden-to-output weights, and output biases. Eachgroup is governed by a separate `precision' hyper-parameter �k, so that the priortakes the form p(wjf�kg) = 1ZW exp(�12Xk �kwTkwk) (7)where ZW is the normalization coe�cient. The hyper-parameters f�kg and � arethemselves each governed by hyper-priors given by Gamma distributions of the formp(�) / �s exp(��s=2!) (8)



in which the mean ! and variance 2!2=s are chosen to give very broad hyper-priorsin re
ection of our limited prior knowledge of the values of the hyper-parameters.We use the hybrid Monte Carlo algorithm to sample from the joint distribution ofparameters and hyper-parameters. For the evaluation of evidence ratios, however,we consider only the parameter samples, and perform the integrals over hyper-parameters analytically, using the fact that the gamma distribution is conjugate tothe Gaussian.In order to apply chaining to this problem, we choose the prior as our reference dis-tribution, and then de�ne a set of intermediate distributions based on a parameter� which governs the e�ective contribution from the data term, so thatE(�;w) = ��(w) +E0(w) (9)where �(w) arises from the likelihood term (6) while E0(w) corresponds to theprior (7). We select a set of 18 values of � which interpolate between the referencedistribution (� = 0) and the desired model distribution (� = 1). The evidence forthe prior alone is easily evaluated analytically.4 Gaussian ApproximationAs a comparison against the method of chaining, we consider the framework ofMacKay (1992) based on a local Gaussian approximation to the posterior distri-bution. This approach makes use of the evidence approximation in which the inte-gration over hyper-parameters is approximated by setting them to speci�c valueswhich are themselves determined by maximizing their evidence functions.This leads to a hierarchical treatment as follows. At the lowest level, the maximumbw of the posterior distribution over weights is found for �xed values of the hyper-parameters by minimizing the error function. Periodically the hyper-parameters arere-estimated by evidence maximization, where the evidence is obtained analyticallyusing the Gaussian approximation. This gives the following re-estimation formulae1� := 1N � 
 NXn=1 ky(xn; bw)� tnk2 �k := 
kbwTk bwk (10)where 
k = Wk � �kTrk(A�1), Wk is the total number of parameters in groupk, A = rrE(bw), 
 = Pk 
k, and Trk(�) denotes the trace over the kth groupof parameters. The weights are updated in an inner loop by minimizing the er-ror function using a conjugate gradient optimizer, while the hyper-parameters areperiodically re-estimated using (10)1.Once training is complete, the model evidence is evaluated by making a Gaussianapproximation around the converged values of the hyper-parameters, and integrat-ing over this distribution analytically. This gives the model log evidence asln p(DjM) = �E(bw)� 12 ln jAj+ 12Xk Wk ln�k +N2 ln� + lnh! + 2 lnh+ 12Xk ln (2=
k) + 12 ln (2=(N � 
)) : (11)1Note that we are assuming that the hyper-priors (8) are su�ciently broad that theyhave no e�ect on the location of the evidence maximum and can therefore be neglected.



Here h is the number of hidden units, and the terms lnh! + 2 lnh take account ofthe many equivalent modes of the posterior distribution arising from sign-
ip andhidden unit interchange symmetries in the network model. A derivation of theseresults can be found in Bishop (1995; pages 434{436).The result (11) corresponds to a single mode of the distribution. If we initializethe weight optimization algorithm with di�erent random values we can �nd distinctsolutions. In order to compute an overall evidence for the particular network modelwith a given number of hidden units, we make the assumption that we have found allof the distinct modes of the posterior distribution precisely once each, and then sumthe evidences to arrive at the total model evidence. This neglects the possibility thatsome of the solutions found are related by symmetry transformations (and thereforealready taken into account) or that we have missed important modes. While someattempt could be made to detect degenerate solutions, it will be di�cult to do muchbetter than the above within the framework of the Gaussian approximation.5 Results: Robot Arm ProblemAs an illustration of the evaluation of model evidence for a larger-scale problemwe consider the modelling of the forward kinematics for a two-link robot arm in atwo-dimensional space, as introduced by MacKay (1992). This problem was chosenas MacKay reports good results in using the Gaussian approximation framework toevaluate the evidences, and provides a good opportunity for comparison with thechaining approach. The task is to learn the mapping (x1; x2)! (y1; y2) given byy1 = 2:0 cos(x1) + 1:3 cos(x1 + x2) y2 = 2:0 sin(x1) + 1:3 sin(x1 + x2) (12)where the data set consists of 200 input-output pairs with outputs corrupted byzero mean Gaussian noise with standard deviation � = 0:05. We have used theoriginal training data of MacKay, but generated our own test set of 1000 pointsusing the same prescription. The evidence is evaluated using both chaining and theGaussian approximation, for networks with various numbers of hidden units.In the chaining method, the particular form of the gamma priors for the precisionvariables are as follows: for the input-to-hidden weights and hidden-unit biases,! = 1, s = 0:2; for the hidden-to-output weights, ! = h, s = 0:2; for the outputbiases, ! = 