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T
ime-series analysis is cen-

tral to many problems in 
signal processing, including 
acoustics, image processing, 
vision, tracking, informa-

tion retrieval, and finance, to name a 
few [1], [2]. Because of the wide base of 
application areas, having a common 
description of the models is useful in 
trans  ferring ideas between the various 
communities. Graphical models provide 
a compact way to represent such models 
and thereby rapidly transfer ideas. We 
will discuss briefly how classical time-
series models such as Kalman filters and hidden Markov models 
(HMMs) can be represented as graphical models and critically 
how this representation differs from other common graphical 
representations such as state-transition and block diagrams. 
We will use this framework to show how one may easily envis-
age novel models and gain insight into their computational 
implementation.

TIME-SERIES AND GRAPHICAL MODELS
Classically, time-series analysis falls into two camps in which 
the central assumption is that the process generating the time 
series is continuous or alternatively discrete. In the continuous 
case, classical textbook methods such as Kalman filters depend 

heavily on linear dynamical systems 
(LDSs) for which the underlying theory 
is well understood [3]. In the discrete 
case, the well-known HMM has enjoyed 
considerable success [4]. However, 
recent developments in engineering, sta-
tistics, and machine learning consider 
underlying processes that can be both 
discrete and continuous. Such models 
are natural in many applications in con-
trol, tracking, and signal processing 
where one may wish to discover step-
changes in an underlying continuous 
dynamical process, such as might occur 

for example with a fault. Working with these increasingly 
sophisticated models requires specialized treatments and often 
approximations [5]. There are, however, important special cases, 
such as the reset models, where the computational complexity 
of inference is  relatively modest [6]. Here we take advantage 
of the graphical models framework to describe some of the 
basic time-series models, their extensions, and applications in 
signal processing.

DEVELOPING A GRAPHICAL REPRESENTATION
A probabilistic model of a time series y1:T5 5y1, c, yT6 is a 
specification of a joint distribution p 1y1:T 2 . In time series, it is nat-
ural to consider models consistent with the causal nature of time. 
To achieve this, we may use Bayes’ rule of the probability of A con-
ditioned on knowing B, p 1A|B 2 5 p 1A, B 2 /p 1B 2 , and write 

[Gaining insight into
their computational implementation]
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 p 1 y1:T 2 5 p 1 yT | y1:T21 2p 1 y1:T212 . (1)

By recursively applying Bayes’ rule to the last factor, any distribu-
tion can be written in a causal form

 p 1 y1:T 2 5q
T

t51
p 1 yt | y1:t212  (2)

with the convention that ya :b5 ya if b # a. This has a natural 
causal interpretation in which for each factor the present depends 
only on the past. The distribution can be represented by a belief 
network in a distribution over N variables

 p 1 y1, c, yN 2 5q
N

i51
p 1yi | pa 1 yi22 , (3)

where pa 1yi 2  denotes the set of parental variables for variable 
yi. We depict a belief network using a graph in which a node 
represents a variable yi and the variables that point to yi 
are the parents of this variable. Each node in the belief net-
work then corresponds to a factor in the joint distribution over 
all variables; see Figure 1. By Bayes’ recursive construction, 
the graph must be acyclic. The most general form of belief 
network is therefore the cascade graph in which the parents of 
a variable are all the previous variables in the ordering. Any 
valid belief network can be obtained by removing edges in the 
cascade graph, with each removal corresponding to a condi-
tional independence assumption. The first-order Markov 
model can be represented in this form in which i indexes time 
and pa 1yi 2 5 yi21. A second-order Markov model has 
pa 1  yi 2 5 5  

yi21, yi226. As an example, the classical Lth-order 

scalar auto-regressive (AR) model yt5 gL
l51 

al yt2l1 Pt for 
c o e f f i c i e n t s  al,  l5 1, c, L  a n d  G a u s s i a n  n o i s e 
Pt , N 1Pt | 0, s2 2  corresponds to the transition

 p 1 yt|  yt2L: t21 2 5Nayt `  a
L

l51
al yt2l, s

2b
with a belief network representation in which the parent set of 
each variable contains the previous L observations. When the 
parameters of the model are also unknown, they can be incorpo-
rated into the graphical description as well; see “Parameter 
Learning.” Graphs have a long history in the description of 

[FIG1] Belief network representations of time-series models: 
(a) Cascade graph. (b) First-order Markov model 
p ( y4 | y3) p ( y3 | y2 

) p ( y2 | y1) p ( y1). (c) Second-order Markov model 
p ( y4 | y3, y2) p ( y3 | y2, y1) p ( y2 | y1) p ( y1).

(a)

(b)

(c)
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y1 y2 y3 y4

y1 y2 y3 y4

PARAMETER LEARNING 
So far we’ve assumed that any parameters u of a model 
p 1y1:T |u2 are known. From a Bayesian perspective, a parameter 
is treated as another random variable, 

 p 1 y1:T, u2 5 p 1 y1:T |u2p 1u2.
All questions relating to parameter estimation are computed 
from the parameter posterior density 

 p 1u |y1:T 2 5 p 1 y1:T | u2p 1u2
p 1 y1:T 2 .

