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Abstract

Double Descent is the phenomenon that the test error in a learning system displays non-monotonic
behaviour as the number of train datapoints increases. Double Descent was well known in the 1990s
and this brief note adds some references and details around how to calculate the test error and sug-
gests an explanation for the phenomenon.

Whilst the phenomenon of Double Descent may have been recently generally observed, see for example
[1], the phenomenon also occurs in simple linear systems in which it has been previously well studied
mathematically - see for example [2] for some historical links. We will add some more references and
details on the calculation, and give an explanation for the phenomenon.

1 Linear Regression

Consider a simple learning system with data (z;,v;), ¢ = 1,..., P, with vector inputs z; € RY. The
model we will fit to this data is

Yy=—=wx (1)

where w € R¥ is the weight vector.

We assume that the data is generated by a model of the same form, but with unknown parameter wg and
additive Gaussian noise ¢; € R, drawn i.i.d from a zero mean Gaussian with variance 2. That is, each
observation is generated from

1
Yi = —=wi T + € @

VN

We further assume that each z; € R isii.d drawn from a zero mean unit covariance Gaussian.

Then for a test point x the error is

1 1 2 1 2
(y — y0)2 = (\/NU)T$ - ﬁng + 6) = <\/N(w — wo)Tx + e) 3)
Averaging this over the test noise e we obtain
1
((y - y0)2>6 = N(w — wo) TzzT (w — wp) + o (4)

We assume that the train and test data are drawn i.i.d from a zero mean unit covariance Gaussian.
Averaging the test error over the test input = we obtain

1 2

((y— yo)2>e,x = N(w — wp)® 4 0° ®)
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Figure 1: The generalisation error against « = P/N the number of datapoints ratio, for a Linear Per-
ception with additive Gaussian noise 02 = 0.2, N = 1000 and different regularisation values \. The
graph shows the characteristic “double descent” in which for underregularised systems, the generali-
sation error increases as the number of datapoints nears the dimension of the model, before decreasing
with increasing number of datapoints.

1.1 Ordinary Least Squares

Based on the training objective

P

1
Etrain(w) = ;(yz — ﬁw -sz) + )\w (6)
with regularisation parameter ), the solution that minimises Ey;.qy, is
1 -y
T
== M| — T 7
w (N;l‘zZCZ—F ) \/N;ylfvz ()

-1
= (;szxj—k)\_f) \ﬁz< woxl—i-q) x; (8)

Let A=+ 3 2;2] and define M = A + AT

1
w—won_lﬁ (w;)raci—l—\/ﬁez') T; — Wy )
Averaging over the train noise ¢; we have
2
2 _ -1 o 2 o -1 T
<(w — wp) >€$,€1:P = (M Awyg wg) + trace( Z‘TZ M~ ) (10)
= (M_lAwo — wg)2 + otrace ( _1AM_ ) (11)

Assuming that wy is drawn from a zero mean unit covariance Gaussian, the first term averages over wy
to

<(M_1Awo — w0)2> = trace (M_lA — 1)2 = Mtrace (M_Q) (12)

wo

This gives the final expression for the test error E(X) = ((y — 40)*), . .. w0

E(X)= o+ JQ%trace (M_l) + A (/\ — 02) %trace (M_Q) (13)
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Ideally, for mathematical elegance, we would also average the test error over the train data to define
E = (B(X))y (14)

where X are the train inputs. In general there is no known closed form expression for (£(X)) . How-
ever, there are exact results for N — oo and separately the Pseudo-Inverse limit A — 0 for finite V. We
will outline the Pseudo-Inverse case below. For further details and the N — oo case see for example
[3,4,5,6,7,8,9]

2 Pseudo Inverse
In the limit A — 0, the OLS weight vector w tends to the Pseudo-Inverse solution,

w=XT (XTX) Ty (15)
where we define the matrix XT = (x1,...,zp) and vector YT = (y1, ..., yp). In this case, there is an exact

expression for the generalisation error (see [9],[6, p. 40, 41]) which is based on the fact that A is Wishart
distributed, and gives

