
1

29th Int. Conference on Software Engineering® 20 - 26 May 2007

Software Engineering Challenges- IT Services
Industry Perspective

Santonu Sarkar
Software Engineering Technology Labs (SETLabs)

229th Int. Conference on Software Engineering® 20 - 26 May 2007

Infosys Global Presence

Infosys Internship Program

Belgium
Denmark
Finland
France
Germany
Italy
Norway
Spain
Sweden
Switzerland
The Netherlands
United Kingdom

Australia
China
Hong Kong
India
Japan
Mauritius
UAE

USA
Canada

Europe APAC Americas

Infosys Corporate Presence

• 42 offices, 10 GDC, 7 India offices

Interns worked in the current project so far
1. Tsinghua University, Beijing China
2. University of Mannheim, Darmstadt University-

Germany
3. University of New South Wales- Australia
4. University of Urbana Champagne, IL
5. California Institute of Technology *
6. University of Southern California *
7. Cornell University
8. ETH Zurich

329th Int. Conference on Software Engineering® 20 - 26 May 2007

Awards and Accolades

One of the World’s Most Respected
Companies - Financial Times-PwC annual survey

One of the top 3 IT services company in
the world - Business Week

“Infosys is a role model for companies
everywhere in financial transparency.”-Forbes

First Indian company to publish its financial
statements in conformity with US GAAP

Amongst the first companies in the world to
be certified at CMM Level 5

Global benchmark used for on-time, on-
budget, on-quality delivery in IT Services

Over 95% business from existing clients

1.4 million resumes in FY 06; one in
every 65 applicant selected

Training: certified to be equivalent to BS
in Comp. Sc. in the US

Scaling up: capability to train 14,000
employees in a year at Mysore

Employees of 41 nationalities

Amongst the “100 best places to work for
in IT” in the US

First company to leverage the Global
Delivery Model

First Indian company to list on NASDAQ

First Indian company to offer a
comprehensive ESOP plan

429th Int. Conference on Software Engineering® 20 - 26 May 2007

Agenda

Software Engineering Challenges

Software Engineering Research Agenda at SETLabs

Research Projects- Overview

A Research Project- Detailed

529th Int. Conference on Software Engineering® 20 - 26 May 2007

Next Generation Outsourcing of Software Services

Source: AMR

629th Int. Conference on Software Engineering® 20 - 26 May 2007

Business Application Development and Maintenance Scenario

Hardware &
Software
infrastructure

Business
applications

Client Owned

Developed and
Maintained by
Client

Hardware &
Software
infrastructure

Business
applications

Client Owned

Development
and
Maintenance
Outsourced

Hardware &
Software
infrastructure

Business
applications

•On Demand
•Transaction Oriented

•Limited ownership
•Built from reusable
components/services

Yesterday Today

Tomorrow

Global
Delivery
Model

Global
Delivery
Model

Utility
Centric

Computing

Utility
Centric

Computing

2

729th Int. Conference on Software Engineering® 20 - 26 May 2007

Business Application Development and Maintenance- Complexities

GDMGDM

Utility
Centric

Utility
Centric

Complexities

Application Development

Large in size, distributed
Never built from scratch: uses
existing components,
commercial products
Needs to integrate with the
environment
Rapid development as
requirements evolve

Application Maintenance

Large in size
Poor or no documentation, test
cases
Unavailability of original authors
Gross deviation of the code from
the original architectural intent
Labor intensive maintenance

Additional Complexities

Need to evaluate whether a business
application can be transformed to a
utility based model
How can the business value of these
applications be delivered to end users
through mobile devices
Culture and change management

Hardware &
Software
infrastructure

Business
applications

Client Owned

Developed and
Maintained by
Client

Hardware &
Software
infrastructure

Business
applications

Client Owned

Development
and
Maintenance
Outsourced

Hardware &
Software
infrastructure

Business
applications

•On Demand
•Transaction Oriented

•Limited ownership
•Built from reusable
components/services

Yesterday Today

Tomorrow

829th Int. Conference on Software Engineering® 20 - 26 May 2007

Distributed Software Development and Maintenance- Today

Location A

Location B

Location C

Location D

How can the engineering productivity be improved- accuracy, faster turn around time?
How can the collaboration among people, computing resources can be made structured,
precise and effective?
How can the development/maintenance be made assembly line and less dependent on
human expert?
How can one ensure various quality traits like performance, security, modularity..?
How can one improve application re-engineering – program comprehension,
modularization, service-orientation..?

