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Abstract. Solving finite-horizon Markov Decision Processes with sta-
tionary policies is a computationally difficult problem. Our dynamic dual
decomposition approach uses Lagrange duality to decouple this hard
problem into a sequence of tractable sub-problems. The resulting proce-
dure is a straightforward modification of standard non-stationary Markov
Decision Process solvers and gives an upper-bound on the total expected
reward. The empirical performance of the method suggests that not only
is it a rapidly convergent algorithm, but that it also performs favourably
compared to standard planning algorithms such as policy gradients and
lower-bound procedures such as Expectation Maximisation.
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1 Markov Decision Processes

The Markov Decision Process (MDP) is a core concept in learning how an agent
should act so as to maximise future expected rewards [1]. MDPs have a long his-
tory in machine learning and related areas, being used to model many sequential
decision making problems in robotics, control and games, see for example [1–
3]. Fundamentally, an MDP describes how the environment responds when the
agent performs an action at ∈ A when the environment is in state st ∈ S. More
formally, an MDP is described by an initial state distribution p1(s1), transition
distributions p(st+1|st, at), and a reward function Rt(st, at). For a discount fac-
tor γ the reward is defined as Rt(st, at) = γt−1R(st, at) for a stationary reward
R(st, at), where γ ∈ [0, 1). At the tth time-point a decision is made according
to the policy πt, which is defined as a set of conditional distributions over the
action space,

πt(a|s) = p(at = a|st = s, πt).

A policy is called stationary if it is independent of time, i.e. πt(at|st) = π(a|s),
∀t ∈ {1, . . . ,H} for some policy π. For planning horizon H and discrete states
and actions, the total expected reward (the policy utility) is given by

U(π1:H) =

H∑
t=1

∑
st,at

Rt(st, at)p(st, at|π1:t) (1)
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Fig. 1. (a) An influence diagram representation of an unconstrained finite horizon (H =
4) MDP. Rewards depend on the state and action, Rt(st, at). The policy p(at|st, πt)
determines the decision and the environment is modeled by the transition p(st+1|st, at).
Based on a history of actions, states and reward, the task is maximize the expected
summed rewards with respect to the policy π1:H . (b) For a stationary policy there is
a single policy π that determines the actions for all time-points, which adds a large
clique to the influence diagram.

where p(st, at|π1:t) is the marginal of the joint state-action trajectory distribution

p(s1:H , a1:H |π) = p(aH |sH , πH)

{H−1∏
t=1

p(st+1|st, at)p(at|st, πt)
}
p1(s1). (2)

Given a MDP the learning problem is to find a policy π (in the stationary case)
or set of policies π1:H (in the non-stationary case) that maximizes (1). That is,
we wish to find

π∗1:H = argmax
π1:H

U(π1:H).

In the case of infinite horizon H =∞, it is natural to assume a stationary policy,
and many classical algorithms exist to approximate the optimal policy [1].

In this paper we concentrate exclusively on the finite horizon case, which is
an important class of MDPs with many practical applications. We defer the ap-
plication of dual decomposition techniques to the infinite horizon case to another
study.

1.1 Non-stationary Policies

It is well known that an MDP with a non-stationary policy can be solved using
dynamic programming [3] in O

(
S2AH

)
for a number of actions A = |A|, states

S = |S|, and horizon H, see algorithm(1). This follows directly from the linear
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Algorithm 1 Dynamic Programming non-stationary MDP solver.

βH(sH , aH) = RH(sH , aH)
for t = H − 1, . . . , 1 do
a∗t+1(st+1) = argmax

at+1

βt+1(st+1, at+1)

βt(st, at) ≡ Rt(st, at) +
∑
st+1

p(st+1|st, at)βt+1(st+1, a
∗
t+1(st+1))

end for
a∗1(s1) = argmax

a1

β1(s1, a1)

The optimal policies are deterministic with π∗
t (at|st) = δ (at − a∗t (st))

chain structure of the corresponding influence diagram fig(1a) [4]. The optimal
policies resulting from this procedure are deterministic, where for each given
state all the mass is placed on a single action.