1- L4652 N ifP<N-1
E— , N j:[:; N-P-1 1 (16)
o° + P_N-1 ifP>N+1
A brief derivation of this result is given below. These details are given for example in [9] and [6].
21 P>N+1
In this case we have simply
E(X) = 0 + o”trace (A™") (17)
Using the fact that A~! is inverse Wishart distributed, we have the result
_ N
<trace (A 1)> = m (18)
and
N
<E(X)>X:0'2+O'2m (19)

22 P<N-1

We first evaluate the terms of equation(13) for finite A. For the situation P < N — 1, we note that the
matrix M = A + A\ will have N — P eigenvalues of value )\ (since A has an N — P dimensional null
space). The remaining eigenvalues of M = X' X /N + I for eigenvalue y and eigenvector e satisfy

(XTX/N +AT) e = e (20)
Equivalently, we can write

XXTX/Ne+ A Xe=~Xe (21)
that is

(XXT /N + /\I) Xe=~Xe (22)

Hence the eigenvalues are also the eigenvalues of the P x P matrix M = XX /N + M. Hence

g _ 5
E(X)=02+ (]TVQ (N ; P + trace (M_1>> + A (/\N ) <N)\2P + trace (M_2>) (23)




Defining B = X X T /N, for the matrix M = B+ M\, the eigenvalues/vectors satisfy

(B+ M) te=ne (24)
then

v le=(B+M)e=(B+\e (25)

where 3 is an is an eigenvalue of B. Hence the eigenvalues of (B + AI) "' are given by v = 1/(3+ \) and
trace (M_Q) = Zil 1/(B; + A\)?. Simplifying E(X) and taking the limit A — 0, the term trace (M‘2>

does not contribute and we arrive at

E(X)zl—N—i—J <1—|—Ntrace (B )> (26)
Since B is also a correlation matrix, it is also Wishart distributed, and we can reuse the result equation(18)
by interchanging P and N to derive (trace (B™')) ., giving equation(16).

In figure(1) we plot the test error for the linear regression problem against « = P/N and a system di-
mension N = 1000. For the case A = 0 the curve is exact and represents the full average, including over
the train inputs. For A > 0 the plots are simply the result of a single train set, rather than averaging
over train sets. As we see, for an under-regularised system, the Double Descent phenomenon can occur
in which, despite the amount of train data increasing, the test error can increase, before subsequently
decreasing.

3 An Explanation

The Double Descent phenomenon involves a delicate relationship on the regularisation amount ), the
amount of noise and the ratio of train data to model dimension.

It is probably easiest to explain why this happens for the limit of no regularisation. In this case (A = 0) the
weight vector w is determined by the data subspace and the noise on the data labels (see equation(26))
increases the test error. Consider the general setting of selecting P points at random in a P-dimensional
space. For large P, there is a high probability that at least one direction will not be well spanned by
the selected points. More precisely, for a P x P matrix with random Gaussian® entries, there is a high
probability that at least one of the singular values will be very small. Since the eigenvalues of B are the
square of the singular values, trace (B~!) will be the sum of the squared inverse singular values. If any
of them is small, this will create a large value for trace (B~'). This is almost guaranteed to happen for
randomly chosen datapoints in a high dimensional space. This phenomenon is well studied in random
matrix theory — see for example [8].

In this sense, one explanation for Double Descent is that in the presence of noise, as the amount of train
data increases (up to the model dimension), so does the chance that the data effectively lie on a lower
dimensional subspace. The noise dominates in those directions of the space that are not well covered,
causing a spike in the test error. In more general non-linear settings, the explanation for Double Descent
is likely the same, namely that not all directions are covered well by the data (and the probability of this
happening increases with the training data up to the effective dimension of the model), meaning that the
noise in those underspecified directions has a dominant and undesirable effect on the determination of
the model.
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