
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

School of Informatics, University of Edinburgh

Institute for Adaptive and Neural Computation

Correlated sequence learning in a network of spiking neurons using
maximum likelihood

by

David Barber, Felix Agakov

Informatics Research Report EDI-INF-RR-0149

School of Informatics April 2002
http://www.informatics.ed.ac.uk/

Correlated sequence learning in a network of spiking
neurons using maximum likelihood

David Barber, Felix Agakov

Informatics Research Report EDI-INF-RR-0149

SCHOOLof INFORMATICS
Institute for Adaptive and Neural Computation

April 2002

A shorter and revised version has been submitted to Neural Computation, and also NIPS2002

Abstract :
Hopfield Networks are an idealised model of distributed computation in networks of non-linear, stochastic units.

We consider the learning of correlated temporal sequences using Maximum Likelihood, deriving a simple Hebbian-like
learning rule that is capable of robustly storing multiple sequences of correlated patterns. We argue that the learning
rule is optimal for the case of long temporal sequences and has a natural stochastic interpretation.

Keywords : Hopfield networks, temporal sequence learning, maximum likelihood, spiking neurons, Hebb learning

Copyright c
 2002 by The University of Edinburgh. All Rights Reserved

The authors and the University of Edinburgh retain the right to reproduce and publish this paper for non-commercial
purposes.

Permission is granted for this report to be reproduced by others for non-commercial purposes as long as this copy-
right notice is reprinted in full in any reproduction. Applications to make other use of the material should be addressed
in the first instance to Copyright Permissions, Division of Informatics, The University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, Scotland.

Correlated sequence learning in a network of spiking

neurons using maximum likelihood

David Barber† and Felix Agakov

Institute of Adaptive and Neural Computation. 5 Forrest Hill Edinburgh, EH1 2QL,

U.K.

† Corresponding author : d.barber@anc.ed.ac.uk

Maximum Likelihood for Temporal Sequence learning 2

Abstract. Hopfield Networks are an idealised model of distributed computation

in networks of non-linear, stochastic units. We consider the learning of correlated

temporal sequences using Maximum Likelihood, deriving a simple Hebbian-like

learning rule that is capable of robustly storing multiple sequences of correlated

patterns. We argue that the learning rule is optimal for the case of long temporal

sequences and has a natural stochastic interpretation.

1. Stochastic Hopfield Networks

Hopfield networks are an idealised model of distributed computation, with particular

application as a simple model of memory[6, 5, 2]. The model represents a set of V

interconnected neurons, each being at any time t in one of two possible states, vi(t) = +1

(firing) or vi(t) = −1 (quiescent). Neuron i fires depending on the potential

ai(t) ≡ θi +
V∑

j=1

wijvj(t) (1)

where wij characterizes the synaptic efficacy from neuron j (presynaptic) to neuron i

(postsynaptic). The threshold θi relates to the neuron’s predisposition to firing. Writing

the state of the network at time t as v(t) ≡ (v1(t), . . . , vV (t)), the probability that neuron

i fires at time t+ 1 is modelled as

p(vi(t+ 1) = 1|v(t)) = σ (ai(t)) (2)

where σ(x) = 1/(1 + e−βx) where the parameter β controls the level of stochastic

behaviour of the neuron. In the limit β →∞, the neuron updates deterministically

vi(t+ 1) = sgn (ai(t)) . (3)

The probability of being in the quiescent state is given by normalization

p(vi(t+ 1) = −1|v(t)) = 1− p(vi(t+ 1) = +1|v(t)) = 1− σ (vi(t+ 1)ai(t)) (4)

These two rules can be compactly written as

p(vi(t+ 1)|v(t)) = σ (vi(t+ 1)ai(t)) (5)

which follows directly from 1− σ(x) = σ(−x).