For example, for a first-order Markov model we have 

 p 1y1:T, u2 5 p 1u2q
t

p 1 yt |yt21, u2,
whose belief network is given in Figure S1(a). Calculating 
the posterior probability of a parameter p 1u|y1:T 2  then 
becomes a problem in marginal inference in a graphical 
model. For a continuum of parameters this can present diffi-
culties. Finding, for example, the most likely single set of 
parameters arg maxu p 1u|y1:T 2  may not be a computationally 
straightforward problem, for which one may resort to 
numerical approximations such as Monte Carlo or determin-
istic techniques. While parameter estimation therefore fits 
neatly within the graphical models framework, we leave the 
numerical details of how this can be achieved to one side 

and concentrate here on inference, assuming that parame-
ters are known.

x1 x2 x3 x4

y1 y2 y3 y4

y1 y2 y3 y4

θ

θ

[FIGS1] Dealing with parameters. (a) First-order Markov model 
with a parameter u  tied across the separate transition. (b) State-
space model with a tied parameter on the latent transitions.
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 time-series models and it’s 
important to stress the difference 
between a probabilistic graphical 
model and alternative graph rep-
resentations such as state transi-
tion diagrams or block diagrams 
that use an entirely different set 
of semantic rules.

More generally, probabilistic graphical models are compact 
depictions of independence and factorization assumptions of a 
probability density. Besides the directed acyclic graphs, there 
exist also other formalisms. Two well-known formalisms are 
undirected models [7] and factor graphs [8]. To keep this sur-
vey self-contained, we focus only on the case of directed 
graphical models.

LATENT MARKOV MODELS
A more general framework for modeling time-series data uses 
a latent, unobserved variable xt, from which the observations 

yt are generated [9]. For exam-
ple, in tracking, xt might rep-
resent the position of an object 
that is assumed to move 
according a transition dynam-
ics p 1xt | xt212 . However, we 
cannot directly observe xt, but 
some noisy function of it 

p 1 yt | xt 2—for example a noisy radar reading yt of the approxi-
mate distance to the object. We would like to use the observa-
tions y1, c, yt to track the likely position xt of the object. 
Due to their development in different research communities, 
latent Markov models are variously called state-space models 
or HMMs. We use the term HMM to refer to a latent Markov 
model with discrete latent states. Both the classical Kalman 
filter and the HMMs have the same belief network 
 representation, (see Figure 2), differing only in the domain of 
the variables and the specifics of the transition and observa-
tion model.

DISCRETE LATENT STATE MARKOV MODELS
HMMs are models in which the latent variables xt are discrete [4]. 
The observations yt can be discrete or continuous. Since the latent 
xt are discrete, HMMs are able to model discrete changes in the 
underlying state. To emphasize that the xt are discrete, graphically, 
we use a square node. For example, in a switching AR (SAR) 
model, a set of S different AR models is available, and 
xt [ 51, c, S6 may be used to indicate which of the AR models 
is to be used at time t; see Figure 3. In Figure 4, a segment of a 
speech signal is shown; each of the ten available AR models is 
responsible for modeling the dynamics of a basic subunit of speech 
[10], [11]. The interest is to determine when each subunit is most 
likely to be active. This corresponds to the computation of the 
most-likely path x1:T given the observed signal p 1x1:T | y1:T 2 . 
Typically we use a lower-case version of a variable to denote instan-
tiation. While models such as the SAR model contain both discrete 
and continuous variables, fundamentally, the underlying latent 
process is discrete.

CONTINUOUS STATE LATENT 
MARKOV MODELS
Dealing with continuous variable distributions is generally 
awkward and the set of models that are analytically tractable is 
limited. Within this tractable class, the LDS plays a special 
role, being essentially the continuous analog of the discrete-
state HMM. An LDS has the following form [2], [3]:

 xt5 Axt211 Pt,       yt5 Cxt1nt,

where the noise terms Pt and nt are Gaussian distributed. This 
is more commonly referred to as a Kalman filter in the signal 
processing literature. The traditional focus is the use of this 
linear system to compute quantities of interest, in particular 
the expected mean of xt given past observations. This termi-
nology unfortunately confuses the distinction between a model 

x1 x2 x3 x4

y1 y2 y3 y4

[FIG3] A switching (second order) AR model. Here the xt 
indicates which of a set of available AR models is active at time t. 
In terms of inference, conditioned on y1:T 

 (this is an HMM).

[FIG4] A spoken digit of the word “four” modeled by a SAR 
model. The SAR model was trained on many example sequences 
using S 5 10 states with a left-to-right transition matrix. Given 
the particular audio sequence shown, the most likely set of 
states x1:T are computed. The colors indicate the states used at 
each time. The states found correspond to basic sound 
component models that when used in sequence generate 
realistic sounding waveforms.

y1 y2 y3 y4

x1 x2 x3 x4

[FIG2] A first-order state-space model with “hidden” variables. 
For discrete hidden variables xt [ 51, c, H6, t 5 1:T the model 
is termed an HMM.

