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Abstract

Many popular probabilistic models for temporal sequences assume simple hidden dy-
namics or low-dimensionality of discrete variables. For higher dimensional discrete hidden
variables, recourse is often made to approximate mean field theories, which to date have
been applied to models with only simple hidden unit dynamics. We consider a class of mod-
els in which the discrete hidden space is defined by parallel dynamics of densely connected
high-dimensional stochastic Hopfield networks. For these Hidden Hopfield Models (HHMs),
mean field methods are derived for learning discrete and continuous temporal sequences.
We discuss applications of HHMs to classification and reconstruction of non-stationary time
series. We also demonstrate a few problems (learning of incomplete binary sequences and
reconstruction of 3D occupancy graphs) where distributed discrete hidden space represen-
tation may be useful. We show that while these problems cannot be easily solved by other
dynamic belief networks, they are efficiently addressed by HHMs.

1 Markovian Dynamics for Temporal Sequences

Dynamic Bayesian networks are popular tools for modeling temporally correlated patterns. In-
cluded in this class of models are Hidden Markov Models (HMMs), auto-regressive HMMs (see
e.g. Rabiner (1989)), and Factorial HMMs (Ghahramani and Jordan, 1995). These models are

special cases of a generalized Markov chain

T-1

p({h} (v} = s () T] p D O, v O RO, o0, (1)
t=0

where {h} = {h(® .. hD} and {v} = {vVO, ... v} are hidden and visible variables [see
Figure 1 (a)—(c)].

A general procedure for learning the model parameters ® by maximum likelihood training
is the EM algorithm, which optimizes a lower bound on the likelihood

({v};¢,0) = (logp({h}, {v}) +logg({h}{v})) y((ny vy (2)

with respect to the parameters [the M-step] and an auxiliary distribution g({h}|{v}) [the E-
step]. The bound on the likelihood £ is exact if and only if ¢({h}|{v}) is identical to the true
posterior p({h}|{v}). However, in general, the problem of evaluating the averages over the
discrete p({h}|{v}) is exponential in the dimension of {h}.



Figure 1: Graphical models for temporal sequences: (a) Hidden Markov Model; (b) Factorial
HMM; (c) Auto-regressive HMM; (d) generalized Markov chain with temporally shifted obser-
vations.

This computational intractability of learning is one of the fundamental problems of proba-
bilistic graphical modeling. Many popular models for temporal sequences therefore assume that
the hidden variables are either very low-dimensional, in which case £ can be optimized exactly
(e.g. HMMs), or have very simple temporal dependencies, so that p({h}|{v}) is approximately
factorized.

Our work here is motivated by the observation that mean field theories succeed in the con-
trasting limits of extremely sparse connectivity (models are then by construction approximately
factorized), and extremely dense connectivity (for distributions with probability tables depen-
dent on a linear combination of parental states). This latter observation raises the possibility of
using mean field methods for approximate learning in dynamic networks with high dimensional,
densely connected discrete hidden spaces.

The resulting model with a large discrete hidden dimension can be used for learning highly
non-stationary data of coupled dynamical systems. Moreover, as we show in section 5, it yields
a fully probabilistic way of addressing some problems of image processing (half-toning and
binary super-resolution of video sequences) and scanning (3D shape reconstruction). We also
demonstrate that the model can be naturally applied to reconstruction of incomplete discrete
temporal sequences.

2 Hidden Hopfield Models

To fully specify the model (1) we need to define the transition probabilities p(h®*1|x®)) and
p(viHDx®) where x = [hT vT]T. For large models and discrete hidden variables the conditionals

p(hEHl)\x(t)) cannot be defined by probability tables, and some parameterization needs to be



considered. It should be specified in such a form that computationally tractable approximations
of p(h+D|x(") are sufficiently accurate. We consider p{) ¢ {=1,+1} and

)

(KO, by) = o (R IO 4 by) ) 3)
where w; is a weight vector connecting node ¢ with all of the nodes, b; is the node’s bias, and
ola)=1/(1+e%).

The model has a graphical structure, temporal dynamics, and parametrization of the con-
ditionals p(h;|x) similar to a synchronous Hopfield network (e.g. Hertz et al. (1991)) amended
with hidden variables and a full generally non-symmetric weight matrix. This motivates us to
refer to generalized Markov chains (1) with parameterization (3) as a Hidden Hopfield Model

Our model is motivated by the observation that, according to the Central Limit Theorem,
for large densely connected models without strongly dependent weights, the posteriors (3) are
approximately uni-modal. Therefore, the mean field approximation

g}V A) = T2 — A m072 0 x < g(hy, = 1{v)) (4)
k

is expected to be reasonably accurate. During learning we optimize the bound (2) with respect
to this factorized approximation ¢ and the model parameters ® = {W, b, p(h(?)} for two types
of visible variables v. In the first case v € {—1,41}" and the conditionals p(v;|x) are defined
similarly to expression (3). Essentially, this specific case of discrete visible variables is equivalent
to sigmoid belief networks (Neal, 1992) with hidden and visible variables in each layer. In the
second considered case the observations v € R™ with p(v;|x) ~ N(w!x,s%), where s? is the
variance of isotropic Gaussian noise. Note that in both cases sparser variants of the generalized
chains can be obtained by fixing certain HHM weights at zeros.