In a synchronous Hopfield Net, the update of the entire network is given by the

following rule

p(v(t+ 1)|v(t)) =
V∏

i=1

p(vi(t+ 1)|v(t)). (6)

The network thus operates by simultaneously generating a new set of neuron states

according to (6). Equation (6) defines a Markov transition matrix, modelling the

Maximum Likelihood for Temporal Sequence learning 3

transition probability v(t)→ v(t+ 1) and furthermore imposes the constraint that the

neurons are conditionally independent given the previous state of the network. Note

that equations (6) and (2), differ significantly from the Boltzmann machine [5] in that

there is no restriction to symmetric weights, and the form of the equilibrium distribution

is unknown[2].

The deterministic Hopfield net(3) does not capture the inherently stochastic nature

of neurons. Furthermore, previous approaches to training the network have relied on

asynchronous updating and the subsequent existence of a suitable Lyapunov function

to ensure convergence to local attractor states[3, 5]. In the following section, we address

how to learn suitable parameters wij and θi to learn given temporal sequences based

on a simple local learning rule that we can readily show is capable of storing multiple

temporal sequences without error.

2. Learning Sequences

2.1. A Single Sequence

For deterministic dynamics (3), two well known approaches to learning a temporal

equence V = {v(1), . . . ,v(T)} are the Hebb and Pseudo Inverse rules[5]:

Hebb : wij =
∑T−1

t=1 vi(t+ 1)vj(t)

Pseudo Inverse : Qij =
∑T

t=1 vi(t)vj(t) wij =
∑T−1

t=1 vi(t+ 1)[Q
−1]ijvj(t)

In both cases, the thresholds θi are usually set to zero. By storage we mean that

if the network is initialized in the correct starting state of the training sequence, the

remainder of the training sequence will be reproduced under the network dynamics,

without error. The Hebb rule is capable of storing a random uncorrelated temporal

sequence of length 0.269V time steps[4]†. However, the Hebb rule performs poorly for

the case of correlated patterns. In contrast, the Pseudo Inverse (PI) rule can store any

sequence of V linearly independent patterns. The PI rule, whilst attractive compared

to the standard Hebb in terms of its ability to store a longer sequence is unattractive for

two reasons: biological implausibility and instability. Due to the inverse, the value of

the connection wij is not simply a function of values computable locally at nodes i and

j‡. We will show in our experiments that this temporal PI rule has very small basins of

attraction for temporally correlated patterns.

The deficiencies of these two well known algorithms motivated us to search for a

robust, local learning rule capable of storing a sequence of V correlated patterns. First,

we need to clarify what we mean by “store”. Two different objectives readily come to

mind:

† This is in contrast to the well known capacity result of 0.138V for static patterns.
‡ By writing the inverse as an iteration, however, it is possible to recover a local learning rule[3].

Maximum Likelihood for Temporal Sequence learning 4

Unconditional Maximum Likelihood: We wish that the sequence V will be likely to

be generated by the network, given a random starting condition. That is, adjust

the parameters of the network such that the probability that the network generates

the sequence, V ,

p(v(T),v(T − 1), . . . ,v(1)) (7)

is high. This objective function is typically intractable to evaluate, as we will

subsequently explain, and an alternative objective function would be preferable.

Conditional Maximum Likelihood: Given that we initialize the network in a state

v(t = 1), we wish that the remaining sequence will be generated with high

probability. That is, adjust the network parameters such that the probability

p(v(T),v(T − 1), . . . ,v(2)|v(1)) (8)

is maximized. Furthermore, we might hope that the sequence will be recalled with

high probability not just when initialized in the correct state but also for states

close (in Hamming distance) to the correct initial state v(1).

These two objectives are related by†

p(v(T),v(T − 1), . . . ,v(2)|v(1))p(v(1)) = p(v(T),v(T − 1), . . . ,v(1)) (9)

Due to the Markov nature of the dynamics, the conditional likelihood is

p(v(T),v(T − 1), . . . ,v(2)|v(1)) =
T−1∏

t=1

p(v(t+ 1)|v(t)) (10)

This is a product of transitions from given states to given states. Since these transition

probabilities are known (6,2), the conditional likelihood can be easily evaluated.