Distributed
locations
Delivering
projects with
less cost

Shortage of talent
Delivering
projects with
less staff
Delivering with
limited expertise

Margin pressures
Delivering by
spending less
effort

Successive team
handovers
Retaining
knowledge
across team
transitions

929th Int. Conference on Software Engineering® 20 - 26 May 2007

Agenda

Software Engineering Challenges

Software Engineering Research Agenda at SETLabs

Research Projects- Overview

A Research Project- Detailed

1029th Int. Conference on Software Engineering® 20 - 26 May 2007

Improving Engineering Productivity- Research Agenda

Collaboration Platform for community based requirement
analysis
Virtualization

AutomationAutomation

CollaborationCollaboration

AssemblyAssembly

Business Process Model Centric Requirement Analysis

Model Driven Design

Software Quality Assurance

Large System Development, Comprehension, Modernization

Service Oriented Architecture

Software As a Service

1129th Int. Conference on Software Engineering® 20 - 26 May 2007

Improving Engineering Productivity- Research Agenda

Collaboration Platform for community based requirement analysis
Virtualization

Environments, test-beds that can be accessed uniformly everywhere and enable
location-independence of many activities

Business Process Model Centric Requirement Analysis
Tool for Requirement Analysis
Creation of Reusable Artifacts

Model Driven Design
Use of higher order languages - Architecture Modeling
Model Driven Testing

Software Quality Assurance
Capacity Analysis and Performance Assessment
Application Security

Large System Development, Comprehension, Modernization
Metric driven approach to measure the work-product quality
Fast Comprehension

Service Oriented Architecture
Service Semantics, Orchestration, Differential QoS

Software As a Service
Prototypes and reusable framework

1229th Int. Conference on Software Engineering® 20 - 26 May 2007

Other Research Areas at SETLabs (Illustrative)

J2EE

.Net

Outsourcing

IT Strategy

Solution
Methodologies

Regulatory
compliance

Mobile
Computing

Sensor
Networks

RFID

Enterprise
Content
Management

Business
Intelligence

Data
warehousing

Web Services

SOA

Software
Architecture

Grid
Computing

Business
Process
Management

Enterprise
Collaboration

Knowledge
Engineering/
Ontology

Transformational
IT Management PlatformsPervasive

Infrastructure
Personalized
Information

Malleable
Architecture

Dynamic
Processes

3

1329th Int. Conference on Software Engineering® 20 - 26 May 2007

Agenda

Software Engineering Challenges

Software Engineering Research Agenda at SETLabs

Research Projects- Overview

A Research Project- Detailed

1429th Int. Conference on Software Engineering® 20 - 26 May 2007

Software Engineering Research at SETLabs- An Illustrative List

InFlux Requirements Engineering solution
• Comprehensive RE methodology covering Requirements

elicitation, analysis

InFlux Application Architecture solution
• Comprehensive methodology for blueprinting an application

architecture based on high level business and technical
requirements.

Intelligent Production Support Platform
• Reduces turn around time for incident diagnosis through

system and diagnostic knowledge embedded inside an
expert system

Automated test-case generation from requirements
• Ontology based test case composer (under development)

with an aim to reduce in test-case errors, testing effort

Process Execution and Analysis Platform
• A customizable solution for process modeling

(executable level), process orchestration and
workflow management

Capacity Assessment and Performance Engg
• Comprehensive framework for engineering and

managing performance and capacity with in-
house tools developed for comprehensive
performance management

Large System Development and Management

Application Security
• Secure application development process
• Authentication solution using mobile devices
• AOP based application vulnerability detection

1529th Int. Conference on Software Engineering® 20 - 26 May 2007

Performance Engineering Framework

Requirement
Elicitation

Architecture &
Design

Build Systems Integration
Testing

Post Deployment
(Maintenance)

Deployment

A poorly performing software costs
billions of dollars to the business
Well engineered application for
performance is much less costly than
post-deployment refactoring