1.2 Stationary Policies

While unconstrained finite-horizon MDPs can be solved easily through dynamic
programming1 this is not true when the policy is constrained to be stationary.
For stationary policies the finite horizon MDP objective is given by

U(π) =

H∑
t=1

∑
st,at

Rt(st, at)p(st, at|π), (3)

where p(st, at|π) is the marginal of the trajectory distribution, which is given by

p(s1:t, a1:t|π) = π(at|st)
{ t−1∏
τ=1

p(sτ+1|aτ , sτ )π(aτ |sτ )

}
p0(s1).

Looking at the influence diagram of the stationary finite horizon MDP problem
fig(1b) it can be seen that restricting the policy to be stationary causes the
influence diagram to lose its linear chain structure. Indeed the stationary policy
couples all time-points together and a dynamic programming solution no longer
exists, making the problem of finding the optimal policy π∗ much more complex.
Another way of viewing the complexity of stationary policy MDPs is in terms
of Bellman’s principal of optimality [3]. A control problem is said to satisfy the
principal of optimality if, given a state and time-point, the optimal action is
independent of the trajectory preceding that time-point. In order to construct a
dynamic programming algorithm it is essential that the control problem satisfies
this principal. It is easy to see that while MDPs with non-stationary policies
satisfy this principal of optimality, hence permitting a dynamic programming
solution, this is not true for stationary policy MDPs.

1 In practice, the large state-action space can make the O
(
S2AH

)
complexity imprac-

tical, an issue that is not addressed in this study.
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While it is no longer possible to exactly solve stationary policy finite-horizon
MDP’s using dynamic programming there still exist algorithms that can approx-
imate optimal policies, such as policy gradients [5] or Expectation Maximisation
(EM) [6, 7]. However, policy gradients is susceptible to to getting trapped in
local optima while EM can have poor convergence rate [8]. It is therefore of
theoretical, and practical, interest to construct an algorithm that approximately
solves this class of MDPs and doesn’t suffer from these problems.

2 Dual Decomposition

Our task is to solve the stationary policy finite-horizon MDP. Here our intuition
is to exploit the fact that solving the unconstrained (non-stationary) MDP is
easy, whilst solving the constrained MDP is difficult. To do so we use dual
decomposition and iteratively solve a series of unconstrained MDPs, which have
a modified non-stationary reward structure, until convergence. Additionally our
dual decomposition provides an upper bound on the optimal reward U(π∗).

The main idea of dual decomposition is to separate a complex primal opti-
misation problem into a set of easier slave problems (see appendix(A) and e.g.
[9, 10]). The solutions to these slave problems are then coordinated to generate a
new set of slave problems in a process called the master problem. This procedure
is iterated until some convergence criterion is met, at which point a solution to
the original primal problem is obtained.

As we mentioned in section(1) the stationary policy constraint results in a
highly connected influence diagram which is difficult to optimise. It is there-
fore natural to decompose this constrained MDP by relaxing this stationarity
constraint. This can be achieved through Lagrange relaxation where the set of
non-stationary policies, π1:H = (π1, . . . , πH), is adjoined to the objective func-
tion

U(π1:H , π) =

H∑
t=1

∑
st,at

R(st, at)p(st, at|π1:t), (4)

with the additional constraint that πt = π, ∀t ∈ {1, ...,H}. Under this constraint,
we see that (4) reduces to the primal objective (3). We also impose that all πt
and π are restricted to the probability simplex. The constraints that each πt is
a distribution will be imposed explicitly during the slave problem optimisation.
The stationary policy π will be constrained to be a distribution through the
equality constraints π = πt.

2.1 Naive Dual Decomposition

A naive procedure to enforce the constraints that πt = π, ∀t ∈ {1, ..,H} is to
form the Lagrangian

U(λ1:H , π1:H , π) =

H∑
t=1

∑
s,a

{Rt(s, a)pt(s, a|π1:t) + λt(s, a) [πt(a|s)− π(a|s)]} ,
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where we have used the notation pt(s, a|π1:t−1) ≡ p(st = s, at = a|π1:t−1), and
we have included the Lagrange multipliers, λ1:H .