However, according to (9), to calculate the unconditional likelihood, we require

knowledge of the equilibrium distribution p(v(1)), which is non-trivial to calculate‡.

We believe that the more natural use of the Hopfield network is to recall a training

sequence given an initial state and will henceforth focus on this application here and

how to train a network accordingly. The sequence log (conditional) likelihood is

L ≡ log
T−1∏

t=1

p(v(t+ 1)|v(t)) =
∑

t

log p(v(t+ 1)|v(t)) =
T−1∑

t=1

V∑

i=1

log σ (vi(t+ 1)ai(t))

(11)

To increase the likelihood of the sequence, we can use simple gradient ascent

wnew
ij = wij + η

dL

dwij

, θnewi = θi + η
dL

dθi
(12)

† Provided that the sequence is very long, and the equilibrium probability p(v(t = 1)) is non-extreme,

the two criteria become essentially equivalent.
‡ Restricting the weight matrix w to be symmetric enables the equilibrium distribution to be found,

although this restriction severely limits the networks ability to store temporal sequences.

Maximum Likelihood for Temporal Sequence learning 5

where
dL

dwij

= β

T−1∑

t=1

γi(t)vi(t+ 1)vj(t),
dL

dθi
= β

T−1∑

t=1

γi(t)vi(t+ 1) (13)

and we have defined

γi(t) ≡ 1− σ (vi(t+ 1)ai(t)) . (14)

The learning rate η is chosen empirically to be sufficiently small to ensure convergence.

The batch training procedure (13) can be readily converted to an online one since the

updates only depend on two consecutive patterns so that an update can occur after

the presentation of two consecutive patterns. The above learning rule can be seen as

a modified Hebb learning rule, the basic Hebb rule being given when γi(t) ≡ 1. As

learning progresses, the γi(t) will typically tend to values close to either 1 or 0, and

hence the learning rule can be seen as asymptotically equivalent to making an update

only in the case of disagreement (ai(t) and vi(t+1) are of different signs). The model is

capable of storing a sequence of V linearly independent patterns†. To assess convergence

of the learning rule, consider the Hessian of the log-likelihood‡:

d2L

dwijdwkl

= −β2

T−1∑

t=1

(vi(t+ 1)vj(t)) γi(t)(1− γi(t))vk(t+ 1)vl(t)δik. (15)

This is negative definite and hence the likelihood has a single global maximum. Gradient

ascent is therefore guaranteed to converge to the optimal result, provided that the

learning rate η is not too large. Since the gradient (13) is zero only for infinite weights,

learning in principle never stops. However, the learning rapidly slows down after a small

number of iterations, and learning can be safely stopped.

2.1.1. Relation to the Perceptron Rule In the limit that the activation is large, γi = 1

if vi(t+ 1)ai < 0 and is zero otherwise. In this limit, (16) is the well known Perceptron

rule[5][3]. The Perceptron rule generalizes poorly unless we include a stability criterion

such that we set γi = 1 if vi(t + 1)ai < M and is zero otherwise, were M is some

positive threshold. An advantage of remaining with our probabilistic version is that we

do not need to find an appropriate setting of the threshold. Additionally, we can assign

a likelihood score to a novel temporal sequence, which can be used for classification

purposes if we so wish. In the deterministic limit, the likelihood score for a novel

sequence is either 1 or 0. Finally, the convergence of the stochastic model is guaranteed

because the likelihood surface is convex.

† To see this, we can form an input-output training set for each neuron i,

{(v(t), vi(t+ 1)), t = 1, . . . , T − 1}. Each neuron has an associated weight vector wi ≡ wij , j =

1, . . . , V , which forms a logistic regressor or, in the limit β =∞, a perceptron[5]. For perfect recall of

the patterns, we need the training data to be linearly separable. This will be the case if the inputs are

linearly independent, regardless of the outputs vi(t+ 1), t = 1, . . . , T − 1.
‡ We neglect for expositional clarity the biases – this does not affect the conclusions.

