Bayes' Theorem for Gaussians

Chris Bracegirdle*

September 2010

The family of Gaussian-distributed variables is, generally speaking, well-behaved under Bayesian manipulation of linear combinations. This document sets out the derivations of several utility results, most of which are well-known results for inference with Gaussian variables. The aim is to present the results in a coherent, clear, and pragmatic manner.

Fact 1. Marginal $p(x)=\int_{y} p(x, y)$

If

- $\binom{\mathbf{x}}{\mathbf{y}} \sim \mathcal{N}\left(\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{cc}\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\ \boldsymbol{\Sigma}_{x y}^{\top} & \boldsymbol{\Sigma}_{y y}\end{array}\right)\right)$
then
- $\mathbf{x} \sim \mathcal{N}\left(\mu_{x}, \boldsymbol{\Sigma}_{x x}\right)$

Proof. The derivation is rather long-winded, and requires calculation of the Schur complement as well as completing the square of the Gaussian p.d.f. to integrate out the variable. For a full work-through, see Bishop (2007, Section 2.3.2).

Fact 2. Joint $p(x, y)=p(y \mid x) p(x)$

If

- $\mathbf{x} \sim \mathcal{N}\left(\mu_{x}, \boldsymbol{\Sigma}_{x}\right)$ and
- $\mathbf{y} \mid \mathbf{x} \sim \mathcal{N}\left(\mathbf{M x}+\mu_{y}, \boldsymbol{\Sigma}_{y}\right)$
then

[^0]$\bullet\binom{\mathbf{x}}{\mathbf{y}} \sim \mathcal{N}\left(\binom{\mu_{x}}{\mathbf{M} \mu_{x}+\mu_{y}},\left(\begin{array}{cc}\boldsymbol{\Sigma}_{x} & \boldsymbol{\Sigma}_{x} \mathbf{M}^{\top} \\ \mathbf{M} \boldsymbol{\Sigma}_{x}^{\top} & \mathbf{M} \boldsymbol{\Sigma}_{x} \mathbf{M}^{\top}+\boldsymbol{\Sigma}_{y}\end{array}\right)\right)$

Proof. We can write $\mathbf{y}=\mathbf{M} \mathbf{x}+\epsilon, \epsilon \sim \mathcal{N}\left(\mu_{y}, \boldsymbol{\Sigma}_{y}\right)$. Then we have covariance ${ }^{\mathrm{I}, \mathrm{II}}\left\langle\Delta \mathbf{x} \Delta \mathbf{y}^{\top}\right\rangle=\left\langle\Delta \mathbf{x}(\mathbf{M} \Delta \mathbf{x}+\Delta \epsilon)^{\top}\right\rangle=$ $\left\langle\Delta \mathbf{x} \Delta \mathbf{x}^{\top}\right\rangle \mathbf{M}^{\top}+\left\langle\Delta \mathbf{x} \Delta \epsilon^{\top}\right\rangle$. Since $\left\langle\Delta \mathbf{x} \Delta \epsilon^{\top}\right\rangle=0$ we therefore have $\left\langle\Delta \mathbf{x} \Delta \mathbf{y}^{\top}\right\rangle=\boldsymbol{\Sigma}_{x} \mathbf{M}^{\top}$. Similarly, $\left\langle\Delta \mathbf{y} \Delta \mathbf{y}^{\top}\right\rangle=$ $\left\langle(\mathbf{M} \Delta \mathbf{x}+\Delta \epsilon)(\mathbf{M} \Delta \mathbf{x}+\Delta \epsilon)^{\top}\right\rangle=\mathbf{M}\left\langle\Delta \mathbf{x} \Delta \mathbf{x}^{\top}\right\rangle \mathbf{M}^{\top}+\left\langle\Delta \epsilon \Delta \epsilon^{\top}\right\rangle=\mathbf{M} \boldsymbol{\Sigma}_{x} \mathbf{M}^{\top}+\boldsymbol{\Sigma}_{y}$. The result follows.