Previously, Saul et al. (1996) used a similar approximation for learning in sigmoid belief
networks. Their approach suggests to optimize a variational lower bound on ®, which is itself a
lower bound on £. For HHM learning of discrete time series we adopt a slightly different strategy
and exploit Gaussianity of the nodes’ fields for numeric evaluation of the gradients. An outline
of the learning algorithm is given in Appendix A.1. This results in a fast learning rule, which
smooths differences between discrete {h} and {v} and makes it easy to learn discrete sequences
of irregularly observed data. HHM learning of continuous time series results in a related, but
different rule (section 3.1).

Note that although both HMMs and Hidden Hopfield models can be used for learning of
non-stationary time series with long temporal dependencies, they fundamentally differ in repre-
sentations of the hidden spaces. HMMSs capture non-stationarities by expanding the number of
states of a single multinomial variable. As opposed to HMMSs, Hidden Hopfield models have a
more efficient, distributed hidden space representation. Moreover, the model allows intra-layer
connections between the hidden variables, which yields a much richer hidden state structure
compared with Factorial HMMs.

3 Learning in Hidden Hopfield Models

Here we outline the variational EM algorithm for HHMs with continuous observations. Deriva-
tions of these results, along with the learning rule for discrete-data HHMs are described in
Appendix A.



3.1 EM algorithm

Let H®, V1) denote sets of variables hidden or visible at time ¢, and a:l(-t) be the i*" variable at

time t. For each such variable we introduce an auxiliary parameter )\Z(t), such that
jo ar [l =1M0) €0, it i€ HO; (5)
@ +1)/2¢eR if i € VO,
Note that in the case when :cgt) is hidden, )\Et) is effectively the mean-field parameter of the
variational distribution ¢({h}|{v}) and must be learned from data.
M-step:

Let w;; be connecting $§t+1) and $§-t). Then, as derived in Appendix A,
(t+1) 0PY( (1), 09" (1)
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and f](t) € {0,1} is an indicator variable equal to 1 if and only if x; is visible at time instance ¢
li.e. je€ yt )] The fields c!;, d., and e! are approximately normally distributed according to
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Analogously, the derivative w.r.t. the biases 0®/0b; is given by
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Il
o

The resulting averages may be efficiently evaluated by using numerical Gaussian integration,
and even crude approximation at the means often leads to good results (see section 5).
E-step:



gt) of non-starting and non-

ending hidden nodes, we get the fixed point equations of the form )\,(f) = a(l,(f)), where

Optimizing the bound (2) w.r.t. the mean field parameters \
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Here ¢!, and d! , are distributed according to the Gaussians (9), (10).

It can be easily seen that the mean field parameter 7y def )\g)) of the starting hidden node

Al+D

- <log {U(dfnk)

can be obtained by replacing the contribution of the previous states by + W%(Q)\(t_l) —1) in

the r.h.s. of (14) by log {)\]({:0)/(1 - )\,(CO))}. Finally, since h(T) is unrepresentative of the data
(T-1)

(see figure 1), the mean field parameters \;

@ —wT @AY — 1) 4 by,

of the ending nodes are obtained from (13) by
setting lNk

3.2 Multiple sequences

To learn multiple sequences we need to estimate separate mean field parameters {)\,(fs) } for each
node k of time series s at ¢t > 0. This does not change the fixed point equations of the E-step
of the algorithm. From expression (2) it is clear that the gradients 0®/0w;; and 0®/0b; in the
M-step will be expressed according to (7), (8), (12) [continuous case] and (31), (12) [discrete
case| and with an additional summation over the training sequences.

3.3 Annealing

In some cases it may be useful to bias posterior probabilities of the hidden variables /\Et) toward
deterministic values. This may be particularly important if it is known that the true values of
the hidden variables, giving rise to the observations, are intrinsically deterministic (see example
in section 5.5). Moreover, if several hidden state configurations result in approximately the same
visible patterns, we may be interested in learning one of such representations instead of their
smooth average, and adapt the parameters accordingly. One way to promote approzrimate de-
terminism of the hidden variables is by following an annealing scheme, so that state fluctuations
become less likely as training or inference continues (see e.g. Hertz et al. (1991)). Alternatively,
a related effect can be achieved by introducing an inertia factor, so that for each hidden variable

h" with the old estimate of the posterior S\Et) e q(ﬁgt)]v) the transition is defined as

p(h7 R0 RO oc p(h{D|hED) (AR (1 — X )1=hs, (15)

This is analogous to introducing a time-variant prior on activation of each hidden variable, which
is defined by previous estimates of the mean field parameters and which encourages consistency
of hidden unit activations.



