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The family of Gaussian-distributed variables is, generally speaking, well-behaved under Bayesian manipulation of
linear combinations. This document sets out the derivations of several utility results, most of which are well-known
results for inference with Gaussian variables. The aim is to present the results in a coherent, clear, and pragmatic
manner.

Fact 1. Marginal p (x) =
´
y
p (x, y)

If

•
(

x
y

)
∼ N

((
µx

µy

)
,

(
Σxx Σxy

Σ>xy Σyy

))

then

• x ∼ N (µx,Σxx)

Proof. The derivation is rather long-winded, and requires calculation of the Schur complement as well as completing
the square of the Gaussian p.d.f. to integrate out the variable. For a full work-through, see Bishop (2007, Section
2.3.2).

Fact 2. Joint p (x, y) = p (y|x) p (x)

If

• x ∼ N (µx,Σx) and

• y|x ∼ N (Mx + µy,Σy)

then
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•
(

x
y

)
∼ N

((
µx

Mµx + µy

)
,

(
Σx ΣxM>

MΣ>x MΣxM> + Σy

))

Proof. We can write y = Mx+ε, ε ∼ N (µy,Σy). Then we have covarianceI,II
〈
∆x∆y>

〉
=
〈

∆x (M∆x + ∆ε)
>
〉

=〈
∆x∆x>

〉
M>+

〈
∆x∆ε>

〉
. Since

〈
∆x∆ε>

〉
= 0 we therefore have

〈
∆x∆y>

〉
= ΣxM>. Similarly,

〈
∆y∆y>

〉
=〈

(M∆x + ∆ε) (M∆x + ∆ε)
>
〉

= M
〈
∆x∆x>

〉
M> +

〈
∆ε∆ε>

〉
= MΣxM> + Σy . The result follows.

Corollary 3. Marginal p (y) =
´
x
p (y|x) p (x) (linear transform of a Gaussian)

If

• x ∼ N (µx,Σx) and

• y|x ∼ N (Mx + µy,Σy)

then

• p (y) =
´
x
p (y|x) p (x) = N

(
Mµx + µy,MΣxM> + Σy

)
.

Proof. Immediate from 1 and 2.

Fact 4. Conditioning p (x|y) ∝ p (x, y)

If

•
(

x
y

)
∼ N

((
µx

µy

)
,

(
Σxx Σxy

Σ>xy Σyy

))

then

• x|y ∼ N
(
µx + ΣxyΣ

−1
yy (y − µy) ,Σxx −ΣxyΣ

−1
yy Σ>xy

)
Proof. Again the derivation is long-winded, and appeals to the Schur complement. See Bishop (2007, Section 2.3.1).

Corollary 5. Conditioning p (x|y) ∝ p (y|x) p (x) (inverse linear transform, dynamics reversal)

If

• x ∼ N (µx,Σx) and

• y|x ∼ N (Mx + µy,Σy)

then
I Displacement of a variable x is given by ∆x = x− 〈x〉.
II y = Mx + ε =⇒∆y = y − 〈y〉 = Mx + ε− 〈Mx + ε〉 = Mx + ε−M 〈x〉 − 〈ε〉 = M∆x + ∆ε
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• x|y ∼ N
(
R (y −Mµx − µy) + µx,Σx −RMΣ>x

)
where

• R = ΣxM
> (MΣxM> + Σy

)−1
Equivalently, we have x = Ry + ε, ε ∼ N

(
µx −R (Mµx + µy) ,Σx −RMΣ>x

)
.

Proof. From 2, we have(
x
y

)
∼ N

((
µx

Mµx + µy

)
,

(
Σx ΣxM>

MΣ>x MΣxM> + Σy

))
(1)

and by 4,

x|y ∼ N
(
µx + ΣxM> (MΣxM> + Σy

)−1
(y −Mµx − µy) ,Σx −ΣxM> (MΣxM> + Σy

)−1
MΣ>x

)
from which the result follows.

Alternative derivation (originally by and based on Barber (2011, Chapter 8)) follows equation (1) by aiming to write
x = Ry + ε for Gaussian ε with

〈
∆ε∆y>

〉
= 0. Consider the covariance〈

∆x∆y>
〉

=
〈
(R∆y + ∆ε) ∆y>

〉
= R

〈
∆y∆y>

〉
+�����〈

∆ε∆y>
〉

R =
〈
∆x∆y>

〉 〈
∆y∆y>

〉−1
from equation (1) we have

〈
∆x∆y>

〉
= ΣxM> and

〈
∆y∆y>

〉
= MΣxM> + Σy . The desired mean and cova-

riance are therefore obtained from

〈ε〉 = 〈x〉 −R 〈y〉 = µx −R (Mµx + µy)〈
∆ε∆ε>

〉
=

〈
∆x∆x>

〉
−R

〈
∆y∆y>

〉
R> = Σx −RMΣ>x
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