Bayesian Conditional Cointegration: Supplementary

Chris Bracegirdle
 David Barber

C.BRACEGIRDLE@CS.UCL.AC.UK
D.BARBER@CS.UCL.AC.UK

Centre for Computational Statistics and Machine Learning, University College London, Gower Street, London

Here we give the full derivation of the inference recursions for the cointegration switching model.

Filtering

The filtered distribution $\alpha\left(\phi_{t}\right)=p\left(\phi_{t} \mid \epsilon_{1: t}\right)$ will be written as

$$
\begin{aligned}
& \alpha\left(\phi_{t}\right)=p\left(\phi_{t}, i_{t}=1 \mid \epsilon_{1: t}\right)+p\left(\phi_{t}, i_{t}=0 \mid \epsilon_{1: t}\right) \\
& \quad=\alpha\left(\phi_{t} \mid i_{t}=1\right) \alpha\left(i_{t}=1\right)+\alpha\left(\phi_{t} \mid i_{t}=0\right) \alpha\left(i_{t}=0\right)
\end{aligned}
$$

Non-Cointegrated case

The easiest case corresponds to $i_{t}=1$ so we'll tackle this first.

$$
\begin{aligned}
& p\left(\phi_{t}, i_{t}=1 \mid \epsilon_{1: t}\right)=\frac{p\left(\phi_{t}, i_{t}=1, \epsilon_{t} \mid \epsilon_{1: t-1}\right)}{p\left(\epsilon_{t} \mid \epsilon_{1: t-1}\right)} \\
& \quad=\frac{1}{Z_{t}} p\left(\epsilon_{t} \mid \epsilon_{t-1}, \phi_{t}\right) p\left(\phi_{t} \mid i_{t}=1\right) p\left(i_{t}=1 \mid \epsilon_{1: t-1}\right)
\end{aligned}
$$

where $Z_{t}=p\left(\epsilon_{t} \mid \epsilon_{1: t-1}\right)$. Then

$$
\begin{align*}
& \alpha\left(i_{t}=1\right)=\int_{\phi_{t}} \frac{1}{Z_{t}} p\left(\epsilon_{t} \mid \epsilon_{t-1}, \phi_{t}\right) p^{1}\left(\phi_{t}\right) p\left(i_{t} \mid \epsilon_{1: t-1}\right) \\
& \quad=\frac{1}{Z_{t}} \mathcal{N}\left(\epsilon_{t} \mid \epsilon_{t-1}, \sigma^{2}\right) \sum_{i_{t-1}} p\left(i_{t}=1 \mid i_{t-1}\right) \alpha\left(i_{t-1}\right) \tag{1}
\end{align*}
$$

and the continuous component is trivial,

$$
\begin{aligned}
& \alpha\left(\phi_{t} \mid i_{t}=1\right) \propto p\left(\epsilon_{t} \mid \epsilon_{t-1}, \phi_{t}\right) p\left(\phi_{t} \mid i_{t}=1\right) \\
& \Rightarrow \quad \alpha\left(\phi_{t} \mid i_{t}=1\right)=p^{1}\left(\phi_{t}\right)
\end{aligned}
$$

Cointegrated case

When $i_{t}=0$, the inference is more complicated since the posterior for ϕ_{t} is non-trivial.

$$
\begin{gathered}
p\left(\phi_{t}, i_{t}=0 \mid \epsilon_{1: t}\right)=\frac{1}{Z_{t}} \sum_{i_{t-1}} p\left(\phi_{t}, i_{t}, i_{t-1}, \epsilon_{t} \mid \epsilon_{1: t-1}\right) \\
=\frac{1}{Z_{t}} \sum_{i_{t-1}} p\left(\epsilon_{t} \mid \epsilon_{t-1}, \phi_{t}\right) p\left(i_{t}=0 \mid i_{t-1}\right) \alpha\left(i_{t-1}\right) \\
\times \underbrace{\int_{\phi_{t-1}} p\left(\phi_{t} \mid i_{t}=0, \phi_{t-1}, i_{t-1}\right) \alpha\left(\phi_{t-1} \mid i_{t-1}\right)}_{= \begin{cases}p^{0}\left(\phi_{t}\right) & i_{t-1}=1 \\
\alpha\left(\phi_{t-1}=\phi_{t} \mid i_{t-1}=0\right) & i_{t-1}=0\end{cases} }
\end{gathered}
$$

and the emission term $\mathcal{N}\left(\epsilon_{t} \mid \phi_{t} \epsilon_{t-1}, \sigma^{2}\right)$

$$
= \begin{cases}\mathcal{N}\left(\epsilon_{t} \mid 0, \sigma^{2}\right) & \epsilon_{t-1}=0 \tag{2}\\ \frac{1}{\left|\epsilon_{t-1}\right|} \mathcal{N}\left(\phi_{t} \left\lvert\, \frac{\epsilon_{t}}{\epsilon_{t-1}}\right., \frac{\sigma^{2}}{\epsilon_{t-1}^{2}}\right) & \epsilon_{t-1} \neq 0\end{cases}
$$

Combining these last two results, we see that an additional component is contributed to the filtering recursion for $i_{t}=0$ at each iteration. By further noting that a product of Gaussians is a Gaussian, we see that the posterior is given by a truncated mixture of Gaussians; and therefore we derive a recursion by writing each $\alpha\left(\phi_{t} \mid i_{t}=0\right)=p^{0}\left(\phi_{t}\right) \sum_{\rho_{t}} w_{\rho_{t}} \mathcal{N}\left(\phi_{t} \mid f_{\rho_{t}}, F_{\rho_{t}}\right)$. The index ρ_{t} corresponds to the run-length parameter as set out by Bracegirdle \& Barber (2011)—giving the number of timesteps since a switch to cointegration.