NFR Capture

NFR Validation

Architecture
Scalability

Assessment

Infrastructure
Sizing

Performance Test
Strategy Definition

Preliminary
Load

Testing

Application
Scalability

Assessment

Load Test

Stress &
Volume Test

Endurance Test

Performance
Prediction

Capacity
Planning

Workload
Forecasting

Capacity
Upgradation

Roadmap

1629th Int. Conference on Software Engineering® 20 - 26 May 2007

Application Security Research

Authentication Secure Web
Interface

Application Vulnerability
Detection

Gartner analysis: 75% of the malicious attacks on the Web are due to application
level security holes
Problems increase with more and more business applications are becoming web-
based

Process –
Secure SDLC

Security
Requirement

Capture

Security Test Cases

Threat Model and
Counter measures

Testing

Security
Prescriptions-

J2EE/.NET

Digitally Signed
Web Form

Certificate

Framework based
on Aspect Oriented
Programming
principles to thwart
web application
security
vulnerabilities

1729th Int. Conference on Software Engineering® 20 - 26 May 2007

Agenda

Software Engineering Challenges

Software Engineering Research Agenda at SETLabs

Research Projects- Overview

Research Project- Detailed (Active Collaboration with Purdue
University)

Current Work
Work in Progress
Tool

1829th Int. Conference on Software Engineering® 20 - 26 May 2007

Project Overview

Monolith

Layered
&
Modular

To increase comprehensibility, analyzability (e.g.
changeability) of a large software system, the source
code can be grouped into modules.
A module is a implementation unit of software that
provides a coherent unit of functionality.

Goal
To implement a tool to analyze the system from modularity
perspective, and help users to reorganize the system into a set
of domain modules which are independently testable and
releasable
To implement tool to assist developers to build modular code

To assist migration into a Service Oriented Architecture

A large (millions of lines of code) business application with long shelf life undergoes
continuous modification, often in an ad-hoc manner and finally becomes extremely difficult
to understand, manage and enhance

4

1929th Int. Conference on Software Engineering® 20 - 26 May 2007

Large System Modernization Research

Source Code
Mining

Analysis of
Modularity

Architecture
Recovery

Code
Modularizati

on

Discovery of
Business
Concepts

Refactoring

SOA
Enablement
- Discovery
of Services

Legacy
System
> 10 yrs

Latent Semantic
Indexing

Principle Component
Analysis

Latent Dirichlet
Allocation

Clustering
Technique

Meta Heuristic
Search techniques

Application of
Reflexion Models

New Software Metrics
Structural

Size
Length

Information Content
Architectural

Application of Text
Search

Application of Data
mining techniques

Modularization may
help in finding the

functional service in a
system

2029th Int. Conference on Software Engineering® 20 - 26 May 2007

Research Trend Analysis

Program complexity metrics (Halstead, Cyclomatic, MI, Caper Jones) based on
are not suitable for modularity analysis

They can be used to assess the maintainability of a system in terms of how complex the system
is to understand
They don’t indicate how modular a system is (Parnas 1972). For instance, a system may consist
of modules which are loosely coupled having well defined API functions but each module may be
functionally very complex to understand.

Classical coupling-cohesion metrics are based on function dependency (or
some other structural dependency). Can they be used for partitioning a code to
a set of modules?

if a function A calls a function B, then both A and B should be considered ‘cohesive’ & belong
together in the same module. But using function call dependencies as the sole basis for
modularization runs counter to the very spirit of what is meant by modules in modern code
writing. Modules pull together functions not because they call one another, but because they
serve similar purposes with respect to the rest of the software.

In a typical client-server system, client functions calls server functions several times but that does
not mean that client-server functions should be combined together to form a module!

2129th Int. Conference on Software Engineering® 20 - 26 May 2007

Notion of Modularity

A module can be defined variously, but generally must be a component of a larger
system, and operate relatively independently from the operations of the other components

Should possess well-specified abstract interfaces
Should have high cohesion and low coupling (Meyer)

Benefits
Extensibility

well-defined, abstract interfaces
Reusability

low-coupling, high-cohesion
Portability

hide machine dependencies

How modular is a system? (Meyer)

Decomposability: Are larger components decomposed into smaller components?
Composability: Are larger components composed from smaller components?
Understandability: Are components separately understandable?
Continuity: Do small changes to the specification affect a localized and limited number of
components?
Protection: Are the effects of run-time abnormalities confined to a small number of
related components?