From (15) it is easy to see that the resulting forms of the E-step expressions (13) and (28)
for the fields l,(:) are incremented by

,Yz(t)(j\(t)) def log — (16)

t)

which were likely to be on at the previous iteration

()

of learning give rise to a large positive field contribution =,

Note that hm;\gt)_)l 'yi(t) — 00, i.e. units hg

;. Clearly, each such hgt) is more
likely to stay on at the current iteration, unless there are particularly strong indications (e.g.
from the emissions) that it should change under the new values of the parameters ® obtained
in the M step. Analogously, limj\@_)o ’y(t)

; — —00, i.e. units which were likely to be off will more

likely remain off. Finally, note that the contribution (16) to the field of hgt) is signiﬁcant only in
deterministic limits of 5\1@ (in practice, it is negligible for 5\2@ € [0.05,0.95], with 'y (1 /2) =0).

3.4 Constrained parametrization

It is clear that if the model has n binary hidden variables it is capable of representing 2" states
for each time slice. Note, however, that the full transition matrix comprises n? weights, which
may lead to prohibitively large amounts of training data and high computational complexity
of learning. In section 5 we demonstrate ways of imposing neighborhood sparsity constraints
on the weight transition and emission matrices so that the number of adaptive parameters is
significantly decreased. We also show that while the exact learning and inference in general
remain computationally intractable, the Gaussian field approximation remains accurate and
leads to good classification and reconstruction results.

4 Inference

A simple way to perform inference (estimation of the posterior probability p({h}|{v})) is by
clamping the observed sequence {v} on the visible variables, fixing the model parameters ® and
performing the E-step of the variational EM algorithm described in section 3. This results in a set
of mean-field parameters {)\,(f)}, which can be used for obtaining a hidden space representation
of the sequence.

Alternatively, we can draw samples from p({h}|{v}) by using Gibbs sampling. We can make
it more efficient by utilizing the red-black scheme, where we first condition on the odd layers of
a high-dimensional chain and sample nodes in the even layers in parallel, and then flip the con-
ditioning (all the visible variables are assumed to stay fixed). Sampling from p(x ]x (t=1) x(t+1))
cannot be performed directly, since p(x®[xt=D xt+1)) o p(x® |xE=D)p(xEHD|x®)) cannot be
easily normalized for large-scale models. In general we may need to use another Gibbs sampler
for hidden components of x® | which results in

0 p(a® = 1D KD O\ 0

x;
1
T (-1) (R D] o (x§-t+ ) [WiTX — WjiT; + wji])
o Qb +w; x + E log
(t+1) T y
j=1 o (:cj [w Wj;T; wﬂ])

X
o M
1
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for continuous HHMs (see Appendix A.2).

Expression (17) is exactly equivalent to the E-step update (13), (14) where the current
estimates of the mean field parameters {A} are used instead of the current values of the hidden
variables {h}, and the intractable Gaussian averages of (14) are approximated at the mean
values of the arguments.

5 Experimental results

Here we briefly describe applications of HHMs to reconstruction and classification of incomplete
non-stationary discrete temporal sequences. We also present a toy problem of learning a bi-
nary video sequence (transformation of a digit) from incomplete noisy data and inference of its
missing fragments. Finally, we apply constrained continuous-data HHMs to two toy problems
of video halftoning (constrained compression) and 3D shape reconstruction, which cannot be
easily addressed by other known probabilistic graphical models.

5.1 Reconstruction of discrete sequences

One way to validate correctness of the HHM learning rule is by performing deterministic recon-
struction of learned temporal sequences from noiseless initializations at the starting patterns.
For discrete sequences we expect such reconstructions to be good if there are sufficiently many
hidden variables to capture long temporal dependencies, i.e. if the total number of nodes is of
the same order as s x T' (the number of training sequences and their length respectively).
Figures 2 (a), (b) illustrate reconstruction of a 7-d discrete time series of length 15, per-
formed by a network with 7 visible and 3 hidden units'. The initial training pattern v(?) was set
at uniform random, and each subsequent observation vector v(t1) was generated from v(*) by
flipping each bit with probability 0.2 [Figure 2 (a)]. The model parameters ® were learned by
the EM algorithm (section 3). The reconstructed sequence was generated from the initial state
x©) sampled from the learned prior p(x(o)), by deterministically setting subsequent variables

$Z(t+1) according to sgn(a(;vgtﬂ)(w?x%—bi)) —1/2) [Figure 2 (b)]. Note that without hidden vari-
ables deterministic reconstruction of the visible training sequence would be impossible. Indeed,
patterns v(7) and v(® are identical, and it is the learned activation of the hidden variables h(7)
and h(® which distinguishes mapping x(7) — x® from x(® — x(9).

