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The family of Gaussian-distributed variables is, generally speaking, well-behaved under Bayesian manipulation of
linear combinations. This document sets out the derivations of several utility results, most of which are well-known
results for inference with Gaussian variables. The aim is to present the results in a coherent, clear, and pragmatic
manner.
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Proof. The derivation is rather long-winded, and requires calculation of the Schur complement as well as completing
the square of the Gaussian p.d.f. to integrate out the variable. For a full work-through, see Bishop (2007, Section
2.3.2). O

Fact 2. Joint p (z,y) = p (y|z) p (v)

It

o x ~ N (ptz,%;) and
o ylx ~ N (Mx+ py, X))

then
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Proof. We can write y = Mx+¢, e ~ N (p,, 3,)). Then we have covariance ! (AxAy ") = <Ax (MAx + Ae)T> =
<AXAXT> MT+<AXA€T>. Since <AXA€T> = 0 we therefore have <AXAyT> =X,MT'. Similarly, <AyAyT> =
(MAX + Ac) (MAX + A) ") = M (AxAXT)MT + (AcAeT) = ME,MT + 5. The result follows. O

Corollary 3. Marginal p (y) = fw p (y|z) p (x) (linear transform of a Gaussian)
If

o x ~ N (g, 2,) and
o ylx ~ N (Mx + py, X))

then
o p(y)= [p(yIx)p(x) =N (Mpy + 1, ME,M" + %,).

Proof. Immediate from 1 and 2. O

Fact 4. Conditioning p (z|y) x p (z,y)
If
()= () (5 =)
then
o X[y ~ Nt + Day 3y (v = t1y) s B — Ty By )
Proof. Again the derivation is long-winded, and appeals to the Schur complement. See Bishop (2007, Section 2.3.1).
O
Corollary 5. Conditioning p (x|y) < p (y|x) p (x) (inverse linear transform, dynamics reversal)

If

e x ~ N (ftz,%;) and
o ylx ~ N (Mx + py, 35y)

then

I Displacement of a variable x is given by Ax = x — (x).

T y=Mx+e=Ay=y—{y)=Mx+e— (Mx+e)=Mx+e— M(x)— () = MAx + Ae



o x|y ~ N (R(y — Muy — p1y) + o, o — RMX] ) where
e R=%,MT (MZ,M" +%,)""

Equivalently, we have x = Ry + €, € ~ N (p, — R (Myy, + 1) , £, — RMX]).

Proof. From 2, we have

X g p3 . MT
()~ (i, ) (amr wsat o, )

x|y ~ N (Mm +EMT(MEMT +3) 7 (y = Mpg — 1), 50 — Z.MT (ME,MT +35,)7 sz)

and by 4,

from which the result follows.

Alternative derivation (originally by and based on Barber (2011, Chapter 8)) follows equation (1) by aiming to write
x = Ry + ¢ for Gaussian e with <AeAyT> = 0. Consider the covariance

(AxAy") = ((RAy+Ae¢)Ay')
= R(AyAy ')+ (AeAy™)
R = <AxAyT><AyAyT>71

from equation (1) we have <AxAyT> =¥, MT and <AyAyT> =MEZ,MT + ¥,. The desired mean and cova-
riance are therefore obtained from

(€) (x) =R (y) = pto — R (Mg + 1)
<A6A6T> = <AXAXT> -R <AyAyT> R'=3, - RMZ;Cr
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