2229th Int. Conference on Software Engineering® 20 - 26 May 2007

Notion of Modularity- Baldwin and Clark

‘Design Structure Matrix’ can be applied to
Software Design:

Sullivan et al (2001) models dependencies
among modules, module interfaces and key data
structures
Sangal et al (2005) models hierarchical
subsystem organization using DSM

Modularity operators are abstract and generic.
It is a non-trivial task to define precise
semantics in the context of software design
Several matrix operations can be applied on a
design structure matrix to compute various
system dependencies
Sangal et al have used DSM structure to
represent layered architecture

XXEntity 5

XXEntity-4

XEntity-3

XEntity-2

XXEntity-1

54321

Xsubmod32

Xsubmod31

Module-3

XModule-2

XXsubmod12

XXsubmod11

Module-1

32313212111

‘Design Structure Matrix’ To define a modular
structure
Generic, can be applied in various industries
Modularity operators and net option value for
each modularity operators

2329th Int. Conference on Software Engineering® 20 - 26 May 2007

Current Approach

1. A module offers a well-
defined coherent set of
services
2. Interaction through well-
defined API
3. To a large extent each
module should be
independently compliable
4. Modules should be easily
extendible and testable with
minimal effect on others
5. Acyclic dependency
among modules and layered
organization of modules
6. Uniformity in module size
and observance of module
size bounds

2429th Int. Conference on Software Engineering® 20 - 26 May 2007

Modularity Metrics [Sarkar et al API-Based and Information-Theoretic Metrics for Measuring the Quality of Software Modularization–
IEEE TSE 2007]

m1
f1

f2

f3

f4

f5

m2

f6

f7

Module Interaction Index
Inter-module interactions should ideally happen only
through a set of designated API functions. For a well
modular system, all external calls are routed through API
functions and the metric will be 1.
In reality external calls happen through non API functions
due to bad programming practice, thus this metric will not
be 1 in real life systems.

Non-API closeness Index
Ideally the non-API internal functions ideally should never
be exposed to the external world and this number should
be close to 1

Explicit Dependency Index
Ideally the inter-module interactions should happen
through functions, not through indirect means such as
global variables. This index measures the violation of this
principle.

m1
f1

f2

f3

f4

m2
f6

f7

Max API Usage
Max(#API functions called by any other module) / Total number of API
functions, 0 otherwise
Average over all modules for which the above is non-zero
Should be close to 1
All most all of the published API functions in a module would be used
by some other module, thereby making the fraction close to 1Non-API
closeness Index

Module size uniformity
Enforces equal sized modules within an acceptable standard deviation

Module size boundedness
Ensures that an individual module size should not deviate too much
from some acceptable module numbers, discourages monolithic
modules

f8

m3
f9

f10

5

2529th Int. Conference on Software Engineering® 20 - 26 May 2007

Modularity Metrics…..

1. John Lakos, “Large Scale C++ Software Design”. Addison-Wesley, 1996
2. Les Hatton, “Reexamining the Fault Density-Component Size Connection“, IEEE Software 1997

m1 m2

Layer Organization Index
Checks whether layering principles have been honored.
Discourages skipping of layers when a module at a given layer calls another module in the layer below it. It also
discourages calls to the upper layer with high penalty. In an ideal case, this index should be close to 1.

Normalized Cumulative Component Dependency Index[1]
A module with fewer numbers of dependencies is comparatively more testable than a module with large number of
dependencies.
A module needs to be tested whenever the same module or any of the modules it depends on is modified. Therefore
in a system where there is cyclic dependency between modules, a change in one module can potentially require the
entire system to be tested. This value in ideal condition should be < 1. A high number (>> 1) indicates that testing effort
is high.

Metric based on stability of modules in Layers

m4 m5 m3

m6 m7 m8 m9

X

2629th Int. Conference on Software Engineering® 20 - 26 May 2007

Modularity Metrics…..

Customer Module

Concept Domination Index and Concept Coherency Index
Modules that has ‘functionally similar’ entities (functions, files, data structures) are considered to be functionally
cohesive
Measures the violations of such principles
Based on Information Theory : A module with functionally similar entities has less Entropy and more Information
Content
Uses keyword based similarity detection

Customer

Customer

Customer

Customer

Customer Module
(possibly)

Customer

Customer

Account

Customer

?