Maximum Likelihood for Temporal Sequence learning 6

2.1.2. Stochastic Interpretation By straightforward manipulations, (13) can be written

as

dL

dwij

=
T−1∑

t=1

1

2




1− vi(t+ 1) (2σ(ai(t))− 1)

︸ ︷︷ ︸

≡〈vi(t+1)〉p(vi(t+1)|ai(t))




 vi(t+ 1)vj(t) (16)

=
T−1∑

t=1

1

2

(

vi(t+ 1)− 〈vi(t+ 1)〉p(vi(t+1)|ai(t))

)

vj(t) (17)

The equivalence 〈vi(t+ 1)〉p(vi(t+1)|ai(t))
= 2σ(ai(t))− 1 follows from

〈vi(t+ 1)〉p(vi(t+1)|ai(t))
= 1.p(vi(t+ 1) = 1|ai(t))− 1.(1− p(vi(t+ 1) = 1|ai(t))) (18)

A stochastic, online learning rule is therefore

∆wij(t) = η (vi(t+ 1)− ṽi(t+ 1)) vj(t) (19)

where ṽi(t + 1) is 1 with probability σ(ai(t)), and −1 otherwise. This is the most

biologically plausible interpretation of the learning rule. Provided that the learning rate

η is small, this stochastic updating will approximate the learning rule (12,13). Whilst

(19) is similar to the M = 0 perceptron rule, the stochastic nature of the updating has

the important effect of increasing stability during recall, performing dramatically better

than the M = 0 perceptron rule. In our simulations, we implement the Maxlimum

Likelihood (ML) rule using (16), rather than (19).

2.2. Multiple Sequences

The previous section detailed how to train a Hopfield network for a single temporal

sequence. How can we train the network to learn a set of sequences {V s, s = 1, . . . S}? If

we assume that the sequences are independent, the log likelihood of a set of sequences is

simply the sum of the individual sequences. The gradient changes simply by introducing

a loop to sum over the different sequences:

dL

dwij

= β
S∑

s=1

T−1∑

t=1

γsi (t)v
s
i (t+ 1)v

s
j (t),

dL

dθi
= β

S∑

s=1

T−1∑

t=1

γsi (t)v
s
i (t+ 1) (20)

where

γsi (t) ≡ 1− σ (vsi (t+ 1)a
s
i (t)) , asi (t) = θi +

∑

j

wijv
s
j (t) (21)

The log likelihood is convex since it is the sum of convex functions. This learning rule is

capable of storing K patterns of length V/K. Indeed, the network is capable of storing

an arbitrary set of V transitions v(t)→ v(t+1), provided that the patterns are linearly

independent.

Maximum Likelihood for Temporal Sequence learning 7

Training Sequence

time

ne
ur

on
 n

um
be

r

10 20

10

20

30

40

50

60

70

80

90

100

Max Likelihood

10 20

10

20

30

40

50

60

70

80

90

100

Hebb

10 20

10

20

30

40

50

60

70

80

90

100

Pseudo Inverse

10 20

10

20

30

40

50

60

70

80

90

100

Figure 1. Left: The training sequence we desire to store. The other plots show the

temporal evolution of the network after initialization in the correct starting state but

corrupted with 30% noise. During recall, deterministic updates β =∞ were used. The

Maximum Likelihood rule was trained using 10 batch epochs with η = 0.1.

2.3. Illustration

As an illustration of the differences between some of the learning rule, in fig(1) we

attempt to store a temporal sequence of length 20 states of 100 neurons using the three

learning rules: Hebb, Maximum Likelihood and Pseudo Inverse. The sequence is chosen

to be highly correlated, which makes the learning task generally more difficult. We set

the thresholds to θi to zero throughout to facilitate comparison with other methods.

