
Automatic Differentiation

David Barber



What is AutoDiff?

AutoDiff takes a function f(x) and returns an exact value (up to machine
accuracy) for the gradient

gi(x) ≡
∂

∂xi
f

∣∣∣∣
x

Note that this is not the same as a numerical approximation (such as central
differences) for the gradient.

One can show that, if done efficiently, one can always calculate the gradient in
less than 5 times the time it takes to compute f(x).

This is also not the same as symbolic differentiation.



Symbolic Differentiation
Given a function f(x) = sin(x), symbolic differentiation returns an algebraic
expression for the derivative. This is not necessarily efficient since it may
contain a great number of terms.

As an (overly!) simple example, consider

f(x1, x2) =
(
x21 + x22

)2
∂f

∂x1
= 2

(
x21 + x22

)
2x1,

∂f

∂x2
= 2

(
x21 + x22

)
2x2

The algebraic expression is not computationally efficient. However, by defining
y = 4(x21 + x22),

∂f

∂x1
= yx1,

∂f

∂x2
= yx2

Which is a more efficient computational expression.

Also, more generally, we want to consider computational subroutines that
contain loops and conditional if statements; these do not correspond to
simple closed algebraic expressions. We want to find a corresponding
subroutine that can return the exact derivative efficiently for such subroutines.



Forward and Reverse Differentiation

Forward

This is (usually) easy to implement

However, it is not (generally) computationally efficient.

It cannot easily handle conditional statements or loops.

Reverse

This is exact and computationally efficient.

It is, however, harder to code and requires a parse tree of the subroutine.

If possible, one should always attempt to do reverse differentiation.

As we will discuss, the famous backprop algorithm is just a special case of
reverse differentiation.

Reverse differentiation is also important since, with it, one can understand
(for example) how to deal easily with calculating the derivative of a function
subject to parameter tying.



Forward Differentiation

Consider f(x) = x2.

Complex arithmetic

f(x+ iε) = (x+ iε)
2
= x2 − ε2 + 2iεx

f ′(x) = lim
ε→0

1

ε
Im (f(x+ iε))

This also holds for any smooth function (one that an be expressed as a Taylor
series).

For finite ε this gives an approximation only.

More accurate approximation than standard finite differences since we do not
subtract two small quantities and divide by a small quantity – the complex
arithmetic approach is more numerically stable.

To implement, we need to overload all functions so that they can deal with
complex arithmetic.



Forward Differentiation

Consider f(x) = x2.

Dual arithmetic
Define an idempotent variable, ε such that ε2 = 0.

f(x+ ε) = (x+ ε)
2
= x2 + 2xε

Hence

f ′(x) = DualPartf(x+ ε)

This holds for any smooth function f(x) and non-zero value of ε.

Need to overload every function in the subroutine to work in dual arithmetic.

Numerically exact.

Whilst exact, this is not necessarily efficient.



Reverse Differentiation
A useful graphical representation is that the total derivative of f with respect to x
is given by the sum over all path values from x to f , where each path value is the
product of the partial derivatives of the functions on the edges:

df

dx
=
∂f

∂x
+
∂f

∂g

dg

dx

x

f

g∂f
∂x

dg
dx

∂f
∂g

Example

For f(x) = x2 + xgh, where g =
x2 and h = xg2

x

f

gh2x+ gh

2x

xh

2gx

xg

g2

f ′(x) = (2x+ gh) + (g2xg) + (2x2gxxg) + (2xxh) = 2x+ 8x7



Reverse Differentiation
Consider

f(x1, x2) = cos (sin(x1x2))

We can represent this computationally using an Abstract Syntax Tree (AST):

x1 x2

f1

f2

f3

f1(x1, x2) = x1x2

f2(x) = sin(x)

f3(x) = cos(x)

Given values for x1, x2, we first run forwards through the tree so that we can
associate each node with an actual function value.



Reverse Differentiation

x1 x2

f1

f2

f3

df3
dx1

=
∂f3
∂f2

df2
dx1

=
∂f3
∂f2

df2
df1︸ ︷︷ ︸

df3
df1

df1
dx1

Similarly,

df3
dx2

=
∂f3
∂f2

df2
df1︸ ︷︷ ︸

df3
df1

df1
dx2

The two derivatives share the same computation branch and
we want to exploit this.



Reverse Differentiation

x1 x2

f1

f2

f3

∂f1
∂x1

= x2
∂f1
∂x2

= x1

∂f2
∂f1

= cos(f1)

∂f3
∂f2

= − sin(f2)

1. Find the reverse ancestral (backwards) schedule
of nodes (f3, f2, f1, x1, x2).

2. Start with the first node n1 in the reverse
schedule and define tn1 = 1.

3. For the next node n in the reverse schedule, find
the child nodes ch (n). Then define

tn =
∑

c∈ch(n)

∂fc
∂fn

tc

4. The total derivatives of f with respect to the
root nodes of the tree (here x1 and x2) are given
by the values of t at those nodes.

This is a general procedure that can be used to automatically define a subroutine
to efficiently compute the gradient. It is efficient because information is collected
at nodes in the tree and split between parents only when required.



Dealing with loops

f=function(x)

f=0;

for i=1:10

. f=f+cos(f∗xi);
end

df=function(x)

f=0;

df=0;

for i=1:10

. f=f+cos(f∗xi);

. df=df-sin(f∗xi)∗
(
f ∗ i ∗ xi−1 + df ∗ xi

)
;

end

Above we expanded the derivative of the cos term symbolically.

In AutoDiff we would replace this step with the computations on the AST.



Software

AutoDiff has been around a long time (since the 1960’s).

There are tons of tools out there with varying degrees of sophistication.

The most efficient tools use special purpose optimisers to first obtain the
most compact AST.

Stan is a popular recent C++ tools from Stanford.

Theano is a popular tool in python, developed by Montreal Machine Learners.


