

_	nproving Engineering Productivity- Research Agenda	
	Business Process Model Centric Requirement Analysis O Tool for Requirement Analysis	
	Creation of Reusable Artifacts	
	Model Driven Design	
	Use of higher order languages - Architecture Modeling Model Driven Testing	
	Software Quality Assurance	
	 Capacity Analysis and Performance Assessment 	
	 Application Security Large System Development, Comprehension, Modernization 	
-	Metric driven approach to measure the work-product quality	
	 Fast Comprehension 	
	Collaboration Platform for community based requirement analysis	
	Virtualization	
	 Environments, test-beds that can be accessed uniformly everywhere and enable location-independence of many activities 	
	Service Oriented Architecture	
	 Service Semantics, Orchestration, Differential QoS 	
	Software As a Service	
	 Prototypes and reusable framework 	

Dynamic	Malleable	Personalized	Pervasive	Transformational	Platforms
Processes	Architecture	Information	Infrastructure	IT Management	
Business Process Management Enterprise Collaboration Knowledge Engineering/ Ontology	Web Services SOA Software Architecture Grid Computing	Enterprise Content Management Business Intelligence Data warehousing	Mobile Computing Sensor Networks RFID	Outsourcing IT Strategy Solution Methodologies Regulatory compliance	J2EE .Net

		_					
Notion of Modularity		1					
A module can be defined variously, but generally must be a component of a larger system, and operate relatively independently from the operations of the other components Should passess well-specified abstract interfaces Should have high cohesion and low coupling (Meyer) Benefits							
Extensibility evel-defined, abstract interfaces Reusability elow-coupling, high-cohesion Portability hide machine dependencies		C					
How modular is a system? (Meyer)							
Decomposability: Are larger components decomposed into smaller components? Composability: Are larger components composed from smaller components? Understandability: Are components separately understandable? Continuity: Do small changes to the specification affect a localized and limited number of components?	of	0					
components? Protection: Are the effects of run-time abnormalities confined to a small number of related components?		(
1000 29th Int. Conference on Software Engineering® 20 - 26 May 2007 21							

Experiment conducted The modularity metrics - specifically the concept based metrics have been used as objective functions Different mix of metrics have been tried as multi-objective functions All the solutions are much better than random modularization ('bad') But the produced modularizations are not similar to the reference modularization with regard to the distance measures MoJo O Reference modularization was created manually based on system documentation, human modularization O Concept based metrics showed good values for reference modularization O When the solutions obtained by Tabu search are measured using Concept metrics they showed better result The Metrics that are good for measuring the deterioration of modularization may not be a good objective function for modularization Infosvs 29th Int. Conference on Software Engineering® 20 - 26 May 2007

Identification of Business Topics	
 When a software system is small, one can understand its functional architer manually browsing the source code. For large systems, one employs struct information and analysis techniques such as Call graph, Control and data flow, data slicing, chopping Model checking. 	
These techniques help a little to comprehend the functional intent of the sy	/stem.
 An important step to comprehend the functionality is to identify the embeditopics around which the high level components (or modules) have been im Customers and Loans in a Banking Application SSL Encryption in Apache Web Server Buffered Storage in PostgreSQL database but not in text editors 	
INFOSSS® 29th Int. Conference on Software Engineering® 20 - 26 May 2007	35