Figures 2 (c), (d) show a variant of the previous experiment for a discrete 10-d time series
with irregularly missing data. It is pleasing that the model perfectly reproduces the visible
patterns, although nothing in the framework explicitly suggests perfect reconstruction of the
hidden variables from noisy initialization at the starting visible state.

Note that in order to deterministically reconstruct a binary sequence in HHMs it is sufficient
to ensure that each data point vl-(t) maps into vgtﬂ) lying on the correct side of the hyperplane
(w;; b;). Reconstruction of continuous temporally correlated patterns is in general more complex.

5.2 Classification of discrete sequences

In large scale HHMs computation of the likelihood of a sequence is intractable. One possible
discriminative criterion for classification of a given new sequence v* is the lower bound on the
likelihood ®(v*; ¢*, ®) given by expression (2). Once HHM parameters ® are optimized for the
training set {v}, the distribution ¢* may be evaluated by fixing ®, clamping v* on the visible
variables, and performing just the E-step of the algorithm.

'From now on we imply multiplication of the network size by the sequence length 7.
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Figure 2: Training and reconstructed sequences with regular (a), (b) and irregular (c), (d)
observations. Black and white squares correspond to -1 and +1 for the visible variables; dark
gray and light gray — to -1 and +1 for the hidden variables.
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Figure 3: Temporal sequence classification in HHMs. The circles and crosses show the true class
labels of the testing sequences; the axis define approximations of the bounds on their likelihoods
for My and My. Discrete data: (a): testing data is constructed by flipping each bit of each
training sequence with probability 0.2; n = 10, m = 10,7 = 15,s = 5. (b): testing data is drawn
from the data-generating processes; n = 10,m = 10,T = 15, s = 40.

To demonstrate HHM classification we generated discrete sequences from two noisy non-
stationary 15-d Markov processes C1,Cs with the conditionals (3) parametrized by the weights

W € R. At each time instance the weights were modified according to W) = w®) 4 3 (rgt)A—k

rét)B(t)), where 71, ry are small random terms, B®, A are matrices of random elements and 3
is a small scaling factor. Moreover, at a certain time instance the weights were transformed by
a rigid rotation factor. During training we fitted two models M1, My to 10-dimensional noisy
subsets of the data, generated by C; and Cs. Each of the models had n = 10 visible and m = 10
hidden units and was trained on temporal sequences of length T' = 15.

Figure 3 (a) shows typical approximations of the lower bounds on the likelihoods of 100
testing sequences, generated from the training data by perturbing each bit with probability 0.2.
The training set consisted of s = 5 sequences for each of the classes. Figure 3 (b) demonstrates
a similar plot for the case when s = 40, and the testing data was generated by the processes
C; and Cy. We see that the true labels of the testing data form two reasonably well-separated
clusters in the space of approximate likelihoods for models M7 and My . This supports the idea
that HHMs can be used for classification of non-stationary temporal sequences and indicates
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Figure 4: Learning and inference of incomplete temporally correlated patterns. Top: the true
underlying sequence; Middle: the sequence clamped on the visible variables (black/white) with
the inferred values of the missing variables (dark/light gray); Bottom: the sequence reconstructed
from a complete noisy initialization by forward sampling.

that classification is robust both to external random perturbations of the training data and to
noise in the generating processes. The experiment of Figure 3 (b) was performed for models
with different dimensions m of the hidden space and resulted in approximate probabilities of
misclassification 0 = 0.11 for m =1, § ~ 0.06 for m = 5, and § ~ 0.04 for m = 10 (all results
were averaged over a large number of independent runs for the same generating processes). For
significantly larger hidden spaces classification was generally worse, what could be explained by
overfitting.

We have also performed similar experiments for continuous temporal sequences and found
qualitatively similar influence of m on performance of HHM classifiers. These results suggest that
HHMSs with higher-dimensional hidden spaces are able to capture regimes of non-stationarity
and long temporal dependencies, and confirm that the exploited approximations may indeed be
sufficiently accurate.

5.3 Learning incomplete discrete sequences

In the previous experiments we have shown that by expanding the HHM hidden space we can
increase the length of sequences which can be successfully reconstructed from noisy initializations
(by increasing the number of patterns which can be disambiguated), or improve time series
classification. In all those cases there was no apparent interpretation of the hidden space or
motivation for the choice of the parameterization (3), and in principle other dynamic belief
networks could yield comparable performance. In this and the following sections we look at
some problems for which a distributed binary hidden state representation arises naturally, and
for which HHMs can be models of choice.