PROBABILISTIC GRAPHICAL MODELS 
ARE COMPACT DEPICTIONS OF 

INDEPENDENCE AND FACTORIZATION 
ASSUMPTIONS OF A PROBABILITY 

DENSITY.
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and the use of it to infer a quantity of interest. As such most 
students are familiar with the Kalman filter from an 
 algorithmic perspective, unaware that the algorithm is an 
instance of the generic filtering algorithm for all graphs con-
sistent with the belief network Figure 2. As a probabilistic 
model, the LDS corresponds to 

 p 1xt | xt212 5N1xt | Axt21, Q2 ,      p 1 yt | xt 2 5N 1 yt | Cxt, R2 .
The model is completed by choosing a suitable prior: 
p 1x1 2 5N 1x1 | m1, P1 2 . Furthermore, as we describe below, infer-
ence in this model is computationally straightforward. The graphi-
cal models perspective emphasizes the application of the 
independence assumptions of the model to derive generic recur-
sions; these recursions may be then implemented in specific 
numerical instances of distributions consistent with the graphical 
model representation.

INFERENCE IN LATENT MARKOV MODELS
Latent Markov models have widespread application in a variety 
of tracking domains, for which one often wishes to infer the 
distribution of the latent state xt based on noisy observations. 
These will be derived for general latent variables xt using the 
notation edX that either integrates or sums over the domain 
of X. The important conclusion we shall reach is that the same 
procedure applies in all models consistent with the belief net-
work Figure 2, irrespective of the numerical form of the tran-
sition and observation distributions. As we also discuss, while 
the general procedure produces exact results, it can only be 
numerically implemented in a restricted class of transition and 
observation distributions, the two most common being i) dis-
crete latent variables (HMM) and ii) linear Gaussian transition 
and observations (LDS), giving rise to the classical Kalman fil-
ter. We sketch below the generic filtering and smoothing 
recursions for the class of all latent Markov models.

FILTERING: COMPUTING p(xt | y1:t  )
Filtering is the estimation of the current state given the 
observations so far. It is useful to first compute the joint 
marginal p 1xt, y1:t 2  since the likelihood of the sequence can 
be obtained from this expression. A recursion for p 1xt, y1:t 2  is 
obtained by considering the conditional independence 
assumptions of the model

 p 1xt, y1:t2 5 3dxt21p 1 yt | xt2p 1xt | xt212p 1xt21, y1:t212 . (4)

Hence, if we define a 1xt 2 5 p 1xt, y1:t 2  with a 1x12 5 p 1y1 | x1 2p 1x12  
we have the so-called a-recursion

 a 1xt 2 5 p 1 yt | xt 2 3dxt21p 1xt | xt21 2a 1xt21 2 , t . 1. (5)

This recursion has the interpretation that the filtered distribution 
a 1xt21 2  is propagated forwards by the dynamics for one time step 

to reveal a new “prior” distribution at time t. Normalization gives 
the filtered posterior p 1xt | y1:t2 ~ a 1xt 2 . 
PARALLEL (FORWARD-BACKWARD) 
SMOOTHER p(xt | y1:t  )
In parallel smoothing, one separates the smoothed posterior into 
contributions from the past and future 

 p 1xt, y1:T 2 5 p 1xt, y1:t, yt11:T 2 5 p 1xt, y1:t 2  p 1 yt11:T | xt, y1:t 2

 5a 1xt 2 b 1xt 2 . (6)

The term a 1xt 2  is obtained from the “forward” a recursion (5). 
The term b 1xt 2  may be obtained using a “backward” b recursion 
with b 1xT 2 5 1

 b 1xt21 2 5 3dxt p 1yt | xt2p 1xt | xt212 b 1xt 2 ,         2 # t # T.

SEQUENTIAL (CORRECTION) SMOOTHER p(xt | y1:T)
The parallel smoothing method given above is perhaps best known 
in the HMM literature [4]. Particularly in the case of continuous 
variables, however, some care is required with its numerical imple-
mentation [12]. In practice, it is often more suitable to use a 
sequential method that is based on the fact that conditioning on 
the present makes the future redundant [13]

 p 1xt | y1:T 2 5 3dxt11p 1xt, xt11 | y1:T 2
 5 3dxt11 p 1xt | xt11, y1:t, yt11:T 2p 1xt11 | y1:T 2 . (7)

This then gives a recursion for g 1xt 2 ; p 1xt | y1:T 2
 g 1xt 2 5 3dxt11p 1xt | xt11, y1:t 2g 1xt11 2  (8)

with g 1xT 2 ~ a 1xT 2 . The term p 1xt | xt11, y1:t2  may be computed 
based on the filtered results p 1xt | y1:t2  using a dynamics reversal 
step

 p 1xt | xt11, y1:t2 ~ p 1xt11, xt | y1:t 2 5 p 1xt11 | xt 2p 1xt | y1:t2 , (9)

where the proportionality constant is found by normalization. The 
procedure is sequential since we need to first complete the a 
recursions, after which the g recursion may begin. This is also 
called a correction smoother, since it takes the filtered results and 
corrects them into smoothed results. A significant advantage of 
this sequential approach is that the recursion deals directly with 
densities, unlike the parallel approach that forms a recursion for a 
quantity that is itself not a density in xt. This has important bene-
fits for models (such as the SLDS described below) for which exact 
smoothing is not computationally feasible.