Ignoring, for brevity, the simpler cases when $\epsilon_{t-1}=0$, the new regime $\rho_{t}=0$ has the component given in (2); for $\rho_{t}>0$ we have a product of Gaussians given by the following (with $\rho_{t-1}=\rho_{t}-1$), which we condition

$$
\begin{aligned}
& \mathcal{N}\left(\phi_{t} \mid f_{\rho_{t-1}}, F_{\rho_{t-1}}\right) \mathcal{N}\left(\epsilon_{t} \mid \phi_{t} \epsilon_{t-1}, \sigma^{2}\right) \\
& ==\mathcal{N}\left(\epsilon_{t} \mid \epsilon_{t-1} f_{\rho_{t-1}}, \sigma^{2}+\epsilon_{t-1}^{2} F_{\rho_{t-1}}\right) \\
& \quad \times \mathcal{N}\left(\phi_{t} \left\lvert\, \frac{f_{\rho_{t-1}} \sigma^{2}+\epsilon_{t} \epsilon_{t-1} F_{\rho_{t-1}}}{\sigma^{2}+\epsilon_{t-1}^{2} F_{\rho_{t-1}}}\right., \frac{\sigma^{2} F_{\rho_{t-1}}}{\sigma^{2}+\epsilon_{t-1}^{2} F_{\rho_{t-1}}}\right)
\end{aligned}
$$

After calculating the new Gaussian components for $\alpha\left(\phi_{t} \mid i_{t}=0\right)$, we finish the recursion derivations with

$$
\begin{equation*}
\alpha\left(i_{t}=0\right)=\int_{\phi_{t}} p\left(\phi_{t}, i_{t}=0 \mid \epsilon_{1: t}\right) \tag{3}
\end{equation*}
$$

Likelihood

The likelihood of the data $p\left(\epsilon_{1: T}\right)$ is given by

$$
p\left(\epsilon_{1: T}\right)=p\left(\epsilon_{1}\right) \prod_{t=2}^{T} p\left(\epsilon_{t} \mid \epsilon_{1: t-1}\right)=p\left(\epsilon_{1}\right) \prod_{t=2}^{T} Z_{t}
$$

where the normalisation Z_{t} is calculated during the filtering recursion from (1) and (3) since

$$
\alpha\left(i_{t}=1\right)+\alpha\left(i_{t}=0\right)=1
$$

Whilst it is not necessary to calculate this likelihood, it does permit a common-sense stopping criterion for the EM recursion. The likelihood in practice quickly becomes very small, and it is useful to work in log space to avoid numerical underflow. For the same reason, the weights $w_{\rho_{t}}$ are also calculated in log space in our implementation.

Smoothing

As with the filtered distribution, we will write the smoothed posterior $\gamma\left(\phi_{t}\right)=p\left(\phi_{t} \mid \epsilon_{1: T}\right)$ as

$$
\begin{aligned}
& \gamma\left(\phi_{t}\right)=p\left(\phi_{t}, i_{t}=1 \mid \epsilon_{1: T}\right)+p\left(\phi_{t}, i_{t}=0 \mid \epsilon_{1: T}\right) \\
& \quad=\gamma\left(\phi_{t} \mid i_{t}=1\right) \gamma\left(i_{t}=1\right)+\gamma\left(\phi_{t} \mid i_{t}=0\right) \gamma\left(i_{t}=0\right)
\end{aligned}
$$

The naïve approach, which follows as

$$
\gamma\left(\phi_{t}, i_{t}\right)=\int_{\phi_{t+1}} \sum_{i_{t+1}} p\left(i_{t}, \phi_{t} \mid \phi_{t+1}, i_{t+1}, \epsilon_{1: t}\right) \gamma\left(\phi_{t+1}, i_{t+1}\right)
$$

fails because the first term 'dynamics reversal'

$$
\frac{p\left(\phi_{t+1}, i_{t+1} \mid i_{t}, \phi_{t}\right) \alpha\left(\phi_{t}, i_{t}\right)}{\int_{\phi_{t}} \sum_{i_{t}} p\left(\phi_{t+1}, i_{t+1} \mid i_{t}, \phi_{t}\right) \alpha\left(\phi_{t}, i_{t}\right)}
$$

has a mixture of components in the denominator for the case $i_{t+1}=0$. However, exact smoothing can be derived by utilising the interpretation of the run-length index ρ_{t} from the filtering recursion, as set out by Bracegirdle \& Barber (2011).
The filtered distribution was in fact characterised as