Corollary 3. Marginal $p(y)=\int_{x} p(y \mid x) p(x)$ (linear transform of a Gaussian)

If

- $\mathbf{x} \sim \mathcal{N}\left(\mu_{x}, \boldsymbol{\Sigma}_{x}\right)$ and
- $\mathbf{y} \mid \mathbf{x} \sim \mathcal{N}\left(\mathbf{M x}+\mu_{y}, \boldsymbol{\Sigma}_{y}\right)$
then
- $p(\mathbf{y})=\int_{\mathbf{x}} p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})=\mathcal{N}\left(\mathbf{M} \mu_{x}+\mu_{y}, \mathbf{M} \boldsymbol{\Sigma}_{x} \mathbf{M}^{\top}+\boldsymbol{\Sigma}_{y}\right)$.

Proof. Immediate from 1 and 2.
Fact 4. Conditioning $p(x \mid y) \propto p(x, y)$

If

- $\binom{\mathbf{x}}{\mathbf{y}} \sim \mathcal{N}\left(\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{ll}\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\ \boldsymbol{\Sigma}_{x y}^{\top} & \boldsymbol{\Sigma}_{y y}\end{array}\right)\right)$
then
- $\mathbf{x} \mid \mathbf{y} \sim \mathcal{N}\left(\mu_{x}+\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}\left(\mathbf{y}-\mu_{y}\right), \boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{x y}^{\top}\right)$

Proof. Again the derivation is long-winded, and appeals to the Schur complement. See Bishop (2007, Section 2.3.1).

Corollary 5. Conditioning $p(x \mid y) \propto p(y \mid x) p(x)$ (inverse linear transform, dynamics reversal)

If

- $\mathbf{x} \sim \mathcal{N}\left(\mu_{x}, \boldsymbol{\Sigma}_{x}\right)$ and
- $\mathbf{y} \mid \mathbf{x} \sim \mathcal{N}\left(\mathbf{M x}+\mu_{y}, \boldsymbol{\Sigma}_{y}\right)$
then

[^1]- $\mathbf{x} \mid \mathbf{y} \sim \mathcal{N}\left(\mathbf{R}\left(\mathbf{y}-\mathbf{M} \mu_{x}-\mu_{y}\right)+\mu_{x}, \boldsymbol{\Sigma}_{x}-\mathbf{R M} \boldsymbol{\Sigma}_{x}^{\top}\right)$ where
- $\mathbf{R}=\boldsymbol{\Sigma}_{x} M^{\top}\left(\mathbf{M} \boldsymbol{\Sigma}_{x} \mathbf{M}^{\top}+\boldsymbol{\Sigma}_{y}\right)^{-1}$

Equivalently, we have $\mathbf{x}=\mathbf{R y}+\epsilon, \epsilon \sim \mathcal{N}\left(\mu_{x}-\mathbf{R}\left(\mathbf{M} \mu_{x}+\mu_{y}\right), \boldsymbol{\Sigma}_{x}-\mathbf{R M} \boldsymbol{\Sigma}_{x}^{\top}\right)$.

Proof. From 2, we have

$$
\binom{\mathbf{x}}{\mathbf{y}} \sim \mathcal{N}\left(\binom{\mu_{x}}{\mathbf{M} \mu_{x}+\mu_{y}},\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{x} & \boldsymbol{\Sigma}_{x} \mathbf{M}^{\top} \tag{1}\\
\mathbf{M} \boldsymbol{\Sigma}_{x}^{\top} & \mathbf{M} \boldsymbol{\Sigma}_{x} \mathbf{M}^{\top}+\boldsymbol{\Sigma}_{y}
\end{array}\right)\right)
$$