INFERENCE IN LINEAR DYNAMICAL SYSTEMS
Filtering and smoothing for the LDS follows the general 
approach, with the most common smoothing approach being the 

x
predictor

s
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u
future
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past
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sequential method. Since all 
updates for the LDS are linear-
Gaussian, the filtered and 
smoothed distributions are 
Gaussians. The a and g recur-
sions can thus be represented by 
updates to the mean and covari-
ance of the distributions. Working out these updates is a stan-
dard exercise in multivariate Gaussian integration resulting in 
the well-known Kalman filtering and smoothing recursions [2].

THE SWITCHING LINEAR 
DYNAMIC SYSTEM
The HMM and LDS are two classical signal processing models. 
A more complex model is the switching LDS (SLDS) that mar-
ries the HMM and LDS by breaking the time series into 
 segments, each modeled by a potentially different LDS; see 
Figure 5. Such models can handle situations in which the 
underlying linear model jumps from one parameter setting to 
another. Thus, the latent process contains both discrete and 
continuous variables. The SLDS is an attractive model and 
used in many  disciplines, from econometrics to machine 
learning [14]–[17]. At each time t, a switch variable 
st [ 1, c, S selects a single LDS from the available set. The 
dynamics of st itself is Markovian, with transition p 1st | st212 . 
The probabilistic model defines a joint distribution

 p 1 y1:T, x1:T, s1:T 2 5q
T

t51
p 1yt | xt, st2p1xt | xt21, st2p 1st | st212

with

 p 1 yt | xt, st2 5N1 yt | C 1st2xt, R 1st 22,
  p 1xt | xt21, st 2 5N1xt | A 1st2xt21, Q 1st22 .
At time t5 1, p 1s1 | x1, s12  denotes the prior p 1s1 2 , and 
p 1x1 | x1, s12  denotes p 1x1 | s12 . Due to its popularity in many 
different fields the SLDS has many different names; it is also 
called a jump Markov model/process, switching Kalman filter, 

switching linear Gaussian state-
space model, conditional linear 
Gaussian model.  Given its 
importance, we will spend some 
time considering the particular 
issues in dealing with the SLDS.

EXACT INFERENCE IS 
COMPUTATIONALLY INTRACTABLE
In terms of the cluster variables z1:T, with zt ; 1st, xt 2  and visible 
variables y1:T, the belief network of the SLDS is a latent Markov 
model, for which the exact filtering and smoothing recursions are 
given in the section “Inference in Latent Markov Models.” One 
might therefore envisage no difficulty in carrying out inference. 
However, both exact filtered and smoothed inference in the SLDS 
is intractable,  scaling exponentially with time. As an informal 
explanation, consider filtered posterior inference, for which the 
forward pass is, by analogy with (5),

 a 1st, xt 2 5 p1 yt | xt, st2
 3 a

st21

3
xt21

p1st, xt | st21, xt21, yt2a 1st21, xt212 . (10)

At time step 1, a 1s1, x12 ~ p 1x1 | s1, y12  p1s1 | y12  is an indexed 
set of Gaussians. At time step 2, due to the summation over 
the states s1, a 1s2, x2 2  will be an indexed set of S Gaussians; 
similarly at time step 3, it will be S2 and, in general, gives 
rise to exponentially many Gaussians, St21, at time t. The 
origin of the intractability of the SLDS therefore differs from 
structural intractability, resulting from the inability to form 
a singly connected structure by the clustering of a small 
number of variables [18]. Since filtering and smoothing in 
the SLDS require some form of approximation, we therefore 
have to choose which approximation strategy to follow. 
Approximate inference in the SLDS has a large associated lit-
erature describing available techniques that range from 
Monte Carlo methods to deterministic variational techniques 
[19], [20], [15]. One of the most robust techniques is the 
Gaussian sum approximation and, rather than giving a 
 survey on the  available techniques, we outline the rationale 
for this method below.

GAUSSIAN SUM FILTERING
A popular approximate SLDS filtering scheme is to keep in 
check the exponential explosion in the number of Gaussian 
components by projecting each filtered update to a limited 
number of components. A graphical depiction is given in 
Figure 6. At each stage, a single Gaussian component is propa-
gated forwards by the S separate LDS dynamics, each giving 
rise to a  separate filtered distribution according to LDS filter-
ing. Sub sequently, this S2 Gaussian mixture is collapsed back 
to an S component Gaussian mixture, preventing the exponen-
tial explosion in mixture components. Such Gaussian sum 

x1 x2 x3 x4

s1 s2 s3 s4

y1 y2 y3 y4

[FIG5] The independence structure of the SLDS. Square nodes st 
denote discrete switch variables; xt are continuous latent/hidden 
variables and yt continuous observed/visible variables. The 
discrete state st determines which LDS from a finite set of LDSs 
is operational at time t. 