$$
\begin{aligned}
& \alpha\left(\phi_{t}\right)=\alpha\left(\phi_{t} \mid i_{t}=1\right) \alpha\left(i_{t}=1\right) \\
& \quad+\sum_{\rho_{t}} \alpha\left(\phi_{t} \mid \rho_{t}\right) \alpha\left(\rho_{t} \mid i_{t}=0\right) \alpha\left(i_{t}=0\right)
\end{aligned}
$$

where $\alpha\left(\phi_{t} \mid \rho_{t}\right)$ is given by a single truncated Gaussian and $\alpha\left(\rho_{t} \mid i_{t}=0\right)$ is proportional to the weight $w_{\rho_{t}}$. The index ρ_{t} indicates the number of time-steps since the current regime started. That is, for fixed ρ_{t}, we know $i_{t-\rho_{t}-1}=1$ and $i_{t-\rho_{t}: t}=0$. Between time-steps, $\rho_{t}=\rho_{t+1}-1$. Conditioning on ρ_{t} is equivalent to conditioning on $i_{t-\rho_{t}-1: t}$, and this extra information already encoded into the components enables us to write a simple recursion for the smoothed posterior.

NON-COINTEGRATED CASE

We start by first considering $\gamma\left(\phi_{t} \mid i_{t}=1\right)=p^{1}\left(\phi_{t}\right)$; this can be seen intuitively, or algebraically as

$$
\begin{aligned}
\gamma\left(\phi_{t} \mid i_{t}=1\right) \propto p\left(\phi_{t}, \epsilon_{t+1: T} \mid i_{t}=1, \epsilon_{1: t}\right) & \\
& \propto \alpha\left(\phi_{t} \mid i_{t}=1\right)=p^{1}\left(\phi_{t}\right)
\end{aligned}
$$

since $\phi_{t} \Perp \phi_{t+1} \mid i_{t}=1$.
The discrete component

$$
\begin{aligned}
\gamma\left(i_{t}=1\right)= & \int_{\phi_{t+1}} p\left(\phi_{t+1}, \rho_{t+1}=0, i_{t+1}=0 \mid \epsilon_{1: T}\right) \\
& +p\left(i_{t}=1 \mid i_{t+1}=1, \epsilon_{1: t}\right) \gamma\left(i_{t+1}=1\right)
\end{aligned}
$$

where the first term is found as the integral of the subset of the components from $t+1$ indexed by $\rho_{t+1}=0$, and the second

$$
p\left(i_{t}=1 \mid i_{t+1}=1, \epsilon_{1: t}\right) \propto p\left(i_{t+1}=1 \mid i_{t}=1\right) \alpha\left(i_{t}=1\right)
$$

Cointegrated case

To complete the recursion, it suffices to find the components $\gamma\left(\phi_{t}, \rho_{t}, i_{t}=0\right)$.

$$
\begin{align*}
\gamma\left(\phi_{t}, i_{t}\right. & =0)=\int_{\phi_{t+1}} p\left(\phi_{t}, i_{t}=0, \phi_{t+1}, i_{t+1}=0 \mid \epsilon_{1: T}\right) \\
& +p\left(\phi_{t}, i_{t}=0 \mid i_{t+1}=1, \epsilon_{1: t}\right) \gamma\left(i_{t+1}=1\right) \tag{4}
\end{align*}
$$

and the latter term is easily calculated since

$$
\begin{aligned}
& p\left(\phi_{t}, i_{t}=0 \mid i_{t+1}=1, \epsilon_{1: t}\right) \\
& \quad=\alpha\left(\phi_{t} \mid i_{t}=0\right) p\left(i_{t}=0 \mid i_{t+1}=1, \epsilon_{1: t}\right) \\
& p\left(i_{t}=0 \mid i_{t+1}=1, \epsilon_{1: t}\right) \propto p\left(i_{t+1}=1 \mid i_{t}=0\right) \alpha\left(i_{t}=0\right)
\end{aligned}
$$

Finally, the first term in equation (4) collapses,

$$
\begin{aligned}
& \int_{\phi_{t+1}} p\left(\phi_{t}, i_{t}=0, \phi_{t+1}, i_{t+1}=0 \mid \epsilon_{1: T}\right) \\
& =\sum_{\rho_{t+1}>0} \int_{\phi_{t+1}} p\left(\phi_{t}, i_{t}=0, \phi_{t+1}, i_{t+1}=0, \rho_{t+1} \mid \epsilon_{1: T}\right) \\
& =\sum_{\rho_{t+1}>0} \gamma\left(\phi_{t+1}=\phi_{t}, \rho_{t+1}, i_{t+1}=0\right)
\end{aligned}
$$

We see that all of the previous components from $\gamma\left(\phi_{t+1}=\phi_{t}, \rho_{t+1}>0, i_{t+1}=0\right)$ survive the recursion without change, and that all of the components from $\alpha\left(\phi_{t}, i_{t}=0\right)$ are contributed with a prefactor.

References

Bracegirdle, C. and Barber, D. Switch-Reset Models : Exact and Approximate Inference. In AISTATS, volume 15. JMLR, 2011.