To see that this Lagrangian cannot be solved efficiently for π1:H through
dynamic programming consider the optimisation over πH , which takes the form

max
πH

∑
s,a

{
RH(s, a)πH(a|s)pH(s|π1:H−1) + λH(s, a)πH(a|s)

}
.

As pH(s|π1:H−1) depends on all previous policies this slave problem is com-
putationally intractable and does not have a simple structure to which dynamic
programming may be applied. Note also that, whilst the constraints are linear
in the policies, the marginal p(st, at|π1:t) is non-linear and no simple linear pro-
gramme exists to find the optimal policy. One may consider the Jensen inequality

log pt(s|π1:t−1) ≥ H(q) +

t∑
τ=1

〈log p(sτ |sτ−1, πτ )〉q + 〈log πτ 〉q

for variational q and entropy function H(q) (see for example [11]) to decouple the
policies, but we do not pursue this approach here, seeking a simpler alternative.
From this discussion we can see that the naive application of Lagrange dual
decomposition methods does not result in a set of tractable slave problems.

3 Dynamic Dual Decomposition

To apply dual decomposition it is necessary to express the constraints in a way
that results in a set of tractable slave problems. In section(2.1) we considered
the naive constraint functions

gt(a, s, π, πt) = πt(a|s)− π(a|s), (5)

which resulted in an intractable set of slave problems. We now consider the
following constraint functions

ht(a, s, π, π1:t) = gt(a, s, π, πt)pt(s|π1:t−1).

Provided pt(s|π1:t−1) > 0, the zeros of the two sets of constraint functions,
g1:H and h1:H , are equivalent2. Adjoining the constraint functions h1:H to the
objective function (4) gives the Lagrangian

L(λ1:H , π1:H , π) =

H∑
t=1

∑
s,a

{(Rt(s, a) + λt(s, a))πt(a|s)pt(s|π1:t−1)

− λt(s, a)π(a|s)pt(s|π1:t−1)} (6)

2 In the case that pt(s|π1:t−1) = 0, the policy πt(a|s) is redundant since the state s
cannot be visited at time t.
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We can now eliminate the original primal variables π from (6) by directly per-
forming the optimisation over π, giving the following set of constraints

∑
t

λt(s, a)pt(s|π1:t−1) = 0, ∀(s, a) ∈ S ×A. (7)

Once the primal variables π are eliminated from (6) we obtain the dual objective
function

L(λ1:H , π1:H) =

H∑
t=1

∑
s,a

{
(Rt(s, a) + λt(s, a))πt(a|s)pt(s|π1:t−1)

}
, (8)

where the domain is restricted to π1:H , λ1:H that satisfy (7) and π1:H satisfying
the usual distribution constraints.

3.1 The Slave Problem

We have now obtained a dual decomposition of the original constrained MDP.
Looking at the form of (8) and considering the Lagrange multipliers λ1:H as fixed,
the optimisation problem over π1:H is that of a standard non-stationary MDP.
Given the set of Lagrange multipliers, λ1:H , we can define the corresponding
slave MDP problem

Uλ(π1:H) =

H∑
t=1

∑
s,a

R̃t(a, s)πt(a|s)pt(s|π1:t−1), (9)

where the slave reward is given by

R̃t(a, s) = Rt(a, s) + λt(a, s). (10)

The set of slave problems maxπ1:H
Uλ(π1:H) is then readily solved in O

(
AS2H

)
time using algorithm(1) for modified rewards R̃t.

3.2 The Master Problem

The master problem consists of minimising the Lagrangian upper bound w.r.t.
the Lagrange multipliers. From the general theory of Lagrange duality, the dual
is convex in λ, so that a simple procedure such as a subgradient method should
suffice to find the optimum. At iteration i, we therefore update

λi+1
t = λit − αi∂λt

L(π1:H , λ1:H) (11)

where αi is the ith step size parameter and ∂λtL(π1:H , λ1:H) is the subgradient
of the dual objective w.r.t. λt. As the subgradient contains the factor pt(s|πi−11:t ),
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which is positive and independent of the action, we may consider the simplified
update equation

λi+1
t = λit − αiπit.