0:2, s = 1. The noise level hyper-parameters were ! = 400, s = 0:2.These settings follow closely those used by Neal, R. M. (1996) for the same problem.The hidden-to-output precision scaling was chosen by Neal such that the limit ofan in�nite number of hidden units is well de�ned and corresponds to a Gaussianprocess prior. For each evidence ratio in the chain, the �rst 100 samples from thehybrid Monte Carlo run, obtained with a trajectory length of 50 leapfrog iterations,are omitted to give the algorithm a chance to reach the equilibrium distribution.The next 600 samples are obtained using a trajectory length of 300 and are used toevaluate the evidence ratio.In Figure 1 (a) we show the error values of the sampling stage for 24 hidden units,where we see that the errors are largely uncorrelated, as required for e�ective MonteCarlo sampling. In Figure 1 (b), we plot the values of lnfp(DjMi)=p(DjMi�1)gagainst �i i = 1::18. Note that there is a large change in the evidence ratios at thebeginning of the chain, where we sample close to the reference distribution. For this
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Figure 1: (a) error E(� = 0:6;w) for h = 24, plotted for 600 successive Monte Carlosamples. (b) Values of the ratio lnfp(DjMi)=p(DjMi�1)g for i = 1; : : : ; 18 for h = 24.reason, we choose the �i to be dense close to � = 0. We are currently researchingmore principled approaches to the partitioning selection. Figure 2 (a) shows thelog model evidence against the number of hidden units. Note that the chainingapproach is computationally expensive: for h=24, a complete chain takes 48 hoursin a Matlab implementation running on a Silicon Graphics Challenge L.We see that there is no decline in the evidence as the number of hidden unitsgrows. Correspondingly, in Figure 2 (b), we see that the test error performancedoes not degrade as the number of hidden units increases. This indicates that thereis no over-�tting with increasing model complexity, in accordance with Bayesianexpectations.The corresponding results from the Gaussian approximation approach are shown inFigure 3. We see that there is a characteristic `Occam hill' whereby the evidenceshows a peak at around h = 12, with a strong decrease for smaller values of hand a slower decrease for larger values. The corresponding test set errors similarlyshow a minimum at around h = 12, indicating that the Gaussian approximation isbecoming increasingly inaccurate for more complex models.6 DiscussionWe have seen that the use of chaining allows the e�ective evaluation of modelevidences for neural networks using Monte Carlo techniques. In particular, we �ndthat there is no peak in the model evidence, or the corresponding test set error,as the number of hidden units is increased, and so there is no indication of over-�tting. This is in accord with the expectation that model complexity should not belimited by the size of the data set, and is in marked contrast to the conventional
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Figure 2: (a) Plot of ln p(DjM) for di�erent numbers of hidden units. (b) Test erroragainst the number of hidden units. Here the theoretical minimum value is 1.0. Forh = 64 the test error is 1.11
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Figure 3: (a) Plot of the model evidence for the robot arm problem versus the numberof hidden units, using the Gaussian approximation framework. This clearly shows thecharacteristic `Occam hill' shape. Note that the evidence is computed up to an additiveconstant, and so the origin of the vertical axis has no signi�cance. (b) Corresponding plotof the test set error versus the number of hidden units. Individual points correspond toparticular modes of the posterior weight distribution, while the line shows the mean testset error for each value of h.maximum likelihood viewpoint. It is also consistent with the result that, in thelimit of an in�nite number of hidden units, the prior over network weights leads toa well-de�ned Gaussian prior over functions (Williams, 1997).An important advantage of being able to make accurate evaluations of the modelevidence is the ability to compare quite distinct kinds of model, for example radialbasis function networks and multi-layer perceptrons. This can be done either bychaining both models back to a common reference model, or by evaluating normal-ized model evidences explicitly.AcknowledgementsWe would like to thank Chris Williams and Alastair Bruce for a number of usefuldiscussions. This work was supported by EPSRC grant GR/J75425: Novel Devel-opments in Learning Theory for Neural Networks.ReferencesBishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press.Duane, S., A. D. Kennedy, B. J. Pendleton, and D. Roweth (1987). Hybrid Monte Carlo.Physics Letters B 195 (2), 216{222.Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1995). Markov Chain Monte Carloin Practice. Chapman and Hall.Kass, R. E. and A. E. Raftery (1995). Bayes factors. J. Am. Statist. Ass. 90, 773{795.MacKay, D. J. C. (1992). A practical Bayesian framework for back-propagation net-works. Neural Computation 4 (3), 448{472.Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods.Technical Report CRG-TR-93-1, Department of Computer Science, University ofToronto, Cananda.Neal, R. M. (1996). Bayesian Learning for Neural Networks. New York: Springer. Lec-ture Notes in Statistics 118.Williams, C. K. I. (1997). Computing with in�nite networks. In "NIPS9". This volume.