In many practical tasks it may often be the case that the data is incomplete, and some
variables observed at one time instance are missing at the following time step (e.g. such data
could arise as a result of temporally unavailable medical examinations, partial occlusion of
images, etc.). Here we demonstrate that HHMs can be easily applied to learning incomplete
temporally correlated patterns x(t) = [h(t)v(t)], where the hidden variables h(®) may be interpreted
as a vector of missing observations at time ¢.

Figure (4) shows an example of applying an HHM to reconstruction of a temporal sequence
from its incomplete noisy subsamples. The underlying data contained 10 8 x 8 binary images
with an average Hamming distance of 7 bits between the subsequent patterns (see Figure 4
top). The model was trained on 4 sequences generated from the complete series by randomly
omitting approximately 15% and permuting approximately 5% of each subsequent pattern. At



the reconstruction stage the visible part of the sequence with different, systematically missing
observations, was clamped on the HHM’s visible units, and the missing observations were inferred
variationally. As we see from Figure 4 middle, the resulting reconstruction is reasonably accurate.

We have also tried to retrieve the underlying sequence by deterministic forward sampling

(Figure 4 bottom) as described in section (5.1). The model was initialized at the completely
(t+1)
i

set according to sgn(a(:vgtﬂ)(w;fx(t) + b;)) — 1/2) and perturbed with additional 10% noise.
We see that the underlying sequence can still be retrieved relatively accurately, though further
experiments show that this reconstruction proves to be sensitive to the noise of the training

sequences.

visible starting pattern x(©) perturbed with 10% noise. Each subsequent pattern z was

5.4 Constrained HHMs for sequence halftoning

As we noted in section 3.4, learning all (m+n) x (m+n) weights could often be prohibitive. One
way to circumvent this problem is to impose sparsity constraints on the weight matrix, so that
the transitions and emissions are defined by a small subset of the full weight matrix. In addition
to decreasing computational effort and reducing the required amount of training data, carefully
imposed constraints may yield a clear topological interpretation of the hidden variables.

Consider, for example, a special case of a generalized Markov chain with the joint distribution
given by

T-1

p({h}, {v}) = p(®) TT p(h“ VR )p(v D [r®), (18)
t=0

Graphically, the model corresponds to an HMM with a high-dimensional distributed hidden
space representation. For some types of data (e.g. video sequences) it may be natural to assume
that points which are spatially close to each other belong to the same object, and their colors
are marginally dependent (assuming the objects are reasonably smoothly colored). On the
other hand, colors of spatially distant points are likely to be marginally independent. From a
single time slice of the model (18) it is clear that visible variables are marginally dependent if
they share a common ancestor. By arranging parents sharing common children to be spatially
close to each other in the hidden space, we can model smoothness of images by imposing local
neighborhood constraints on the emission weights (so that each hidden parent is connected only
to a small spacial neighborhood in the visible space, and each visible node is a direct offspring
of a spacial neighborhood in the hidden space). Moreover, from the graphical structure it is
clear that smooth transitions in the hidden space imply smoothness of dynamical changes in
observations and vice versa, yielding local neighborhood constraints on the transition weights.
In the extreme case of factorial transitions, marginal dependencies of the visible variables are
time-invariant.

In the following experiments we consider the problem of sequence halftoning, performed by an
HHM with local neighborhood constraints on the transition and emission weights. The problem
is well known in industrial image processing and involves reduction of a stream of color images
to a recognizable monochrome representation. A Hidden Hopfield model with 15 x 15 hidden
states was trained on a sequence of 8 10 x 10 frames (Figure 5 top). The transition weights
were constrained in such a way that each hidden variable hgt) at time ¢ > 1 was linked to
hl(t_l) and 8 of its closest neighbors [i.e. to all the nodes within a 3 x 3 spacial neighborhood].
Analogously, each hidden variable was connected to a 3 x 3 spacial neighborhood in the visible
space. BEach weight w;; was initialized as a “Mexican hat”-type radial basis function of the

10



Figure 5: Halftoning of a continuous sequence. Top: true sequence; Middle: hidden space
representation; Bottom: reconstructed visible sequence. Learning and inference were performed
with the inertia factor.

topological distance between the linked nodes, defined within the range (-0.05, 0.1). The biases
were initialized to -1, and both the biases and non-zero weights were fine-tuned by training. The
variance of the Gaussian noise was set as 02 = 1.

Figure 5 middle shows a sample from the posterior distribution inferred variationally by
clamping the continuous data on the visible variables and performing the E-step. Notice that
color balls in the visible space correspond to clusters of activation in the hidden space, and
density of each cluster roughly corresponds to intensity of the balls. The visible sequence emitted
by the hidden variables is shown on Figure 5 bottom.