Once the Lagrange multipliers have been updated through this subgradient step
they need to be projected down on to the feasible set, which is defined through
the constraint (7). This is achieved through a projected subgradient method, see
e.g. [12, 13]. We enforce (7) through the projection

λi+1
t (s, a)← λi+1

t (s, a)−
H∑
τ=1

ρτ (s)λi+1
τ (s, a), (12)

where we define the state-dependent time distributions

ρτ (s) ≡ pτ (s|π1:τ−1)∑H
τ ′=1 pτ ′(s|π1:τ ′−1)

. (13)

One may verify this ensures the projected λi+1
t satisfy the constraint (7).

3.3 Algorithm Overview

We now look at two important aspects of the dual decomposition algorithm;
obtaining a primal solution from a dual solution and interpreting the role the
Lagrange multipliers play in the dual decomposition.

Obtaining a Primal Solution - A standard issue with dual decomposition al-
gorithms is obtaining a primal solution once the algorithm has terminated. When
strong duality holds, i.e. the duality gap is zero, then π = πt ∀t ∈ {1, . . . ,H}
and a solution to the primal problem can be obtained from the dual solution.
However, this will not generally be the case and we therefore need to specify a
way to obtain a primal solution. We considered two approaches; in the first we
take the mean of the dual solutions

π(a|s) =
1

H

H∑
t=1

πt(a|s), (14)

while in the second we optimise the dual objective function w.r.t. π to obtain
the dual primal policy π(a|s) = δa,a∗(s), where

a∗(s) = argmin
a

∑
t

λt(s, a)pt(s|π1:t−1), (15)

and the λt are taken before projection.
A summary of the complete dynamic dual decomposition procedure is given

in algorithm(2).
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Algorithm 2 Dual Decomposition Dynamic Programming

Initialize the Lagrange multipliers λ = 0.
repeat

Solve Slave Problem: Solve the finite horizon MDP with non-stationary rewards

R̃t(s, a) = λit(s, a) +Rt(s, a),

using algorithm(1), to obtain the optimal non-stationary policies πi1:H .
Subgradient Step: Update the Lagrange multipliers:

λi+1
t = λit − αiπit.

Projected Subgradient Step: Project the Lagrange multipliers to the feasible
set:

λi+1
t ← λi+1

t −
H∑
τ=1

ρτλ
i+1
τ .

until |U(π)− L(λ1:H , π1:H)| < ε, for some convergence threshold ε.
Output a feasible primal solution π(a|s).

Interpretation of the Lagrange Multipliers - We noted earlier that
the slave problems correspond to an unconstrained MDP problem with non-
stationary rewards given by (10). The Lagrange multiplier λt(a, s) therefore ei-
ther encourages, or discourages, πt to perform action a (given state s) depending
on the sign of λt(a, s). Now consider how the Lagrange multiplier λt(s, a) gets
updated at the ith iteration of the dual decomposition algorithm. Prior to the
projected subgradient step the update of Lagrange multipliers takes the form

λi+1
t (s, a) = λit(s, a)− αiπit(a|s),

where πi1:H denotes the optimal non-stationary policy of the previous round of
slave problems. Noting that the optimal policy is deterministic gives

λi+1
t (s, a) =

{
λit(s, a)− αi if a = argmax

a
πit(a|s)

λit(s, a) otherwise.

Once the Lagrangian multipliers are projected down to the space of feasible
parameters through (12) we have

λi+1
t (s, a) =

{
λ̄it(s, a) + αi

(∑
τ∈Ni

a(s)
ρτ − 1

)
, if a = argmax

a
πit(a|s)

λ̄it(s, a) + αi
∑
τ∈Ni

a(s)
ρτ otherwise

where N i
a(s) =

{
t ∈ {1, ...,H}|πit(a|s) = 1

}
is the set of time-points for which

action a was optimal in state s in the last round of slave problems. We use the
notation λ̄it = λit −

〈
λit
〉
ρ
, where 〈·〉ρ means taking the average w.r.t. to the

distribution (13).
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Noting that ρt is a distribution over t means that the terms
∑
τ∈Ni

a(s)
ρτ

and
(∑

τ∈Ni
a(s)