MOST STUDENTS ARE FAMILIAR 
WITH THE KALMAN FILTER, 

UNAWARE THAT THE ALGORITHM 
IS AN INSTANCE OF THE GENERIC 

FILTERING ALGORITHM.
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 filtering approximations were developed early in the literature, 
in particular in the work by Alspach and Sorenson [21]. The 
method is a form of the general approximation class called 
assumed density filtering in which an approximate mixture 
density is projected back to a chosen approximation family at 
each update [22]. The complexity of the resulting approximate 
forward pass is O 1ISTL 2 , where I is the number of mixture 
components of the collapsed distribution and L is the cost of 
performing a filtered update for the LDS. The recursion is ini-
tialized with p 1x1, s1 | y12 ~ p1 y1 | x1, s12  p1 x1 | s12  p1s12, where 
p 1x1|s1 2  and p 1s1 2  are given prior distributions.

GAUSSIAN SUM SMOOTHING
The g recursion (8) suggests a convenient Gaussian sum 
smoothing approximation. Since the g recursion can be 
interpreted as a backwards dynamics, one may propagate 
each component in a Gaussian sum smoothed approxima-
tion backwards according to each of the S dynamical sys-
tems. This results in an S2 component Gaussian mixture 
distribution which, analogously to filtering, may be col-
lapsed back to a smaller number of components to prevent 
the exponential explosion in components. A popular stan-
dard method to achieve this is called generalized pseudo-
Bayes [15]. An alternative approach, which makes less severe 
approximation assumptions, is expectation-correction [23], 
which we use throughout our examples.

NOISY SIGNAL RECONSTRUCTION
Continuous observation models such as the SAR model have 
been successfully applied in many areas of signal processing, 
including audio signal processing [10]. Since such models are 
essentially HMMs, however, they are not well suited to signal 
reconstruction in which we aim to infer a clean continuous 
signal from a noisy observation. A natural extension is to 
include additional graphical links from the AR output yt to 
form a noisy observation y|t. For example, additive zero mean 
Gaussian noise with variance sy

2 can be expressed as 
p 1 y|t | yt2 5N 1 y|t |  yt, sy

2 2. Given the noisy observation seq-

uence y|1:T, our interest is then to reconstruct a clean signal 
y1:T, based on the assumption that the clean signal is itself 
expressed as a SAR model; see Figure 7. This model is a form 
of SLDS and may be used to form noise-robust speech recog-
nition systems [11]; see Figure 8.

t + 1t
(a) (b) (c)

[FIG6] Gaussian sum filtering. (a) Depicts the previous Gaussian 
mixture approximation a 1xt, st 2 for two states S 5 2 (red and 
blue) and I 5 3 mixture components. The area of each ellipse 
corresponds here to the relative weight of each component 
rather than the variance. There are S 5 2 different linear systems 
that take each of the components of the mixture into a new 
filtered state, the color of the arrow indicating which dynamic 
system is used. After one time step, each mixture component 
branches into a further S components so that the joint 
approximation a 1xt11, st11 2 contains (b) S2I components. To keep 
the representation computationally tractable, the mixture of 
Gaussians for each state st11 is collapsed back to I components. 
This means that each colored state needs to be approximated by 
a smaller I component mixture of Gaussians. There are many 
ways to achieve this. A naïve but computationally efficient 
approach is to simply ignore the lowest weight components, as 
depicted in (c).

FILTERING IN THE RESET MODEL
Consider the filtering recursion for the two cases 

a 1xt, ct5 02 5 3
xt21

a
ct21

p0 1yt |xt 2p0 1xt |xt21 2p 1ct5 0|ct212
  3 a 1xt21, ct212 (11)

a 1xt, ct5 12  5 3
xt21

a
ct21

p1 1 yt |xt 2p1 1xt 2p 1ct5 1|ct21 2
 3 a 1xt21, ct212
 5 p1 1 yt | xt 2p1 1xt 2a

ct21

p 1ct5 1|ct212a 1ct212 . (12)

Equation (12) shows that a 1xt, ct5 12 contains only a single com-
ponent proportional to p1 1yt |xt 2p1 1xt 2 . If we use this informa-
tion in (11) we have 

 a 1xt, ct5 02 5 3
xt21

p0 1 yt |xt 2p0 1xt | xt212p1ct5 0 |ct215 02
 3 a 1xt21, ct215 02

 1 3
xt21

p0 1 yt |xt 2p0 1xt |xt212p 1ct5 0 |ct215 12
 3 a 1xt21, ct215 12 . (13)

If we assume that a 1xt21, ct215 02 is a mixture distribution with 
K components, then a 1xt, ct5 02 will contain K1 1 components. 
In general, therefore, a 1xt, ct5 02 will contain t components and 
a 1xt, ct5 12 a single component. Since the number of compo-
nents grows only linearly with time, the computational effort to 
perform exact filtering scales as O 1LT 