It is worth mentioning that if the visible sequence is fully observed (like in the considered
example), temporal contribution to the posterior (17) is likely to be overweighted by the con-
tribution from the continuous observations. However, if a continuous pattern v(®) is incomplete
then temporal information is important, and knowledge of the previous and future states h(t=1)
h(t+1) may be essential for accurate inference of h(*).

We believe that the experiment demonstrates potential applicability of constrained HHMs
to inferring and learning temporal topographic mappings. Note that unlike constrained HMMs
(Roweis, 2000) or temporal GTMs (Bishop et al., 1997), HHMs benefit from the distributed
hidden space representation, high dimensionality of the hidden space, and simple definition of
the transition probabilities. At this stage it remains unclear which conditions must be satisfied
for HHM visualization to be good in general. We are currently investigating this and related
issues.

5.5 Constrained HHMs for shape reconstruction

In the last experiment we demonstrate application of a constrained HHM to reconstruction of a
3D occupancy graph from a sequence of weighted 1D projections.

Imagine an object moving with uniform speed orthogonally to the scanning plane spanned
by two mutually perpendicular linear scanners. The task is to infer the original shape of the
object from a temporal sequence of scanner measurements. In the simplest case a real-life object
may be described by its occupancy graph defined by a number of filled or empty discrete cells,
and the scanner measurements can be given by the number of the filled cells along each line
slice. The depth of each cell is given by the speed per unit time, divided by the frequency of the
scans.

11
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Figure 6: 3D shape reconstruction. The smaller axes define the scanning plane. The disk radii
are set proportional to square roots of the posterior probabilities. Top: the true shape; Middle:
the reconstructed shape (no inertia factor); Bottom: the reconstructed shape with the inertia
factor.

Figure 6 illustrates application of a constrained HHM (18) with 12x9 hidden and 1249 visible
variables to shape reconstruction from 13 consecutive frames. The hidden variables correspond
to the binary occupancy cells, while the visible variables represent noisy scanner measurements
(62 = 1). As in section 5.4, the transition weights were set according to the local neighborhood
constraints (justified by the presumed smoothness of scanned objects) and fixed at 0.2 (or at

0 outside the region). The emission weights connecting vft) with h® were set to 0.6 (or 0) to
perform summations only along the i*® row (i = 1...12) or the i** column (i = 13...21) of the
discretized slice of the scanned space at time ¢. The biases of the transition probabilities were
set to 0.

From Figure 6 bottom we see that impervious to the fact that the scanning data is noisy and
the inference task is severely under-defined (more than 100 hidden variables with only 21 visible
data points), the constrained HHM with the inertia factor can reasonably accurately reconstruct
the underlying shape — a hunting knife (Figure 6 top). Note that since the true hidden variables
giving rise to the observations are intrinsically deterministic, exclusion of the inertia factor (15)
leads to much vaguer posteriors (Figure 6 middle). The performance could possibly be improved
by fine-tuning the biases and non-zero weights, analogously to what is described in section 5.4.
The results suggest that constrained versions of generalized Markov chains (e.g. HHMs with
local neighborhood constraints on the weights, factorial Hidden Hopfield Models — HHMs with
islands of transitional discontinuity, etc.), while still intractable, may be practical for learning
or inferring inherently smooth or constrained data.

It is important to note that in spite of neighborhood or sparsity constraints the resulting
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HHMs very quickly become intractable. For the 3 x 3 topological neighborhoods, the field con-
tributions could be calculated exactly (though, as we see, the Gaussian field approximation also
yields accurate predictions). However, the complexity of exact computations grows exponen-
tially with the size of the neighborhood, and for the next closest 5 x 5 square region (22° possible
parental states) an approximation should be used for most practical purposes. This suggests
possible combinations of exact and approximate methods in sparse HHMs.

6 Summary

Learning temporal sequences with discrete hidden units is typically achieved using only low
dimensional hidden spaces due to the exponential increase in learning complexity with the
hidden unit dimension. Motivated by the observation that mean field methods work well in the
counter-intuitive limit of a large, densely connected graph with conditional probability tables
dependent on a linear combination of parental states, we formulated the Hidden Hopfield Model
for which the hidden unit dynamics is specified precisely by a form for which mean field theories
may be accurate in large scale systems. For discrete or continuous observations, we derived
fast EM-like algorithms exploiting mean and Gaussian field approximations, and demonstrated
successful applications to classification and reconstruction of non-stationary and incomplete
correlated temporal sequences. We have also discussed learning and inference applications of the
constrained HHMs, which may be useful for learning smooth data. The models can be modified
to allow other types of emission probabilities p(vZ(Hl)\v(t), h(t)), e.g. mixtures of Gaussians, or
extended to handling mixed discrete and continuous observations.