ρτ − 1
)

are positive and negative respectively. The projected

sub-gradient step therefore either adds (or subtracts) a positive term to the
projection, λ̄, depending on the optimality of action a (given state s at time t)
in the slave problem from the previous iteration. There are hence two possibilities
for the update of the Lagrange multiplier; either the action was optimal and a
lower non-stationary reward is allocated to this state-action-time triple in the
next slave problem, or conversely it was sub-optimal and a higher reward term
is attached to this triple. The master algorithm therefore tries to readjust the
Lagrange multipliers so that (for each given state) the same action is optimal for
all time-points, i.e. it encourages the non-stationary policies to take the same
form. Additionally, as |N i

a(s)| → H then
∑
τ∈Ni

a(s)
ρτ → 1, which means that

a smaller quantity is added (or subtracted) to the Lagrange multiplier. The
converse happens in the situation |N i

a(s)| → 0. This means that as |N i
a(s)| → 1

the time-points t /∈ N i
a(s) will have a larger positive term added to the reward

for this state-action pair, making it more likely that this action will be optimal
given this state in the next slave problem. Additionally, those time-points t ∈
N i
a(s) will have a smaller term subtracted from their reward, making it more

likely that this action will remain optimal in the next slave problem. The dual
decomposition algorithm therefore automatically weights the rewards according
to a ‘majority vote’. This type of behaviour is typical of dual decomposition
algorithms and is known as resource allocation via pricing [12].

4 Experiments

We ran our dual decomposition algorithm on several benchmark problems, in-
cluding the chain problem [14], the mountain car problem [1] and the puddle
world problem [15]. For comparison we included planning algorithms that can
also handle stationarity constraints on the policy, in particular Expectation Max-
imisation and Policy Gradients.

Dual Decomposition Dynamic Programming (DD DP)
The overall algorithm is summarised in algorithm(2) in which dynamic pro-
gramming is used to solve the slave problems. In the master problem we used
a predetermined sequence of step sizes for the subgradient step. Taking into
account the discussion in section(3.3) we used the following step sizes

αn = n−1 max
s,a

R(s, a).

In the experiments we obtained the primal policy using both the time-
averaged policy (14) and the dual primal policy (15). We found that both
policies obtained a very similar level of performance and so we show only
the results of (14) to make the plots more readable. We declared that the
algorithm had converged when the duality gap was less than 0.01.
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s1 s2 s3 s4 s5
a,0 a,0

b,2

a,0 a,0

a,10

Fig. 2. The chain problem state-action transitions with rewards R(st, at). The ini-
tial state is state 1. There are two actions a, b, with each action being flipped with
probability 0.2.

Expectation Maximisation (EM)
The first comparison we made was with the MDP EM algorithm [6, 16, 17,
11, 7] where the policy update at each M step takes the form

πnew(a|s) ∝
H∑
t=1

t∑
τ=1

q(sτ = s, aτ = a, t),

and q is a reward weighted trajectory distribution. For a detailed derivation
of this finite horizon model based MDP EM algorithm see e.g. [11, 7].

Policy Gradients (PG) - Fixed Step Size.
In this algorithm updates are taken in the direction of the gradient of the
value function w.r.t. to the policy parameters. We parameterised the policies
with a softmax parameterisation

π(a|s) =
exp γ(s, a)∑
a′ exp γ(s, a′)

, γ(s, a = 1) = 0, (16)

and took the derivative w.r.t. the parameters γ. During the experiments we
used a predetermined step size sequence for the gradient steps. We considered
two different step sizes parameters

α1(n) = n−1, α2(n) = 10n−1,

and selected the one that gave the best results for each particular experiment.

Policy Gradients (PG) - Line Search
We also ran the policy gradients algorithm (using the parameterisation (16))
with a line search procedure during each gradient step3.

Expectation Maximisation - Policy Gradients (EM PG)
The algorithm was designed to accelerate the rate of convergence of the EM
algorithm, while avoiding issues of local optima in policy gradients [18]. The
algorithm begins by performing EM steps until some switching criterion is
met, after which policy gradient updates are used.