2 2 , compared with O 1LT 2T 2  
in the general two-state switching case (L is the complexity of a 
filtered LDS update). 
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TRAFFIC FLOW
As an illustration of modeling and 
inference with a SLDS consider a 
traffic network; see Figure 9. There 
are four junctions a, b, c, d and 
traffic flows along the roads in the 
direction indicated. Traffic flows into 
junction a and then goes via different routes to d. Flow out of a 
junction must match the flow in to a junction (up to noise). There 
are traffic light switches at junctions a and b that, depending on 
their state, route traffic differently along the roads. Then using f to 
denote flow, we model the flows using the switching linear system 

fa 1t 2
faSd 1t 2
faSb 1t 2
fbSd 1t 2
fbSc 1t 2
fcSd 1t 2

v5 ffa 1t2 12
fa 1t2 12 10.75 3 3sa 1t 2 5 141 1 3 3sa 1t 2 5 24 2
fa 1t2 12 10.25 3 3sa 1t 2 5 141 1 3 3sa 1t 2 5 34 2
faSb 1t2 12 10.5 3 3sb 1t 2 5 14 2
faSb 1t2 12 10.5 3 3sb 1t 2 5 141 1 3 3sb 1t 2 5 24 2
fbSc 1t2 12

.

In the above, 3A 45 1 if A is true 
and is zero otherwise. By identify-
ing the flows at time t with a six-
dimensional  vector hidden 
variable xt, we can write the 
above flow equations as an SLDS 
in xt for a set of suitably defined 

matrices A 1s 2  where the switch variable s5 sa z sb, takes 
3 3 25 6 states. The switch variables follow a simple Markov 
transition p 1st | st212  that biases the switches to remain in the 
same state in preference to jumping to another state. We addi-
tionally include small noise terms to model cars parking or 
deparking during a single time frame. The noise is larger at 
the inflow point a to model that the total volume of traffic 
entering the system can vary. Noisy measurements of the flow 
into the network are taken at a and d. Given an observed 
sequence 1at, dt 2 , t5 1, c, 100 (see Figure 10), the task is to 
infer the filtered and smoothed traffic flows throughout the 
network. A naïve approximation based on discretizing each 
continuous flow into 20 bins would contain 2 3 3 3 206 or 

a b

cd

[FIG9] A representation of the traffic flow between junctions at 
a, b, c, d, with traffic lights at a and b. If sa5 1, a S d and a S b 
carry 0.75 and 0.25 of the flow out of a, respectively. If sa5 2, all 
the flow from a goes through a S d; for sa5 3, all the flow goes 
through a S b. For sb5 1, the flow out of b is split equally 
between b S d and b S c. For sb5 2, all flow out of b goes 
along b S c. 
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[FIG10] Time evolution of the traffic flow measured at two 
points in the network. (a) Sensors measure the total flow 
into the network fa 1t 2  and (b) the total flow out of the 
network, fd 1t 25faSd 1t 21fbSd 1t 21fcSd 1t 2  . The total inflow 
at a undergoes a random walk. Note that the flow measured 
at d can momentarily drop to zero if all traffic is routed 
through a S b S c in two consecutive time steps.

RESET MODELS ARE SPECIAL 
SWITCHING MODELS IN WHICH THE 

SWITCH CAN RESET THE LATENT 
STATE, ISOLATING THE PRESENT 

FROM THE PAST.

x1 x2 x3 x4

y1 y2 y3 y4

y1 y2 y3 y4

∼ ∼ ∼ ∼

[FIG7] A latent switching (second order) AR model. Here the xt 
indicates which of a set of available AR models is active at time 
t. The “clean” AR signal yt, which is not observed, is corrupted 
by additive noise to form the noisy observations y|t 

.  In terms of 
inference, conditioned on y|1:T , this can be expressed as a SLDS.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

(a)

(b)

[FIG8] Signal reconstruction using a latent left-right SAR model; 
see Figure 7. (a) Noisy signal y|1:T . (b) Reconstructed clean signal 
y1:T . The dashed lines and the numbers show the most-likely 
state segmentation s1:T

* .
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384 million states. Even for such a modest-size problem, an 
approximation based on a simple discretization is therefore 
impractical. As a practical alternative, filtering and smoothing 
for this SLDS can be carried out using a Gaussian sum approx-
imation; see Figure 11.

RESET MODELS
While switching models such as the SLDS are powerful, they are 
computationally difficult to implement. As such, it is interesting to 
consider special cases for which inference is computationally sim-
pler. Reset models are special switching models in which the 
switch can reset the latent xt, isolating the present from the past. 
These models are also known as change-point models [6], though 
the term is less precisely defined. We use the state ct5 1, to 
denote a “change” that resets xt, independent of the past, and 
ct5 0 to denote that the standard dynamics continues. Then 

 p 1xt | xt21, ct 2 5 e p0 1xt | xt212 ct5 0
p1 1xt 2 ct5 1

.

Similarly, we write

 p 1 yt | xt, ct 2 5 e p0 1yt | xt2 ct5 0
p1 1 yt | xt2 ct5 1

.