A Appendix: Derivations

Here we briefly outline derivation of the variational EM algorithm and the block Gibbs sampling
scheme discussed in section 3. The derivations are quite straight-forward; we include them here
for completeness.

A.1 Variational EM algorithm

Let l’z(-t) be the it" variable of an HHM-induced chain at time t. For each such variable we

introduce an auxiliary parameter )\Z(-t), such that )\Et) def q(acgt) =1) €]0,1] if a:z(t) is hidden, and
A E (@ 1) /2 (19)

)

is equivalent to the E-step of the variational EM algorithm. Otherwise, A

if x Z(t) must be learned from data, which
®)
i

deterministic with )\Et) € {0, 1} for discrete and )\Z(-t) € R for continuous observations.

is observable?. If x; is hidden the parameter A

is necessarily

A.1.1 Discrete observations

It is intuitively clear that the parameters )\Et) corresponding to the visible variables need to

remain fixed, which is equivalent to clamping training sequences on the visible nodes. There are
no other principle differences between treating binary hidden and binary visible variables in the
considered framework.

2To simplify the notation we let x” %' [h7v7] and q({x}) % q({h}|{v}).
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E-step:

The E-step involves optimization of the lower bound on the likelihood w.r.t. the parameters
of the variational distribution ¢({h}).

From (1) and (2) it is clear that

I{h}I T-1
log p({v}h D v?) >N " H(gi(h:)) + Y (log p(vD RV w0y ) ey (20)
= t=0

where H(g;(h;)) is the entropy of the mean field distribution of g;(h;). Differentiation w.r.t.
q(h,(:)) leads to

a(hi’) o< exp ¢ (log p(hi) X)) gqeny + D7 Qogp(ofTIXD)) o0,
i€V (t+1)

+ Z <10gp(h ‘X >q(h£ﬁ+1),h(t)\h,(:)) (21)
meH(t+1)

for each non-starting and non-ending hidden node h,(:), where V1D and H®HD are sets of nodes
visible and hidden at ¢t + 1. From the parameterization given by (3) it is easily derived that

/\l(j) def Q(hi(f) =1) = o(Iy), where

B =wl A~ b+ > [oga(el ) — (ogo(of V) )|
eV (t+1)

+ D [<log{U(Cfnk)A’(‘t+1)U(—wak)lA%+l)}>p<ct)

meH (#+1) mk
= (e {0 oY) e
ik
and the fields ¢!, and d! , are given by
o= whx® 4 bm\h(t) =1, (23)
doy = whx® b, |l = -1, (24)

Since cfﬂk and dfﬂk are given by linear combinations of random variables, the Central Limit
Theorem implies approximate Gaussianity of p(c! ) and p(dl ,) (Barber and Sollich, 2000)
with the means u¢ , (t), ul , (t) trivially given by

ngk(t) = Wg;z(z)‘(t) - 1) - 2wmk>\](:) + bmy (25)
o) = pdi(t) + 2w, (26)
and the variances
2
shi(t) = sSut) = < S (2 — (7)) >
ik
= > wniwn ({2 - @) @)

i,j#£k
= 4 w1 - A, (27)

itk
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Here we have used the mean field approximation (z;x;) = (x;)(z;) and the fact that <xj2) =1.
Thus, the field update (22) may be re-written as

|x(®)]
(t+1) (t+1)
K =Wl A = 1) b+ 3 (log {atel o) )

i=1 ik
X9
(t+1) (t+1)
_ 1 db i —dt )1 28
> (log {otdi)™ o=yt ) L
reducing to
S T
M) b+ wlACD —1) 4 37 log THHTL gy (1 - AT )] (29)
pot o (pg.(t))

when the integrals are approximated at the means.
M-step:

The M-step optimizes the lower bound on the likelihood w.r.t. the parameters W and b of
the conditional distributions (3).

Let w;; be the weight connecting :rz(tﬂ) and xg-t). From (20) and (3) we get

0P 5} g i (D),
ow;;j - ow;; Z Z <log{a< Y+ b )}> 2T (@)
t=0 k=1
T—1
= ;<(1_0<x§t+1)[ ()+b )) £t+1)xt >q )
T—1
— (®) (t+1) (t)
- > [(mj ~ DAY = (ol (w]'x >>q X(t)} (30)
Once again applying the Central Limit Theorem, we obtain
0D o= [ (1) o (1) &, 4 ) ¢
g = 2 AN -0 = PPt + O - D@ 0]} @D

with the moments of NV (t) and /\/Z‘;(t) given by (25) — (27). Analogously,

o (t+D) 1, T (D (t-+1)
a_bi = 2 <(1 — U(Cﬂi [ +b; ])) >q(x§t+1) «()
T—1 T—1
= |:)\’Et+1) — (J(WZTX(t) + bi))q(x(t)):| ~ |:)\Et+1) _ <O-(e§)>j\/'ie(t)i| (32)
t=0 t=0

where Nf(t) is a Gaussian with the mean and the variance

pit) = wi @AY — 1)+, (33)
(0]
sé(t) = 4 Z AP (1= AWy (34)