3 We used the conjgrad.m routine in the Netlab toolbox - http://www1.aston.ac.uk/
eas/research/groups/ncrg/resources/netlab/.
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Fig. 3. Chain experiment with total expected reward plotted against run time (in
seconds). The plot shows the results of the DD DP algorithm (blue), the EM algorithm
(green), policy gradients with fixed step size (purple), policy gradients with a line search
(black) and the switching EM-PG algorithm (red). The experiment was repeated 100
times and the plot shows the mean and standard deviation of the results.

There are different criteria for switching between the EM algorithm and
policy gradients. In the experiments we use the criterion given in [19] where
the EM iterates are used to approximate the amount of hidden data (and

an additional estimate of the error of λ̂)

λ̂ =
|π(t+1) − π(t)|
|π(t) − π(t−1)|

, ε̂ =
|π(t+1) − π(t)|
1 + |π(t+1)|

. (17)

In the experiment we switched from EM to policy gradients when λ̂ > 0.9 and
ε̂ < 0.01. During policy gradients steps we used fixed step size parameters.

4.1 Chain Problem

The chain problem [14] has 5 states each having 2 possible actions, as shown
in fig(2). The initial state is 1 and every action is flipped with ‘slip’ probability
pslip = 0.2, making the environment stochastic. If the agent is in state 5 it receives
a reward of 10 for performing action ‘a’, otherwise it receives a reward of 2 for
performing action ‘b’ regardless of the state. In the experiments we considered a
planning horizon of H = 25 for which the optimal stationary policy is to travel
down the chain towards state 5, which is achieved by always selecting action ‘a’.

The results of the experiment are shown in fig(3). We can see that the DD
DP algorithm consistently outperforms the other algorithms, converging to the
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Fig. 4. A graphical illustration of the
mountain car problem. The agent (driver)
starts the the problem at the bottom of a
valley in a stationary position. The aim of
the agent is to get itself to the right most
peak of the valley.

global optimum in an average of 3 iterations. On the other hand the policy
gradient algorithms often got caught in local optima in this problem, which is
because the gradient of the initial policy is often in the direction of the local
optima around state 1. The EM and EM-PG algorithms perform better than
policy gradients, being less susceptible to local optima. Additionally, they were
able to get close to the optimum in the time considered, although neither of
these algorithms actually reached the optimum.

4.2 Mountain Car Problem

In the mountain car problem the agent is driving a car and its state is described
by its current position and velocity, denoted by x ∈ [−1, 1] and v ∈ [−0.5, 0.5]
respectively. The agent has three possible actions, a ∈ {−1, 0, 1}, which corre-
spond to reversing, stopping and accelerating respectively. The problem is de-
picted graphically in fig(4) where it can be seen that the agent is positioned in
a valley. The leftmost peak of the valley is given by x = −1, while the rightmost
peak is given by x = 1. The continuous dynamics are nonlinear and are given by

vnew = v + 0.1a− 0.0028 cos(2x− 0.5), xnew = x+ vnew.

At the start of the problem the agent is in a stationary position, i.e. v = 0, and
its position is x = 0. The aim of the agent is to maneuver itself to the rightmost
peak, so the reward is set to 1 when the agent is in the rightmost position and
0 otherwise. In the experiment we discretised the position and velocity ranges
into bins of width 0.1, resulting in S = 231 states. A planning horizon H = 25
was sufficient to reach the goal state.

As we can see from fig(5) the conclusions from this experiment are similar
to those of the chain problem. Again the DD DP algorithm consistently outper-
formed all of the comparison algorithms, converging to the global optimum in
roughly 7 iterations, while the policy gradients algorithms were again suscep-
tible to local optima. The difference in convergence rates between the DD DP
algorithm and both the EM and EM-PG algorithms is more pronounced here,
which is due to an increase in the amount of hidden data in this problem.
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Fig. 5. Mountain car experiment with total expected reward plotted against run time
(in seconds). The plot shows the results for the DD DP algorithm (blue), the EM algo-
rithm (green), policy gradients with fixed step size (purple), policy gradients with a line
search (black) and the switching EM-PG algorithm (red). The experiment was repeated
100 times and the plot shows the mean and standard deviations of the experiments.