Date

Customer

Account

Shopping
Cart

X√

2729th Int. Conference on Software Engineering® 20 - 26 May 2007

Experiments

Metric values-
human and

random
modularization

Metric Value
Comparison

Concept
Distribition-

Module beos

Concept
Distribution-

Random
Modularization

2829th Int. Conference on Software Engineering® 20 - 26 May 2007

Work in Progress

Automated Modularization
Identification of Architectural Layers
Identification of Domain Concepts

2929th Int. Conference on Software Engineering® 20 - 26 May 2007

Modularization of Software

Objective
Re-modularization of large legacy SW systems-
Regroup all entities (functions/files) into a set of
modules without changing the content of
functions/files

Each entity should belong to exactly one
module

Achieve a modularization which will be
considered as ‘good’

Goodness of Modularization can be determined
by

Measuring the modularity metrics
Measuring how close the modularization is to the
human

Using various distance measures

Expert who developed or maintains
the system

Knows the system
Possible drawbacks

Self-interests
Used to existing structure
Subjective judgment
Blindness

Independent software architecture
expert

Needs time to understand
Less biased

The solution space for real-life
system is huge
With 1000 files and 20 modules, the
number of solutions could be of the
order of

Approximate algorithms

100020

3029th Int. Conference on Software Engineering® 20 - 26 May 2007

Approximate Algorithm-Tabu Seach (TS)

Idea of Tabu Search
After an entity has been moved from module A to B, forbid to move it back to A for a certain number of
iterations
Maintain a set of non-dominated solutions while algorithm runs
Drop solutions which are dominated by others
Use non-dominated solutions as starting point for finding better solutions
Let user pick one of the non-dominated solutions after the algorithm has terminated

Objective
to be
maximized

Local
optimum

Global
optimum

0.60.52 (dominated by 3)

0.70.63

0.40.81

Metric 2Metric 1Solution

6

3129th Int. Conference on Software Engineering® 20 - 26 May 2007

Experiment conducted

The modularity metrics – specifically the concept based metrics have been used as
objective functions
Different mix of metrics have been tried as multi-objective functions
All the solutions are much better than random modularization (‘bad’)
But the produced modularizations are not similar to the reference modularization with
regard to the distance measures MoJo

Reference modularization was created manually based on system documentation, human
modularization
Concept based metrics showed good values for reference modularization
When the solutions obtained by Tabu search are measured using Concept metrics they showed
better result

The Metrics that are good for measuring the deterioration of modularization may not be a
good objective function for modularization

3229th Int. Conference on Software Engineering® 20 - 26 May 2007

Architectural Layering in a large software system- Problem Context

We are running systems that consists of 10 Million Lines of Code or even more
Too many modules exist to understand and manage the whole system. Therefore, an additional
organization of the modules is needed

3329th Int. Conference on Software Engineering® 20 - 26 May 2007

Layered architecture

Bass et al. "Documenting Software Architectures“:

Layers completely partition a set of software,
and each partition constitutes a virtual machine
- with a public interface - that provides a
cohesive set of services. (+ strict ordering)
Collection of modules constitutes a layer and
layers are typically stacked.

calls

Layer 1
calls

Layer 2

Layer 3
Layers help to bring quality attributes of modifiability and portability to a software system.

In theory, if something is changed within a lower layer it can be hidden. It helps to manage
complexity and to communicate the structure, because of its simplicity.

Testability is increased, especially for the top and bottom layer, because only one mock
layer can be used to test these two layers as a test driver.

How to identify layers in a system?