The switch dynamics are first-order Markov with transition 
p 1ct | ct212 . Under this model the dynamics follows a standard 

system p0 1xt | xt212  until ct 51 when the continuous state is 
drawn from a “reset” distribution p1 1xt 2 , independent of the 
past; see Figure 12. Such models are of interest when the time 
series is following a trend but suddenly changes and the past is 
forgotten. An SLDS with S5 2 states, one of which resets the 
continuous dynamics, is an example of such a reset model. 
Importantly, the complexity of filtered inference scales with 
O 1LT 2 2, compared to O 1LT2T 2  in the general two-state switch-
ing case, as discussed in “Filtering in the Reset Model.”

[FIG11] Given the observations from Figure 10, we infer the flows and switch states of all the latent variables. (a) The correct 
latent flows through time along with the switch variable state used to generate the data. The colors correspond to the colored 
edges and nodes in Figure 9. (b) Filtered flows based on a I5 2 Gaussian sum forward pass approximation. The filtered traffic 
light states of sa and sb are plotted below. (c) Smoothed flows and corresponding smoothed traffic light states using a two-
component Gaussian sum smoothing approximation.
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[FIG12] The independence structure of a reset model. Square 
nodes ct denote the binary reset variables and st the state 
dynamics. The xt are continuous variables, and yt continuous 
observations. If the dynamics resets, the dependence of the 
continuous xt on the past is cut. 
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POISSON RESET MODEL
Reset models are not limited to conditionally Gaussian 
cases. To illustrate this, we consider the following Poisson 
model. At each time t, we observe a count yt that we 
assume is Poisson distributed with an unknown positive 
intensity xt. The intensity is constant, but at certain 
unknown times t, it jumps to a new value. The indicator 
variable ct denotes whether time t is such a change point or 
not. Mathematically, the model is

p1xt | xt21, ct25 3ct5 04 d1xt2xt2121 3ct5 14 G1xt; n, b2 ,   t $ 2
 (14)

 p1 yt | xt 2 5PO 1 yt; xt2,            p1ct2 5BE 1ct; p2  (15)

with p1x12 5 G 1x1; a1, b12 . The symbols G, BE, and PO denote 
the Gamma, Bernoulli, and the Poisson densities, resp ectively. 
Given observed counts y1:T, the task is to find the posterior 
probability of a change and the associated inten sity levels for 
each region between two consecutive change points. Plugging 
the above definitions in the generic updates (11) and (12), we 
see that a 1xt, ct5 02  is a Gamma potential, and that 
a 1xt, ct512  is a mixture of Gamma potentials, where a Gamma 
potential is defined as 

 f 1x2 5 elG 1x; a, b2  (16)

via the triple 1a, b, l 2 . For the corrector update step, we 
need to calculate the product of a Poisson term with the 
observation model p 1 yt | xt2 5PO 1 yt; xt2 . A useful proper-
ty of the Poisson distribution is that, given the observa-
t ion,  the latent variable is Gamma distributed as 

PO1 y; x2 5 G 1x; y1 1, 12 .  Hence, the update equation 
requires multiplication of two Gamma potentials. A nice 
property of the Gamma density is that the product of two 
Gamma densities is another Gamma potential. The a recur-
sions for this reset model are therefore closed in the space 
of a mixture of Gamma potentials, with an additional 
Gamma potential in the mixture at each time step. A similar 
approach can be used to form the smoothing recursions.

We illustrate the algorithm on a coal mining disaster 
data set [24]. The data consists of the number of deadly coal-
mining disasters in England per year over a time span of 112 
years from 1851 to 1962. It is widely agreed in the statistical 
literature that a change in the intensity (the expected value 
of the number of disasters) occurs around the year 1890, 
after new health and safety regulations were introduced. In 
Figure 13, we show the marginals p1xt | y1:T2  along with the 
filtering density. Note that we are not constraining the 
number of change points a priori and in principle allow any 
number. The smoothed densities indeed suggest a sharp 
decrease around t5 1890.

RESET HIDDEN MARKOV MODEL
The reset models described are useful in many applications 
but limited since only a single standard dynamics is avail-
able. An important extension is to consider a set of avail-
able dynamical models, indexed by st [ 51, c, S6, with a 
reset that cuts dependency of the continuous variable on 
the past [17]

 p1xt | xt21, st, ct2 5 e p0 1xt | xt21, st 2 ct5 0
p1 1xt | st2 ct5 1

. (17)

The states st follow a Markovian dynamics 
p1st | st21, ct212 ; see Figure 14. A reset 
occurs if the state st changes, otherwise, no 
reset occurs

   p1ct5 1 | st, st212 5 3st 2 st214. (18)

The computational complexity of fil-
tering for this model is O1LS2T22  that 
can be understood by analogy with the 
reset a recursions, (11), (12) on replac-
ing xt by 1xt, st 2 . In the next section, 
we describe a signal processing appli-
cation for this model.