and by 4 ,

$$
\mathbf{x} \mid \mathbf{y} \sim \mathcal{N}\left(\mu_{x}+\boldsymbol{\Sigma}_{x} \mathbf{M}^{\top}\left(\mathbf{M} \boldsymbol{\Sigma}_{x} \mathbf{M}^{\top}+\boldsymbol{\Sigma}_{y}\right)^{-1}\left(\mathbf{y}-\mathbf{M} \mu_{x}-\mu_{y}\right), \boldsymbol{\Sigma}_{x}-\boldsymbol{\Sigma}_{x} \mathbf{M}^{\top}\left(\mathbf{M} \boldsymbol{\Sigma}_{x} \mathbf{M}^{\top}+\boldsymbol{\Sigma}_{y}\right)^{-1} \mathbf{M} \boldsymbol{\Sigma}_{x}^{\top}\right)
$$

from which the result follows.
Alternative derivation (originally by and based on Barber (2011, Chapter 8)) follows equation (1) by aiming to write $\mathbf{x}=\mathbf{R} \mathbf{y}+\epsilon$ for Gaussian ϵ with $\left\langle\Delta \epsilon \Delta \mathbf{y}^{\top}\right\rangle=0$. Consider the covariance

$$
\begin{aligned}
\left\langle\Delta \mathbf{x} \Delta \mathbf{y}^{\top}\right\rangle & =\left\langle(\mathbf{R} \Delta \mathbf{y}+\Delta \epsilon) \Delta \mathbf{y}^{\top}\right\rangle \\
& =\mathbf{R}\left\langle\Delta \mathbf{y} \Delta \mathbf{y}^{\top}\right\rangle+\left\langle\Delta \epsilon \Delta \mathbf{y}^{\top}\right\rangle \\
\mathbf{R} & =\left\langle\Delta \mathbf{x} \Delta \mathbf{y}^{\top}\right\rangle\left\langle\Delta \mathbf{y} \Delta \mathbf{y}^{\top}\right\rangle^{-1}
\end{aligned}
$$

from equation (1) we have $\left\langle\Delta \mathbf{x} \Delta \mathbf{y}^{\top}\right\rangle=\boldsymbol{\Sigma}_{x} \mathbf{M}^{\top}$ and $\left\langle\Delta \mathbf{y} \Delta \mathbf{y}^{\top}\right\rangle=\mathbf{M} \boldsymbol{\Sigma}_{x} \mathbf{M}^{\top}+\boldsymbol{\Sigma}_{y}$. The desired mean and covariance are therefore obtained from

$$
\begin{aligned}
\langle\epsilon\rangle & =\langle\mathbf{x}\rangle-\mathbf{R}\langle\mathbf{y}\rangle=\mu_{x}-\mathbf{R}\left(\mathbf{M} \mu_{x}+\mu_{y}\right) \\
\left\langle\Delta \epsilon \Delta \epsilon^{\top}\right\rangle & =\left\langle\Delta \mathbf{x} \Delta \mathbf{x}^{\top}\right\rangle-\mathbf{R}\left\langle\Delta \mathbf{y} \Delta \mathbf{y}^{\top}\right\rangle \mathbf{R}^{\top}=\boldsymbol{\Sigma}_{x}-\mathbf{R M} \boldsymbol{\Sigma}_{x}^{\top}
\end{aligned}
$$

References

Barber, D., Bayesian Reasoning and Machine Learning, Cambridge University Press, in press, 2011.
Bishop, C. M., Pattern Recognition and Machine Learning, 738 pp., Springer, 2007.

[^0]: *Department of Computer Science, University College London

[^1]: I Displacement of a variable \mathbf{x} is given by $\Delta \mathbf{x}=\mathbf{x}-\langle\mathbf{x}\rangle$.
 ${ }^{\text {II }} \mathbf{y}=\mathbf{M} \mathbf{x}+\epsilon \Longrightarrow \Delta \mathbf{y}=\mathbf{y}-\langle\mathbf{y}\rangle=\mathbf{M} \mathbf{x}+\epsilon-\langle\mathbf{M} \mathbf{x}+\epsilon\rangle=\mathbf{M} \mathbf{x}+\epsilon-\mathbf{M}\langle\mathbf{x}\rangle-\langle\epsilon\rangle=\mathbf{M} \Delta \mathbf{x}+\Delta \epsilon$