3429th Int. Conference on Software Engineering® 20 - 26 May 2007

Experiment

Identification of Top and Bottom modules

For every module we can compute the Fan-In
/ Fan-Out ratio.
Assumption:

Sink candidates have a high Fan-In and a low
Fan-Out and therefore belong to the bottom
layer
Driver candidates have a low Fan-In and a
high Fan-Out and therefore belong to the top
layer

Module m
Fan In Fan Out

Attraction based Grouping of modules:

1. Initial assignment of some modules to the layers
(the driver and sink candidates)

2. For each remaining module calculate the
attraction of each module to one of the layers

3. If a module is highly attracted to a certain layer
then assign this module to this layer

4. If a module is similar attracted to multiple layers,
let the user decide.

Andreas Christl et al "Equipping the Reflexion Method
with Automated Clustering," WCRE 2005, pp.
89-98

Attraction Value = f (#calls within a layer,
#calls to a lower layer, #back calls to
higher layers)

3529th Int. Conference on Software Engineering® 20 - 26 May 2007

Identification of Business Topics

When a software system is small, one can understand its functional architecture by
manually browsing the source code. For large systems, one employs structural
information and analysis techniques such as

Call graph,
Control and data flow, data slicing, chopping
Model checking.

These techniques help a little to comprehend the functional intent of the system.

An important step to comprehend the functionality is to identify the embedded business
topics around which the high level components (or modules) have been implemented.

Customers and Loans in a Banking Application
SSL Encryption in Apache Web Server
Buffered Storage in PostgreSQL database

but not in text editors

3629th Int. Conference on Software Engineering® 20 - 26 May 2007

Identifying Semantic Information

Semantic information is found in the names of identifiers in the Source Code. Often it
leaves hints at what the code is doing in a human-readable form. For instance, “proxy”,
“http” while implementing an http-proxy. Similarly Address, Street, Zip are related to
Address.

Such meaningful keywords can be found in:
Functions and their parameters
Variable declarations and use
Files
Classes and types
Comments

Assuming that the meaningful keywords do exist in program elements, is it possible to
correlate these keywords to meaningful clusters?

Applying Natural language processing techniques
Use of computers to analyze and index text written by humans.
Applications

Search engines
Identifying topics in scientific papers (Griffiths and Steyvers, 2004)

7

3729th Int. Conference on Software Engineering® 20 - 26 May 2007

Latest Semantic Analysis

It computes combinations of words having similar meanings. This reduces noise and
deals with synonymy (two keywords have the same meaning, even approximately so)
Algorithm

The number of times keyword k appears in source code document d is placed in matrix X[k,d] .
Singular Value Decomposition computes a lower dimensional approximation Y of X.
The keyword-keyword matrix YYT contains similarity between keywords. Similarly, the document-
document matrix YTY contains similarity between documents.
A similarity group between the keywords (YYT) can be treated as a topic.

Does not deal to polysemy (keyword has more than one meaning)
Hard partitioning of keywords

Do we know how the topics are distributed across files ? - No

3829th Int. Conference on Software Engineering® 20 - 26 May 2007

Latent Dirichlet Analysis

A document/file is a mixture of topics.
Topics are a mixture of keywords.

A software system S is a corpus of M source code files, S = {f1, · · · , fM}, with N unique
terms W = {w1, · · · ,wN}
Each file fd, d = 1 · · ·M has a multinomial distribution θd over T topics, and each topic tj , j
= 1 · · · T has a multinomial distribution Φj over W.
The topic extraction aims to find out a set of suitable Φj using a Dirichlet distribution.

Topic 1 = auth,config,mod,dbm,modul
Topic 2 = thread,child,signal,worker,main
Topic 3 = cach,size,mmap,entity,header

AuthenticationAuthentication

ServerServer

CachingCaching

3929th Int. Conference on Software Engineering® 20 - 26 May 2007

Tool Architecture

Code Modularity
Analysis& Diagnosis

Code Metadata
Extractor

Metadata

Index

Technical
Doc

Application
Code

Version
Info

Code Visualizer

Module Level Report
API Functions in a module
Global variable reports
Module size details
Architecture Layering Details
Unstable dependencies
Cyclically dependent modules
Testability dependence information

Function Level Report
Functions those are bad in a module
Functions that does not call API

functions
Functions that are Dead
Functions that are not cohesive with

respect to a Domain Concept

System Level
Report

4029th Int. Conference on Software Engineering® 20 - 26 May 2007

Summary

Software Engineering challenges
Scale
Geographical Distribution
Low cost
Fast development using COTS products

Software Engineering Research is extremely crucial for the organization

Research focus:
Automation
Collaboration
Assembly

Large Software System Analysis
Metrics based evaluation

Various projects are executed on
Modularization
Analysis
Concept Extraction

29th Int. Conference on Software Engineering® 20 - 26 May 2007

Thank you