The initial state of the training sequence, corrupted by 30% noise is presented to the

trained networks, and we desire that the training sequence will be generated from this

initial noisy state. Whilst the Hebb rule is operating in a feasible limit for uncorrelated

patterns, the strong correlations in this training sequence renders very poor results.

The PI rule is capable of storing a sequence of length 100, and is therefore operating

well within its limits of storage. However, we see that the PI rule is not robust to

perturbations from the correct initial state. The Maximum Likelihood rule performs

well after a small amount of training. More extensive results are given in section (4).

Whilst the Maximum Likelihood rule promises wide basins of attraction, there

is nothing explicit in the framework up to now that actively encouraged such good

generalization behaviour. One of the reasons the network performs well is due to early

stopping[1] (stopping updating after a limited number of weight updates). We show in

the following section how early stopping can be theoretically motivated.

3. Improving stability by training with noise

An ideally trained network would be able to reproduce a sequence given a noisy initial

state, or indeed, if at any stage during recall, the network state is perturbed by a small

amount of noise. We will here try to build this desiderata into the learning rule explicitly.

For expositional clarity, we will consider here a training sequence of just two time steps,

v (at t = 1) and v′ (at t = 2). The noise on the state v is given by η so that probability

Maximum Likelihood for Temporal Sequence learning 8

of making a transition from a noise corrupted version of v to v′ is

p(v′|v,η) =
V∏

i=1

σ(v′iw
T
i [v ◦ η]), (22)

where wi is the weight vector connecting the i
th neuron with all the other units. The

vector v ◦ η has components vjηj, where ηj = −1 if the j
th bit of the training pattern

is flipped to its reverse state. The noise components η1, . . . , ηV are assumed to be

independent with qj(ηj = −1) = ε.

We may hope to increase stability of a training pattern transition v → v′ by

maximizing the probability of transitions v ◦η → v′, for small noise corruptions ε. It is

easy to see that for L
def
= 〈p(v′|v ◦ η)〉q(η) the gradient is expressed as (setting β = 1)

dL

dwij

=
〈(
1− σ(v′iw

T
i [v ◦ η])

)
v′ivjηj

〉

q(η)

= v′ivj(1− 2ε) + εv′ivj
〈
σ(v′iw

T
i [v ◦ η]|ηj=−1)

〉

q(η\ηj)

− (1− ε)v′ivj
〈
σ(v′iw

T
i [v ◦ η]|ηj=1)

〉

q(η\ηj)

= v′ivj
[
1− 2ε+ ε〈σ(cij)〉q(η\ηj) + (ε− 1)〈σ(dij)〉q(η\ηj)

]
, (23)

where

cij = v′iw
T
i [v ◦ η]|ηj=−1 = v′i

[
V∑

k=1

wikvkηk − vjwij(ηj + 1)

]

(24)

dij = v′iw
T
i [v ◦ η]|ηj=1 = cij + 2v

′
iwijvj. (25)

Notice that both cij and dij include summations of V random variables. Provided that

the network is large and neither the weight components {wik} nor the input patterns

{vk} are strongly correlated, we can assume Gaussianity of the fields cij ∼ N
(c)
ij (µcij , s

2
cij
),

dij ∼ N
(d)
ij (µdij , s

2
dij
) with the moments expressed as

µcij = v′i
(
wT
i v(1− 2ε)− 2wijvj(1− ε)

)
, µdij = v′i

(
wT
i v(1− 2ε) + 2wijvjε

)

s2
cij
= s2

dij
= 4v′2i

V∑

k=1,k 6=j

w2
ikv

2
kε(1− ε). (27)

Substituting this approximation into expression (23) we obtain

dL

dwij

≈ v′ivj






1− 〈σ(dij)〉N(d)

ij

+ ε
(

〈σ(cij)〉N(c)
ij

+ 〈σ(dij)〉N(d)
ij

− 2
)

︸ ︷︷ ︸

≤0






. (28)

A further simplification is given by replacing the averages 〈σ(cij)〉N(c)
ij

by σ(µcij) and

〈σ(dij)〉N(d)
ij

by σ(µdij), an approach we take in our experiments. Training with a small

amount of noise (ε small) has a regularizing effect on the weight matrix due to the

negative term in expression (28), which is the leading modification to the gradient.