4.3 Puddle World

In the puddle world problem [15] the state space is a continuous 2-dimensional
grid (x, y) ∈ [0, 1]2 that contains two puddles. We considered two circular puddles
(of radius 0.1) where the centres of the puddles were generated uniformly at
random over the grid [0.2, 0.8]2. The agent in this problem is a robot that is
depicted by a point mass in the state space. The aim of the robot is to navigate
itself to a goal region, while avoiding areas of the state space that are covered
in puddles. The initial state of the robot was set to the point (0, 0). There are
four discrete actions (up, down, left and right) each moving the robot 0.1 in that
direction. The dynamics where made stochastic by adding the Gaussian noise
N (0, 0.01) to each direction. A reward of 1 is received for all states in the goal
region, which is given by those states satisfying x+ y ≥ 1.9. A negative reward
of −40(1 − d) is received for all states inside a puddle, where d is the distance
from the centre of the puddle. In the experiment we discretised the x and y
dimensions into bins of width 0.05, which gave a total of S = 441 states. In this
problem we found that setting the planning horizon to H = 50 was sufficient to
reach the goal region.

The results of the puddle world experiment are shown in fig(6). For the range
of step sizes considered we were unable to obtain any reasonable results for the
policy gradients algorithm with fixed step sizes or the EM-PG algorithm, so we
omit these from the plot. The policy gradients with line search performed poorly
and consistently converged to a local optimum. The DD DP algorithm converged
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Fig. 6. Puddle world experiment with total expected reward plotted against run time
(in seconds). The plot shows the results for the DD DP algorithm (blue), the EM
algorithm (green) and policy gradients with line search (black).

after around 7 seconds of computation (this is difficult to see because of the scale
needed to include the EM results) which corresponds to around 30 iterations of
the algorithm. In this problem the MDP EM algorithm has a large amount of
hidden data and as a result has poor convergence, consistently failing to converge
to the optimal policy after 1000 EM steps (taking around 300 seconds).

5 Discussion

We considered the problem of optimising finite horizon MDP’s with stationary
policies. Our novel approach uses dual decomposition to construct a two stage
iterative solution method with excellent empirical convergence properties, often
converging to the optimum within a few iterations. This compares favourably
against other planning algorithms that can be readily applied to this problem
class, such as Expectation Maximisation and policy gradients. In future work
we would like to consider more general settings, including partially-observable
MDPs and problems with continuous state-action spaces. Whilst both of these
extensions are non-trivial, this work suggests that the application of Lagrange
duality to these cases could be a particularly fruitful area of research.
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A Appendix: Dual Decomposition

We follow the description in [20]. A general approach is to decompose a difficult
optimisation problem into a set of easier problems. In this approach we first
identify tractable ‘slave’ objectives Es(x), s = 1, . . . , S such that the ‘master’
objective E(x) decomposes as

E(x) =
∑
s

Es(x) (18)

Then the x that optimises the master problem is equivalent to optimising each
slave problem Es(xs) under the constraint that the slaves agree xs = x, s =
1, . . . , S [9]. This constraint can be be imposed by a Lagrangian

L(x, {xs} , λ) =
∑
s

Es(xs) +
∑
s

λs (xs − x) (19)

Finding the stationary point w.r.t. x, gives the constraint
∑
s λs = 0, so that we

may then consider

L({xs} , λ) =
∑
s

Es(xs) + λsxs (20)

Given λ, we then optimise each slave problem

x∗s = argmax
xs

(Es(xs) + λsxs) (21)

The Lagrange dual is given by

Ls(λs) = max
xs

(Es(xs) + λsxs) (22)

In this case the dual bound on the primal is∑
s

Ls(λs) ≥ E(x∗) (23)

where x∗ is the solution of the primal problem x∗ = argmax
x

E(x). To update λ

one may use a projected sub-gradient method to minimise each Ls(λs)

λ′s = λ− αx∗s (24)

where α is a chosen positive constant. Then we project,

λ̄ =
1

S

∑
s

λ′s, λnews = λ′s − λ̄ (25)

which ensures that
∑
s λ

new
s = 0.