DYNAMIC HARMONIC 
MODEL AND RESET MODELS
A key problem in music signal process-
ing is music transcription; the identifi-
cation of note events. The fundamental 
frequency, corresponding to the largest 
common divisor of mode frequencies, 
is perceived as the pitch or “note” in 
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[FIG13] Estimation of change points on the coal mining disaster data set. (a) The number 
of deadly disasters each year. (b) Filtered estimate of the marginal intensity p 1xt   

|  y1:t 2 . 
Here, darker color means higher probability. (c) Smoothed estimate p 1xt 

|  y1:T 2 .
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music. For transcription, we 
estimate which note is played 
and when. The polyphonic case 
assumes that more than one 
note may be played at any time. 
Here we concentrate on the 
monophonic case of a single 
note st [ 51, c, S6  being played at any time. For each 
note st, a musical instrument creates oscillations with 
modes at frequencies that are roughly related by ratios of 
integers. One can model this using an LDS that consists of 
a bank of “phasors” 

 A1st25diag 1Z1 1st2 ,c, Zn 1st2 ,c, ZW 1st22 , (19)

where each phasor corresponds to a rotation matrix around a 
multiple n of a fundamental frequency v 1st 2

 Zn 1st25 e2ng 1st2 acos1nv 1st22 sin 1nv1st22
2sin1nv 1st22 cos1nv 1st22b. 

(20)

Here, the index n gives the number of the harmonic and sets both 
the damping parameter g and the frequency v. The dynamics of a 
single phasor is plotted in Figure 15. A note changes when 
st 2 st21 at which point we assume the continuous dynamics is 
reset. Assuming a simple Markov model dynamics for the notes st, 
the model is

 p1xt | xt21, st, ct2 5 3ct5 04N1xt | A 1st 2xt21, qI 2
 1 3ct51 4 N 1xt | 0, QI 2  (21)

 p 1yt|xt 2 5N 1yt | Cxt, r 2 , (22)

where C5 31 0 1 c1 0 4  is a projection matrix that sums 
the first components of each phasor and the observation 

noise variance is r. The identity 
matrix is denoted by I  and q 
and Q are transition variances 
with Q W q. This model is then 
a reset HMM model, for which 
the computations can be car-
ried out efficiently.

An example from transcribing a real guitar recording is 
presented in Figure 16. An interesting, yet more complex 
problem is to deal with polyphony, or “chords.” That is when 
more than one note can be simultaneously present. Using the 
graphical models perspective, this is straightforward to achieve 
by using a factorial construction in which each constituent of 
the chord is modeled with an independent reset HMM model. 
The elements of the chord are coupled via an observation 
model that combines all elements into a scalar observation at 
each time [25], [17]. 

DISCUSSION
We presented an overview of the graphical models viewpoint of 
time-series modeling. Graphical models provide a compact 
description of the basic independence assumptions behind a 
model and, as such, are a useful way to communicate ideas. 
This also stresses general-purpose inference routines, for 
which classical algorithms such as the Kalman filter or for-
ward-backward in the HMM are special cases. 

Using graphical models, it is easy to envisage new models 
tailored for a particular environment. For example, we 
 highlighted the switching state-space models and their 

x1 x2 x3 x4

y1 y2 y3 y4

s1 s2 s3 s4

c1 c2 c3 c4

[FIG14] The independence structure of a reset HMM model. 
Square nodes ct denote binary change point variables, xt are 
continuous latent variables, and yt continuous observations. The 
discrete state st determines which LDS from a finite set of LDSs is 
operational at time t.

[FIG15] A single phasor plotted as a damped two dimensional 
rotation. By taking a projection onto the y axis, the phasor 
generates a damped sinusoid.

500 1,000 1,500 2,000 2,500 3,000 3,500

(a)

(b)

[FIG16] Note transcription of a signal recorded from a bass 
guitar playing a major scale. (a) Raw acoustic signal. (b) The most 
probable joint note trajectory is shown with the vertical axis 
denoting the note index.

USING GRAPHICAL MODELS, IT IS 
EASY TO ENVISAGE NEW MODELS 

TAILORED FOR A PARTICULAR 
ENVIRONMENT. 
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 potential in signal processing applications. Such models are 
natural extensions of traditional signal  processing techniques 
that are limited to the assumption that the underlying pro-
cess generating the data is either discrete or continuous. In 
particular, the SLDS is a simple graphical marriage of a con-
tinuous and discrete latent Markov model. We showed how 
these models can be used to detect changes in the underlying 
dynamics of a system, and gave examples of their use in sig-
nal reconstruction and system monitoring. 

Issues with computational tractability do not magically 
disappear within this framework, and the switching models 
are  formally computationally intractable in general. 
Nevertheless, in some cases simple deterministic approxima-
tions based on mixture models can be effective, for which the 
graphical model helps guide intuition in the approximation. 
Alternatives to the deterministic approximation method we 
discussed are based on Monte Carlo sampling. Typical strate-
gies use Markov chain Monte Carlo (MCMC) or sequential 
Monte Carlo, also known as sequential importance sampling 
or particle filtering [26], [27], with specialized algorithms 
designed for switching state-space models; for MCMC (see 
[28] and [29]). 

The effective application of switching models in the real 
world is gaining pace, partly through the restricted reset mod-
els, but also via increased computational power that brings the 
more general models into consideration through carefully 
developed approximations. As such, developing new models 
and associated approximate inference schemes is likely to 
remain an active area of research, with graphical models play-
ing an important role in facilitating communication and guid-
ing intuition. 
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