This provides some theoretical justification for early stopping since, if we begin training

with the weights set to be very small, early stopping will bias the results to small weight

matrices.

Maximum Likelihood for Temporal Sequence learning 9

4. Results

We compared the performance of the Maximum Likelihood learning rule (with zero

thresholds) with the standard Hebb, Pseudo Inverse, and Perceptron rule for learning

a single temporal sequence. The network is initialized to a noise corrupted version

of the correct initial state v(t = 1) from the training sequence. This corruption is

achieved by flipping with a specified probability each bit of the correct initial state.

The dynamics is then run (at β = ∞) for the same number of steps as the length of

the training sequence, and the fraction of bits of the recalled final state which are the

same as the training sequence final state v(T) is measured. Thus a value of 1 indicates

perfect recall of the final state, and a value of 0.5 indicates a performance no better

than random guessing of the final state. At each stage in the dynamics, the state of the

network was corrupted with noise by flipping each neuron state with the specified flip

probability. The results are displayed in figures fig(2). The fraction correct of the final

state produced by the network with the final state in the training sequence is plotted

for two different sequence lengths. Uncorrelated random temporal sequences are both

less relevant and easier to train than temporally correlated sequences. For this reason

we produced training sequences by starting from a random initial state, v(1), and then

choosing at random 20% percent of the neurons to flip, each of the chosen neurons being

flipped with probability 0.5. This thus produces a random training sequence with a high

degree of temporal correlation.

It is immediately clear from the results that the standard Hebb rule performs poorly,

particularly for small flip rates, whilst the other methods perform relatively well, being

robust against small flip rates. As the flip rate increases, the Pseudo Inverse rule becomes

unstable, especially for the longer temporal sequence which places more demands on the

network. The non-monotonic behaviour in the performance of the Hebb and Perceptron

rules is curious, but of minor consequence due to their relatively inferior performance.

The perceptron rule can perform as well as the Maximum Likelihood rule, although its

performance is critically dependent on an appropriate choice of the threshold M . The

results for M = 0 Perceptron training are poor for small flip rates. An advantage of

the Maximum Likelihood rule is that it performs well without the need for fine tuning

of parameters. In all cases, batch training was used. In the Maximum Likelihood rule

we used the exact values of γi(t) for updating. Training with noise (using ε = 0.1) has

little effect on the performance here (although the weights learned are smaller), and is

more relevant in the multiple sequences case (details to be published elsewhere).

5. Static Patterns

We briefly describe how the multiple sequences framework can be adapted to train stable

static patterns, leaving a fuller account for elsewhere. A pattern vµ is stable if, under

the dynamics,

p(v(t+ 1) = vµ|v(t) = vµ) (29)

Maximum Likelihood for Temporal Sequence learning 10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

flip probability

fr
ac

tio
n

co
rr

ec
t

sequence length=20

Max Likelihood
noise trained Max Likelihood
perceptron (M=10)
perceptron (M=0)
hebb
pseudo inverse

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

flip probability
fr

ac
tio

n
co

rr
ec

t

sequence length=50

Max Likelihood
noise trained Max Likelihood
perceptron (M=10)
perceptron (M=0)
hebb
pseudo inverse

Figure 2. The fraction of neurons correct of the final state of the network produced

by the trained network as a function of the flip rate for a 100 unit Hopfield network,

after initialization in a noise flipped correct initial state. The correlated patterns were

produced by flipping with probability 0.5, 20% of the previous state of the network.