15



A.1.2 Continuous observations

The derivation is fully analogous to the one described in Appendix A.1.1, with the slight differ-
ences due to parameterization of the conditionals p(vgtﬂ) Ix®) ~ N (wI'x®) 52).
E-step:

From (21) we obtain )\g) = o(l) with

10 = LS () < Wl = 12— 00 — i = —1)?)

2 i
2s eV (t+1) at®)
~ (t) 2 1
=5 =5 Y wa [W?(?)\(t)—1)—wik(2)\](f)—1)—’l)§t+ )}, (35)
i€V (t+1)
where
~ (¢ _ (t41) (1)
W =wieal T -y v Y [<1og{a<c:nm o(—ch)' ™ })
me H(t+1) NG ®

(t+1) D)
- (e {otau o) T e
ij

As before, ¢!, and d? , are given by (23) and (24), the moments of Nf(t) and J\/;C]l(t) — by (25) -
(27), and it is assumed that only those parameters Ay which correspond to the hidden variables
need to be adapted.
M-step:

By analogy with the previous case, optimization of the upper bound w.r.t. the model pa-
rameters leads to

0P 1 0 T (t+1)2
aww = _ﬁaww Z Z <(Wl X—=1 ) >q(x(t))

+ 0 : Z <10g {0 (a:,(fﬂ)[wfx(t) + bk]> }>q

(37)

@ xw)

There are four possible simplifications of this expression, depending on observability of nodes

:cgtﬂ) and mgt) connected by the weight w;;, so that

ie VD e HO =

T-1
P L
. 2 ((wfx — Uz(t+1))x§t)>q(x(”)
iJ t=0
. |x(®)]
= 3 lvl‘””(zxj —1) = > winla 2} o)
k=1
= (@ 1) [l W A0 )] 44w (00— A0, (%)
iV jevd =
0P 1 ) [+ T oy ()
ow; 82 (”j [Ui —w; (2A% — 1)D ’ o



ie HH) jev®) =

o®
811)@']'

=" [/\Etﬂ) — (o(w]'x + b)) (x)} ol? [/\(t+1) <U(€§)>Me(t)i| : (40)

where the moments of e! ~ N¢(t) are given by (33) — (34). Finally, in the last case when
i e HHD j ¢ H® the gradients 0®/0w;; are given by (31). Note that all of the above
gradients can be combined to give (6), and 9P /0b; is expressed as (32).

A.2 Gibbs sampling

Here we derive the conditional distributions used in the sampling scheme outlined in section 4.
Let X and X be the odd layers of a 3- layer fully—connected chain X — X — X. We are
interested in sampling the even layer X from p(X|X, X). Note that p(X, X, X) = p(X)p(X|X)p(X|X),

i.e.
POXIX.X) o X0 O) = TT X KOpRX X0 (41)

Here X; is a hidden variable in layer X, and X\? & X\X;. Note that in general p(X|X\?, X;) is

not factorized over X;s. This complicates normalization of (41) and motivates usage of another
sampler for X’s components

J

where we have used (41) and the fact that p(X;|X\1, X) = p(X;|X).
For the HHMs, the conditional distributions of the hidden Variables p( (Hl)\x(t)) are given

by (3), and the conditional distributions of the visible variables p( |x )) ~ N(w!'x® | s2).
From (42) it is then clear that

p(hl(t) _ il\x(tfl) (t+1 t)\h(t))

(D)
oW XY 4 o)) T o WO — wjal” + wyi))
j=1
v+ D] 1
T exo {5l = b wnial” £ wi?}. (13)
k=1

which leads to

o pal? = 1D X O\ ) =
D] G (D Wy iTi + wii)
o b+ WX £ Y log (J [ j j ]) (44)
¢ (t+1) 1., T .
= o (mj [wlix — wjiz; wﬂ)])

17



for discrete and

2O~ p® :1|x(t*1),x<t+1),x(t)\a;gt)):

K3 (2

[h(t+1)] o <x§t+1) [W;fx — WjTi + wji)])
g bl =+ W,LTX(t_l) + Z IOg (t+1)
=1 o (a:j [WiTX — WjiZq — wji)])
9 D]
(t+1) T (t)
+ = kZ:l Wi (vk — Wy, x4 wih; ) (45)

for continuous data models. Here we have used simple identities a/(a + b) = o(log(a/b)) and

log(o(a)/o(—a)) = a which hold Va,b > 0.
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