In both plots, 50 epochs of training were used. During recall, deterministic updates

β =∞ were used. For the perceptron rule, the threshold was set to 10 for both plots.

Left: fraction correct for a sequence of length 20, η = 0.05. Right : fraction correct

for a sequence of length 50, η = 0.02. In both plots, the results presented are averages

over 5000 simulations, resulting in standard errors of the order of the symbol sizes.

is a delta function. In other words, we can attempt to maximize the stability of pattern

vµ by maximizing the probability that it makes a transition to itself. The requirement

that a set of patterns, vµ, µ = 1, . . . P be stable incurs only a minor modification of the

learning rules (13) to (setting β = 1)

dL

dwij

=
P∑

µ=1

γµi v
µ
i v

µ
j γµi ≡ 1− σ

(

vµi

V∑

k=1

wikv
µ
k

)

(30)

A stochastic interpretation, similar to that given for the temporal case is straightforward:

dL

dwij

=
∑

µ

(

vµi − 〈v
µ
i 〉p(vi|aµi) v

µ
j

)

(31)

The rule (30) is similar to the rule by Diederich and Opper[3] derived for deterministic

neurons. An advantage of our stochastic interpretation is that learning is readily seen

to converge, and the derivation from a clear objective function is apparent, aiding

the generalization to more complex models. For such short temporal patterns (only

two time steps), the difference between the conditional p(v|v) and unconditional p(v)

likelihood can be very large. This is the origin of spurious attractor states since there

is nothing in the unconditional likelihood objective function that prevents the network

Maximum Likelihood for Temporal Sequence learning 11

generating patterns not in the training set, given a random starting state. The Hebb

rule for static patterns corresponds to setting γµi identically to 1, in which case the

weight matrix learned is symmetric and a function of only second order statistics of the

patterns. In contrast, the static Maximum Likelihood rule requires the whole pattern set.

Additionally, the weight matrix will not be symmetric. However, in practice, the degree

of asymmetry induced by the training patterns is typically negligible so that constraining

the weight matrix to be symmetric has no deleterious effect on performance. Training

with noise reduces dramatically the number of spurious attractor states, although it

does not eliminate them completely.

6. Discussion

The classical Hebb rule can be much improved by a small modification that smooths the

updates used. The resulting Maximum Likelihood rule is capable of robustly storing a

temporal sequence with length the same number of neurons in the network. The current

network can only recall perfectly unambiguous sequences. That is, sequences which for

which a pattern maps to two or more different patterns cannot be recovered. However,

this issue is straightforward to address using noisy sparse coding, and could be readily

built in to the current framework. The statistical interpretation of conditional maximum

likelihood training proves its worth in yielding a simple derivation of a learning rule

that has guaranteed convergence, and is a useful starting point for more training more

complex stochastic networks. The new rule can be interpreted as a stochastic version

of the Perceptron learning rule, and the stochastic nature of the updates greatly helps

the generalization performance of the network.

Acknowledgments

We would like to thank David Sterratt, Ton Coolen, Stefano Fusi, and Amos Storkey

for helpful discussions and references.

References

[1] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.

[2] A.C.C. Coolen, Statistical Mechanics of Neural Networks, Lecture Notes, 1997.

[3] S. Diederich and M. Opper, Learning of Correlated Patterns in Spin-Glass Networks by Local

Learning Rules, Physical Review Letters 58 (1986), no. 9, 949–952.

[4] A. Düring, A.C.C. Coolen, and D. Sherrington, Phase diagram and storage capacity of sequence

processing neural networks, Journal of Physics A 31 (1998), 8607–8621.

[5] J. Hertz, A. Krogh, and R. Palmer, Introduction to the theory of neural computation., Addison-

Wesley, 1991.

[6] J. Leo van Hemmen and R. Kühn, Collective Phenomena in Neural Networks, ch. 1, Springer,

1991.

